Mass and force in Imperial units

April 27, 2015

On Earth, 1 lbm exerts a force of 1 lbf . Thus

$$
\begin{aligned}
1 \mathrm{lbf} & =1 \mathrm{lbm} \cdot g \\
& =1 \mathrm{lbm} \cdot 32.2 \frac{\mathrm{ft}}{\mathrm{~s}^{2}} \\
& =32.2 \frac{\mathrm{lbm} \cdot \mathrm{ft}}{\mathrm{~s}^{2}}
\end{aligned}
$$

Masses may also be expressed in units of slugs where

$$
\begin{aligned}
1 \text { slug } & =1 \mathrm{lbf} \cdot \frac{\mathrm{~s}^{2}}{\mathrm{ft}} \\
& =32.2 \frac{\mathrm{lbm} \cdot \mathrm{ft}}{\mathrm{~s}^{2}} \cdot \frac{\mathrm{~s}^{2}}{\mathrm{ft}} \\
& =32.2 \mathrm{lbm}
\end{aligned}
$$

The slug is defined so that an object having a mass of 1 slug exerts a force of 32.2 lbf . Alternatively, 1 lbf is the force required to accelerate 1 slug of mass at $1 \mathrm{ft} / \mathrm{s}^{2}$. Analogously 1 N is the force required to accelerate 1 kg of mass at $1 \mathrm{~m} / \mathrm{s}^{2}$. To accelerate a 1 kg mass at $9.8 \mathrm{~m} / \mathrm{s}^{2}$ would require 9.8 N so, on Earth, the weight of a 1 kg object is 9.8 N .

Suppose that you're solving a problem where the mass is given as 800 lbm . What is the associated force?

$$
\begin{aligned}
\text { mass } & =800 \mathrm{lbm} \\
& =800 \mathrm{lbm} \cdot \frac{1 \mathrm{slug}}{32.2 \mathrm{lbm}} \\
& =\frac{800}{32.2} \mathrm{slug} \\
\text { force } & =\operatorname{mass} \cdot g \\
& =\frac{800}{32.2} \mathrm{slug} \cdot 32.2 \mathrm{ft} / \mathrm{s}^{2} \\
& =800 \mathrm{slug} \mathrm{ft} / \mathrm{s}^{2}
\end{aligned}
$$

Recall, however, that $1 \mathrm{slug} \mathrm{ft} / \mathrm{s}^{2}$ equals 1 lbf . The force is therefore 800 lbf . Okay, but what about the conversion factor that says that $1 \mathrm{lbf}=32.2 \mathrm{lbm} \mathrm{ft} / \mathrm{s}^{2}$? Doesn't this suggest that an object with a mass of 800 lbm has a gravitational force of $800 \times 32.2 \mathrm{lbf}$? No! The above conversion factor is just that, a conversion factor, not a formula for computing force from mass. In short, an object with a mass of 1 lbm exerts a force of 1 lbf . Likewise, an object with a mass of 800 lbm exerts a force of 800 lbf .

