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Inverse Problems 

• An Inverse Problem is a mathematical problem where one 
attempts to estimate models that explain observations. 
We often name the observations d (data)


• Observations are generally measured on the surface of 
the earth and are discrete in time and space


• The subsurface is described by properties (density, 
velocity, reflectivity, resistivity, etc). These properties exist 
everywhere. We will refer to these properties as m (model 
parameters)
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• Forward Problem

Data SpaceModel Space

m d

𝕄 𝔻
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F[m] = d

Two spaces 



Two spaces

• Inverse Problem

Data SpaceModel Space

m d

𝕄 𝔻
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Finv [d] = m



It is more complicated…

Data SpaceModel Space

m̂

m̂ : Solution

m d

𝕄 𝔻

F

Finv
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Data

(What you can measure)

Model

(What you would like to know) Method (Course/Materia)

Gravity anomalies Density Potential Field Methods

Electrical potential Resistivity Potential Field Methods

Electrical and Magnetic Field Electrical conductivity EM/MT methods

Magnetic Fields Susceptibility Potential Field Methods

Seismic Waves Velocities Seismic Methods
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Geophysics and IPs



Ill-posed problems

• Well-posed problem. A problem is said to be well-posed when


• There is a solution


• The solution is unique


• The solution is stable


• If one of the above is not true, the problem is called an ill-
posed problem


• Typical geophysical inverse problems are ill-posed problems 
(2 and 3 are not true)
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Ill-posed problems

• There is a solution: YES


• There is a solution otherwise we wouldn’t be here 


• e.g. Rocks have density causing gravity anomalies
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Ill-posed problems

• The solution is unique: Generally NO


• e.g., Depth-Velocity ambiguity
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t = 2 z
v

t = 2 × 1000m
2000m/s = 2 × 1500m

3000m/s
z



Ill-posed problems

• The solution is stable: Not true


• A small perturbation in the data causes a large 
perturbation in the solution


• e.g. Deconvolution
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No noise Noise added to data

Reflectivity

Data 

Deconvolution 



Why geophysical problems are ill-
posed?
• Not enough data (insufficient spatial data or insufficient 

bandwidth) 


• Presence of noise leads to unstable solutions


• The forward problem itself leads to ill-posed problems. 
Forward problem smoothes material properties. Seismic 
waves, gravity anomalies, electrical potential, etc are nice 
smooth functions of space and time. Subsurface properties, 
on the other hand, might or might not be smooth!


• Next slide illustrated the aforementioned concept. 
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Example: Inversion of gravity 
anomalies

ρ(x, z) = ρ1
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Δgz(xr, zr = 0) = ∫x,y
G(x, y |xr, zr = 0) Δρ(x, y) dx dy

xr

ρ(x, z) = ρ2
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Key points
• Previous example shows an interesting feature of the Forward Problem:


• Observations (data) are a weighted average of density. The averaging 
kernel smoothes the density anomaly 


• Inverse Problem: Recovering the density from the data entails the 
opposite of smoothing (un-smoothing); an unstable operation 


• Smoothing  = Low pass operator = Stable


• Un-smoothing = High pass operator = Unstable


• Solving an inverse problem in many cases entails controlling 
instability
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Linear inverse problems

• Many inverse problems in seismology entail solving integral equations. Others entail solving 
PDEs. We will start with simple problems that can be written as integral equations that after 
discretization lead to discrete system of equations. 


• Integral equations


• Linear discrete system of equations


• Regularization methods


• Connection to exploration seismology:


• Deconvolution


• AVO inversion 


• Linearized seismic imaging (Forward and Adjoint Operators)


• Migration & Least-Squares migration
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Notation

• Real vector


• Complex vector 


• The ell-2 norm
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Linear inverse problems
• Fredholm integral equation of 1st kind


• We can discretize the model


• Which leads to a system of equations 
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d(rj) = ∫
X

G(rj, x) m(x) dx j = 1…N

xk = x0 + (k − 1)Δx k = 1…M

d(rj) = ∑M
k=1 G(rj, xk) m(xk) Δx j = 1…N

d = Gm, d ∈ RN, m ∈ RM

https://en.wikipedia.org/wiki/Fredholm_integral_equation


Examples
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d(rj) = ∫
X

G(rj, x) m(x) dx j = 1…N

s(ti) = ∫ w(ti − τ) r(τ) dτ

T(rj) = ∫ rj

0
s(l) dl

d(ω, si, rj) = ∫
x
∫

z
B(ω, x, y |si, rj)m(x, z)dx dz

Convolution

Travel-time tomography

Born imaging



• Two special operations (or operators?) 

