
Part 2:
Iterative solvers
M D Sacchi

University of Alberta

LAPIS 2019 - UNLP - April 9, 2019�1

Course information

• Email: msacchi@ualberta.ca

• Web: https://sites.ualberta.ca/~msacchi/LAPIS/

• Approval: Assignment consisting of programming
exercises due by April 30, 2019

• Delivery format: PDF by email

!2

mailto:msacchi@ualberta.ca
https://sites.ualberta.ca/~msacchi/LAPIS/

• Two special operations (or operators?)

• L is a linear operator (Forward modelling operator).

• Why are them special?

• Iterative solvers for large inverse problems only need to know how to
evaluate and

• I usually interpret operators as matrices. In reality, operators are codes
applied on the flight

• We will see these operators everywhere today

Forward and Adjoint Operators

!3

Forward : d = Lm
Conjugate transpose or adjoint : m̃ = L′ �d

L[⋅] L′�[⋅]

Steepest descent method

• Compute the gradient and iterate downhill until
convergence

• Let’s see the special role of L and L’ in steepest descent
optimization (or in any iterative optimization algorithm that
only requires L and L’)

• Simplify problem by considering minimization of
quadratic cost J

!4

J = ∥d − Lm∥2
2

Steepest descent method

• Cost

• Gradient

• Update

• Interesting, one can minimize J with a simple rule that
does not involve inverting matrices and this is great
because we can replace matrices by linear operators!!!!

• Aren’t you excited ?

!5

J = ∥d − Lm∥2
2

g = ∇J = 2 L′�(Lm − d)

mk+1 = mk − αgk

Steepest descent method

• Minimization of quadratic cost by SD

!6

Demo_3_Lapis_2019_Steepest_Descent.ipynb

x_init = [-6.0,-7.9]

x_final=[-0.009,2.005]

x_true=[0.0,2.0]

K = 50 iterations at fixed step size

Steepest descent method

SD iterations:

Do until convergence

End Do

The above code can also be written as follows

Do until convergence

End Do

!7

mk+1 = mk − α L′�(Lmk − d)

rk = (Lmk − d)
mk+1 = mk − α L′�(rk)

Steepest descent method: Matrices are replaced by Linear
Operators packed into Functions or Subroutines

Do until convergence

End Do

Do until convergence

End Do

!8

rk = (Lmk − d)
mk+1 = mk − α L′�(rk)

rk = Do_It [mk, f lag = f] − d
mk+1 = mk − α Do_It[rk, f lag = a]

f: Forward
a: Adjoint or transpose

Operators on the flight
(al vuelo o pegarle de volea)

!9

xy = Lx L

yx̃ = L′�x L′�

Operators on the flight
(al vuelo o pegarle de volea)

!10

Do_It

Do_It

flag=f

flag=a

xy = Lx

yx̃ = L′�x

f: Forward
a: Adjoint or transpose

Why this is important?

• Migration and de-migration operators cannot be written as
matrices. Least-squares migration requires the Do_It
approach.

• Reconstruction problems often entail using operators that
cannot be written via implicit matrices (FFTs, Curvelet
Frames, etc). In this case, we also adopt the Do_It approach

• Multidimensional problems where m and d are not vectors
can still be analyzed via linear algebra tools by providing
simple rules that make linear operators behave like matrices

!11

Dot-product test

• How do you guarantee that your codes for the forward
and adjoint operators behave like L and L’ ?

• Let’s L be the forward operator and let’s call B the
tentative adjoint or transpose operator

• Form the two inner products

!12

y1 = L x1 , x2 = B y2

yT
2y1 = y2Lx1

xT
1 x2 = x1By2

Dot-product test

The two inner products are equal

If

Therefore, one can write a code for L and code for L’, do
the dot-product test and if the two product are equal then
one can say that L and L’ packed by the function Do_It
behave like a matrix and its transpose, respectively. Then
you can safely use all you know about linear algebra to
solve an inverse problem!

!13

yT
2y1 = y2Lx1 xT

1 x2 = x1By2

B = L′�

Dot-product test in practice
using LinearAlgebra, FFTW

Dot product test example using operators rather than matrices

Fourier DFT matrices and its Hermitian Transpose are replaced by

on-the-flight FFTs

M = 512

x1 = randn(M)

y1 = fft(x1)

y2 = randn(M)

x2 = M*ifft(y2)

dot_x = x1'*x2

dot_y = y1'*y2

println(dot_x)

println(dot_y)

!14

Demo_5_Lapis_2019.ipynb

Conjugate Gradients
• It is more efficient to use the Conjugate Gradient (CG)

method than SD.

• I will not discuss CG but it basically amounts to also
applying on the flight the operators L and L’ in each
iteration (step)

• The Conjugate Gradient algorithm is so popular that you
can probably get one at a Maxi Kiosko

• CG minimizes the general quadratic cost function:

!15

J = ∥d − Lm∥2
2

Concatenation of operators

• Forward

• Adjoint

• Dot product test must work for individual operators
(codes) and then it will work for L and L’

!16

L = ABC

L′� = C′�B′�A′�

Preconditioning

• Using iterative methods (SD or CG) I prefer not to worry
about matrices of weights

• Therefore, I like to use the following change of variables

!17

J = ∥d − Lm∥2
2 + μ∥Wm∥2

2

J = ∥d − LPu∥2
2 + μ∥u∥2

2

Wm = u → Pu = m

Preconditioning

• Minimize with iterative solver

• With Do_It operators:

!18

J = ∥d − LPu∥2
2 + μ∥u∥2

2

Forward : LP

Adjoint : P′�L′�

Preconditioning

• In this example, I use SD to minimize

Do until convergence

End

!19

rk = (LPuk − d)
uk+1 = uk − α(P′�L′�(rk) + μ uk)

msol = Pu

J = ∥d − LPu∥2
2 + μ∥u∥2

2

Preconditioning

• W and P should behave like the inverse of each other

Then

W is a high-pass operator (applies roughening)

P is low-pass operator (applies smoothing)

!20

Wm = u → Pu = m

Preconditioning (SD)

!21

P = 1
2

0

BBBB@

2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2

1

CCCCA

Demo_4_Lapis_2019.ipynb

!22

ge-o-phys-i-cist, n.

A geophysicist is a person who passes as an exacting expert
on the basis of being able to turn out, with prolific
fortitude, infinite strings of incomprehensible formulae
calculated with micrometric precision from vague
assumptions, which are based on debatable figures taken
from inconclusive experiments, carried out with
instruments of problematic accuracy by persons of doubtful
reliability and questionable morality for the avowed
purpose of annoying and confounding a hopeless
chimerical group of fanatics known as geologists who are
themselves the lunatic fringe of the scientific community.

Author unknown

