Lapis 2019-M D Sacchi

Assignment: Lapis 2019
Due: May 13, 2019
Topic: VSP inverse problem
Help: msacchi@ualberta.ca

Provide codes and figures as your answers

Problem

Figure 1 displays a Vertical Seismic Profile (VSP). The detectors in the borehole record waves excited by a source at $z=0$. The source is close to the well. Therefore, you can consider vertical propagation. We will assume that the earth can be discretized in terms of M layers of equal thickness and we will assign to each layer a velocity. Under this assumption one represent the vertical distribution of velocities in the subsurface as a vector of size $M \times 1$

$$
\mathbf{m}=\left[s_{1}, s_{2}, s_{3}, \ldots, v_{M}\right]^{T}
$$

where $s_{i}=\frac{1}{v_{i}}$ is the slowness of layer i.
Consider N detectors placed in the borehole at depth $z_{i}, i=1, \ldots N$. We also assume that each detector has recorded first-arrival travel times of waves excited by the source $t_{i}, i=1, \ldots N$. Our data vector is given by the travel-times $\mathbf{d}=\left[t_{1}, t_{2} \ldots t_{n}\right]^{T}$, our vector of model parameters is given by the reciprocal of the velocity (slowness) $\mathbf{m}=\left[s_{1}, s_{2}, s_{3}, \ldots s_{M}\right]^{T}$.
a Write a function to compute the tomographic matrix G

$$
\mathrm{d}=\mathrm{Gm}
$$

b Read the ascii data file data_vsp.asc containing depth of detector and travel-time. The first column of the table is the depth of the receiver in km . The second column is the traveltime in secs. Traveltimes provided in the file were contaminated by noise with standard error $\sigma=0.0018 \mathrm{~s}$.
c Write a code to estimate the velocity structure by inverting the traveltimes by minimizing the cost

$$
J=\|\mathbf{G m}-\mathbf{d}\|_{2}^{2}+\mu^{2}\left\|\mathbf{D}\left(\mathbf{m}-\mathbf{m}_{0}\right)\right\|_{2}^{2}
$$

Figure 1: a) Subsurface model. b) Model of layers of equal thickness that is used to represent the subsurface. Detectors along the borehole are used to record waves generated by source at $z=0$ close to the borehole. This configuration is often called zero-offset VSP.

Explore solutions with different values of trade-off parameter. I recommend that for \mathbf{m}_{0} you adopt a constant slowness of $1 / 3 \mathrm{~s} / \mathrm{km}$ (a constant velocity of $3 \mathrm{~km} / \mathrm{s}$).
d Compute misfit versus μ and try to pick μ via the χ^{2} test. Show the solution for the optimum value of μ. The operator \mathbf{D} is the matrix of first order derivatives (read the paper by Lizarralde and Swift)
e Plot a trade-off curve (Model norm vs Misfit) for different values of μ. Adopt a logarithmic μ scale.

