Demo_1_Lapis_2019

April 8, 2019

In [6]: using PyPlot,LinearAlgebra

1 LAPIS 2019 - UNLP

Make a forward problem to generate data and solve it with DLS etc

$$
d\left(r_{j}\right)=\int_{x_{\min }}^{x_{\max }} A e^{-\alpha\left(r_{j}-x\right)^{2}} m(x) d x+e\left(r_{j}\right)
$$

In [16]: \# Set forward problem and compute mock (sythetic) data

```
    N = 400
    M = 500
    m = zeros(M)
    m[30:50] = m[30:50] .+1.0
    m[130:150] = m[130:150] .-2.0
    m[230:350] = m[230:350] .+2.0
    x_max = 100.
    x_min = 0.
    r_max = 100.
    r_min = 0.
    alpha = 0.1
    A = 0.01
    dx = (x_max-x_min)/(M-1)
    dr = (r_max -r_min)/(N-1)
    x = [x_min+dx*(i-1) for i in 1:M]
    r = [r_min+dr*(i-1) for i in 1:N]
    L = A*[exp(-alpha*(( x[i]-r[j] ) ~2)) for j in 1:N, i in 1:M]
```

 \# Make the synthetic data and add noise to it
 \(\mathrm{d}=\mathrm{L} * \mathrm{~m}+0.1 * \operatorname{randn}(\mathrm{~N})\)
 subplot(221); imshow(L); title("Operator L");
 subplot(223); plot(x,m,"r"); title("True m");xlabel("x")
 subplot(224); plot(r,d,"r"); title("Data d = Gm + e");xlabel("r")
 tight_layout()

1.0.1 Damped least squares

Our first attempt to solve the inverse problem involves minizing the cost function

$$
J=\|\mathbf{d}-\mathbf{G} \mathbf{m}\|_{2}^{2}+\mu \|\left.\mathbf{m}\right|_{2} ^{2} .
$$

The solution is given by

$$
m_{\text {sol }}=\left(\mathbf{G}^{\prime} \mathbf{G}+\mu \mathbf{I}\right)^{-1} \mathbf{G}^{\prime} \mathbf{d} .
$$

Similarly, you can use the solution to predict the data

$$
\mathbf{d}_{\text {pred }}=\mathbf{G} \mathbf{m}_{\text {sol }} .
$$

Last point is important, you should compare observation to predictions to access fit.

1.0.2 Least squares with smoothing constraints

Our second attempt is to minimize

$$
J=\|\mathbf{d}-\mathbf{G} \mathbf{m}\|_{2}^{2}+\mu \|\left.\mathbf{W m}\right|_{2} ^{2} .
$$

that leads to

$$
\mathbf{m}_{\text {sol }}=\left(\mathbf{G}^{\prime} \mathbf{G}+\mu \mathbf{W}^{\prime} \mathbf{W}\right)^{-1} \mathbf{G}^{\prime} \mathbf{d}
$$

with $-\mathbf{W}=\mathbf{D}_{1}$ (First order quadratic regularization) - $\mathbf{W}=\mathbf{D}_{2}$ (Second order quadratic regularization)

In [17]: function wls(G,d,mu,dx;order=1)

```
    # least-squares solution with smoothing
    # order = 1 -> First order quadratic regularization: D1
    # order = 2 -> Second order quadratic regularization: D2
    N,M = size(G);
    if order==1
        D = (-diagm(0=>ones(M))+diagm(1=>ones(M-1)))/dx
    end
    if order==2
        D = (-diagm(-1=>ones(M-1))+2*diagm(0=>ones(M))-diagm(1=>ones(M-1)))/dx^2
    end
    m_sol = (G'*G +mu*D'*D)\(G'*d)
    d_pred = G*m_sol
    return m_sol, d_pred
end
function dls(G,d,mu)
    # least-squares solution with damping
    N,M = size(G);
        I = diagm(0=>ones(M))
    m_sol = (G'*G +mu*I)\(G'*d)
    d_pred = G*m_sol
    return m_sol, d_pred
end
```

In [19]: mu $=0.001$
m_sol,d_pred = dls(L,d,mu)
subplot(221); plot(x,m,"r",x,m_sol, "g"); xlabel("x"); title("True and Estimated Mode subplot(222); plot(r,d,"r",r,d_pred,"g"); xlabel("r"); title("Data and Predicted Data
$m u=.1$
m_sol,d_pred = wls(L,d,mu,dx;order=2)
subplot(223); plot(x,m,"r",x,m_sol, "g"); xlabel("x"); title(L"True and Estimated Mod subplot(224); plot(r,d,"r",r,d_pred,"g"); xlabel("r"); title("Data and Predicted Data
tight_layout()

True and Estimated Model with \mathbf{D}_{2}

Data and Predicted Data

