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• Two special operations (or operators?) 

• L is a linear operator (Forward modelling operator).


• Why are them special?


• Iterative solvers for large inverse problems only need to know how to 
evaluate            and 


• I usually interpret operators as matrices. In reality, operators are codes 
applied on the flight


• We will see these operators everywhere today

Forward and Adjoint Operators
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Forward : d = Lm
Conjugate transpose or adjoint : m̃ = L′ �d

L[ ⋅ ] L′�[ ⋅ ]



Steepest descent method

• Compute the gradient and iterate downhill until 
convergence


• Let’s see the special role of L and L’ in steepest descent 
optimization (or in any iterative optimization algorithm that 
only requires L and L’) 


• Simplify problem by considering minimization of 
quadratic cost J
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J = ∥d − Lm∥2
2



Steepest descent method

• Cost


• Gradient


• Update


• Interesting, one can minimize J with a simple rule that 
does not involve inverting matrices and this is great 
because we can replace matrices by linear operators!!!!


• Aren’t you excited ?
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J = ∥d − Lm∥2
2

g = ∇J = 2 L′�(Lm − d)

mk+1 = mk − αgk



Steepest descent method

• Minimization of quadratic cost by SD
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Demo_3_Lapis_2019_Steepest_Descent.ipynb

x_init = [-6.0,-7.9]

x_final=[-0.009,2.005]

x_true=[0.0,2.0]


K = 50 iterations at fixed step size 



Steepest descent method

SD iterations: 


Do until convergence


End Do


The above code can also be written as follows


Do until convergence 


End Do
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mk+1 = mk − α L′�(Lmk − d)

rk = (Lmk − d)
mk+1 = mk − α L′�(rk)



Steepest descent method: Matrices are replaced by Linear 
Operators packed into Functions or  Subroutines 

Do until convergence 


End Do


Do until convergence


End Do
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rk = (Lmk − d)
mk+1 = mk − α L′�(rk)

rk = Do_It [mk, f lag = f ] − d
mk+1 = mk − α Do_It[rk, f lag = a]

f: Forward 
a: Adjoint or transpose



Operators on the flight  
(al vuelo o pegarle de volea)
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xy = Lx L

yx̃ = L′�x L′�



Operators on the flight  
(al vuelo o pegarle de volea)
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Do_It

Do_It

flag=f

flag=a

xy = Lx

yx̃ = L′�x

f: Forward 
a: Adjoint or transpose



Why this is important?

• Migration and de-migration operators cannot be written as 
matrices. Least-squares migration requires the Do_It 
approach.


• Reconstruction problems often entail using operators that 
cannot be written via implicit matrices (FFTs, Curvelet 
Frames, etc). In this case, we also adopt the Do_It approach


• Multidimensional problems where m and d are not vectors 
can still be analyzed via linear algebra tools by providing 
simple rules that make linear operators behave like matrices
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Dot-product test

• How do you guarantee that your codes for the forward 
and adjoint operators behave like L and L’ ?


• Let’s L be the forward operator and let’s call B the 
tentative adjoint or transpose operator


• Form the two inner products 
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y1 = L x1 , x2 = B y2

yT
2y1 = y2Lx1

xT
1 x2 = x1By2



Dot-product test

The two inner products are equal 


If 


Therefore, one can write a code for L and code for L’, do 
the dot-product test and if the two product are equal then 
one can say that L and L’ packed by the function Do_It 
behave like a matrix and its transpose, respectively. Then 
you can safely use all you know about linear algebra to 
solve an inverse problem! 
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yT
2y1 = y2Lx1 xT

1 x2 = x1By2

B = L′�



Dot-product test in practice
using LinearAlgebra, FFTW 

# Dot product test example using operators rather than matrices 

# Fourier DFT matrices and its Hermitian Transpose are replaced by 

# on-the-flight FFTs 

M = 512 

x1 = randn(M) 

y1 = fft(x1) 

y2 = randn(M) 

x2 = M*ifft(y2) 

dot_x = x1'*x2 

dot_y = y1'*y2 

println(dot_x) 

println(dot_y)
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Conjugate Gradients
• It is more efficient to use the Conjugate Gradient (CG) 

method than SD. 


• I will not discuss CG but it basically amounts to also 
applying on the flight the operators L and L’ in each 
iteration (step)


• The Conjugate Gradient algorithm is so popular that you 
can probably get one at a Maxi Kiosko 

• CG minimizes the general quadratic cost function:
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J = ∥d − Lm∥2
2



Concatenation of operators

• Forward


• Adjoint


• Dot product test must work for individual operators 
(codes) and then it will work for L and L’ 
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L = ABC

L′� = C′�B′�A′�



Preconditioning 

• Using iterative methods (SD or CG) I prefer not to worry 
about matrices of weights


• Therefore, I like to use the following change of variables
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J = ∥d − Lm∥2
2 + μ∥Wm∥2

2

J = ∥d − LPu∥2
2 + μ∥u∥2

2

Wm = u → Pu = m



Preconditioning

• Minimize with iterative solver


• With Do_It operators:
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J = ∥d − LPu∥2
2 + μ∥u∥2

2

Forward : LP

Adjoint : P′�L′�



Preconditioning

• In this example, I use SD to minimize 


Do until convergence


End
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rk = (LPuk − d)
uk+1 = uk − α( P′�L′�(rk) + μ uk)

msol = Pu

J = ∥d − LPu∥2
2 + μ∥u∥2

2



Preconditioning

• W and P should  behave like the inverse of each other


Then 


W is a high-pass operator (applies roughening)


P is low-pass operator (applies smoothing)
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Wm = u → Pu = m



Preconditioning (SD)
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2
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ge-o-phys-i-cist, n. 

A geophysicist is a person who passes as an exacting expert 
on the basis of being able to turn out, with prolific 
fortitude, infinite strings of incomprehensible formulae 
calculated with micrometric precision from vague 
assumptions, which are based on debatable figures taken 
from inconclusive experiments, carried out with 
instruments of problematic accuracy by persons of doubtful 
reliability and questionable morality for the avowed 
purpose of annoying and confounding a hopeless 
chimerical group of fanatics known as geologists who are 
themselves the lunatic fringe of the scientific community. 

Author unknown 