• L is a linear operator (Forward modelling operator).


• Why are them special?


• Iterative solvers for large inverse problems only need to know how to 
evaluate            and 


• I usually interpret operators as matrices. In reality, operators are codes 
applied on the flight (al voleo)


• We will see these operators everywhere today

Forward and Adjoint Operators
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Forward : d = Lm
Conjugate transpose or adjoint : m̃ = L′ �d

L[ ⋅ ] L′�[ ⋅ ]



• Two special operations (or operators?) 

• Replace (1) into (2)


• Questions:


•  When can I say the adjoint model is a goo representation of the true mode?


• Can I remove L’L from the mode obtained via the adjoint ?


• Migration vs. Least-squares Migration: Least‐squares migration of incomplete 
reflection data. Nemeth et al. GEOPHYSICS(1999),64(1)

Forward and Adjoint Operator
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Forward : d = Lm
Conjugate transpose or adjoint : m̃ = L′ �d

(1)

(2)

m̃ = L′�Lm



• Two special operations (or operators?) 

•

Forward and Adjoint Operators
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Forward : d = Lm
Conjugate transpose or adjoint : m̃ = L′ �d

(1)

(2)

m̃ = L′�Lm

m̃ is a distorted version of  m



• Including noise into the problem


• e  represents “nice” Gaussian additive noise


• Given the vector of observed data d, one wishes to 
estimate the vector of model parameters m

Linear Inverse Problems
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d = Lm + e
d : N × 1 m : M × 1 L : N × M



Cost function for least-squares problems


The principle is simple, find m that minimize the sum of the 
squares of the errors 


To compute the solution we now have to invert a matrix. 
Assume the matrix is invertible then
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J = ∥e∥2
2 = ∥d − Lm∥2

2

∇J = 0 → (L′�L)m = L′�d

msol = (L′�L)−1L′�d

Linear Inverse Problems



The latter is a naive solution because inverse problems are 
ill-posed and regularization is needed. In other words, one 
cannot safely compute:


• Either is non invertible


• Or the Matrix has a large condition number (It will amplify 
noise)


• Condition Number  

!24

(L′�L)−1

Linear Inverse Problems

κ =
λmax(L′�L)
λmin(L′�L)

Matrix computations 
GH Golub, CF Van Loan, 2013 (4th edition) 

javascript:void(0)


Regularization 

• Main idea of regularization methods


• Take an ill-posed problem and turn into a well-posed 
problem by introducing constraints that lead to a stable 
solution. The solution often depends on a trade-off 
parameter. Therefore, regularization methods create a 
family of solutions with different properties (e.g. 
smoothness). One can alter the solution by modifying 
the tradeoff parameter 


• Often call Tikhonov regularization, after Andrey 
Nikolayevich Tikhonov 1906-1993.
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Regularization

• Replace cost function to minimize


• by


•     Is the infamous trade-off parameter or regularization 
parameter. Why infamous? 


• W is a matrix/operator of weights 

!26

J = ∥d − Lm∥2
2

J = ∥d − Lm∥2
2 + μ∥W m∥2

2

μ



Regularization

• Evaluate the solution, as usual, by minimizing the cost 
function


• Taking derivatives and equating them to zero 
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= argmin
m

{∥d − Lm∥2
2 + μ∥W m∥2

2}

∇J = 0 → msol = (L′ �L + μR)−1L′�d

msol = argmin
m

J

R = W′�W



Regularization

• Anatomy of the cost function 


• To minimize J is equivalent to simultaneously minimize e 
and u
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J = ∥d − Lm∥2
2

Error Norm

+ μ ∥W m∥2
2

Model Norm

J = ∥e∥2
2

⏟
Error Norm

+ μ ∥u∥2
2

⏟
Model Norm



Regularization

• To minimize J is equivalent to simultaneously minimize e 
and u


• W is a high-pass operator therefore it penalizes 
roughness.  u are amplified bad features of m 

• Examples of W are first and second order derivatives
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e = d − Lm ≈ 0

u = Wm ≈ 0

Make residuals small

Make bad features of m small



Regularization with first order 
derivative smoothing
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W = D1 =

0

BBBB@

1 0 0 0 0
�1 1 0 0 0
0 �1 1 0 0
0 0 �1 1 0
0 0 0 �1 1

1

CCCCA

∂f(x)
∂x

↔ ikF(k) Derivative is high pass



Regularization with second order 
derivative smoothing
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W = D2 =

0

BBBB@

2 �1 0 0 0
�1 2 �1 0 0
0 �1 2 �1 0
0 0 �1 2 �1
0 0 0 �1 2

1

CCCCA

∂2f(x)
∂x2

↔ − k2F(k) Derivative is high pass



Example: Dampled LS solution
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msol = argmin
m

{∥d − Lm∥2
2 + μ ∥m∥2

2}

∇J = 0 → msol = (L′ �L + μ I)−1L′�d

Demo_1_Lapis_2019.ipynb

Red:     True Model | Observed data 
Green:  Estimated Model | Predicted data



Example: Solution with smoothing
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msol = argmin
m

{∥d − Lm∥2
2 + μ ∥W m∥2

2}

∇J = 0 → msol = (L′ �L + μ W′�W)−1L′ �d

W = D1

W = D2

Demo_1_Lapis_2019.ipynb



Trade-off curves (for Damped least-
squares)
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Demo_1_Lapis_2019.ipynb



Trade-off curves (for Damped least-
squares)
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Demo_1_Lapis_2019.ipynb

μ = 0.0001

μ = 0.1

μ = 1



Edge preserving regularization (EPR)

• Avoid smoothing to preserve edges


• We adopt the ell-1 norm of the first order derivative of 
model parameters 


• Make the derivative of the model sparse
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J = ∥d − Lm∥2
2

Error Norm

+ μ ∥D1 m∥1

Model Norm

We ask u = D1m to be sparse



Edge preserving regularization (EPR)
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Demo_2_Lapis_2019.ipynb

EPR 
(non-quadratic)

Second Order Derivative Reg. 
(quadratic)



Edge preserving regularization (EPR)

• Quadratic leads to close form solution (linear system of 
equations) 


• EPR: Non-quadratic regularization leads to non-linear 
solution that tries to recover edges
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J = ∥d − Lm∥2
2

Error Norm

+ μ ∥D1 m∥1

Model Norm

J = ∥d − Lm∥2
2

Error Norm

+ μ ∥W m∥2
2

Model Norm



Edge preserving regularization (EPR)
• Non-quadratic regularization leads to non-linear solution


• Solution


• Where


• To avoid division by zero 
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J = ∥d − Lm∥2
2

Error Norm

+ μ ∥D1 m∥1

Model Norm

∇J = 0 → (L′�L + μD′�1 Q D1)m = L′�d

v = D1 m Qii =
1

|vi |

Qii =
1

ϵ + |vi |



Edge preserving regularization (EPR)

• Iterative re-weighted least-squares 


For k=1 until convergence  

End
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mk+1 = (L′�L + μD′ �1 Qk D1)−1L′�d

Qk
ii =

1
ϵ + |vk

i |

m1 = minitial

Sacchi, 1997, Re-weighting strategies for seismic deconvolution, GJI

v = D1 m



Connection to sparsity

• This cost function generates a sparse solution


• Often used for Deconvolution


• Pre-stack data Reconstruction (Liu and Sacchi, 2004, Geophysics; 
Hermann, 2010, Geophysics) 

• Radon Transfroms, etc etc etc (Sacchi & Ulrych, 1995, Geophysics) 

• AVO Inversion (Alemie and Sacchi, 2011, Geophysics) 
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J = ∥d − Lm∥2
2

Error Norm

+ μ ∥m∥1
⏟

Model Norm



Connection to sparsity 

• Make m sparse: 


• Make the derivative of m sparse = Make m blocky 
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J = ∥d − Lm∥2
2

Error Norm

+ μ ∥m∥1
⏟

Model Norm

J = ∥d − Lm∥2
2

Error Norm

+ μ ∥D1 m∥1

Model Norm



Sparsity

• IRLS is the simplest solver one can imagine 

• Many new solvers in recent year


• ISTA, FISTA, SALSA, SPG-L1, ADMM, L1-Magic,etc 
etc etc


• I usually use IRLS or FISTA


• ISTA/FISTA: Only need to know how to apply L and 
L’ (on-the-flight)
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