A unified method for interpolation and de-noising of seismic records in the $f-k$ domain

Mostafa Naghizadeh

University of Alberta
(Currently at the University of Calgary)

SEG annual meeting
Denver, Colorado
19 October 2010
1 Introduction
 • Motivations
 • Overview

2 Theory
 • Identifying dominant dips in f-k domain
 • Building a mask function
 • Least-squares fitting

3 Examples
 • Synthetic data
 • Real data

4 Conclusions
1 Introduction
 - Motivations
 - Overview

2 Theory
 - Identifying dominant dips in f-k domain
 - Building a mask function
 - Least-squares fitting

3 Examples
 - Synthetic data
 - Real data

4 Conclusions
Utilizing information from full frequency band for de-noising or interpolation of any single frequency in the f-k domain.
1 Introduction
 - Motivations
 - Overview

2 Theory
 - Identifying dominant dips in f-k domain
 - Building a mask function
 - Least-squares fitting

3 Examples
 - Synthetic data
 - Real data

4 Conclusions
Interpolation methods

Signal processing based methods

- $f-x$ interpolation [Spitz, 1991]
- $f-k$ interpolation [Gulunay, 2003]
 - Using low frequencies to interpolate high frequencies.
- Multi-step autoregressive [Naghizadeh and Sacchi, 2007]
 - Combining minimum weighted norm interpolation (MWNI) [Liu and Sacchi, 2004] and $f-x$ interpolation.
- Sparse Fourier inversion [Zwartjes and Sacchi, 2007]
- Pyramid transform [Guitton and Claerbout, 2010]
- Fourier-Radial Adaptive Thresholding [Curry, 2009]
- Curvelet interpolation [Hennenfent and Herrmann, 2008], [Naghizadeh and Sacchi, 2010]
 - Using coarser scales of curvelets to interpolate finer and aliased scales of curvelets.
De-noising methods

Including but not limited to

- \textit{f-x} prediction filter [Canales, 1984]
- \textit{f-x} projection filter [Soubaras, 1994]
- Singular Value Decomposition [Trickett, 2003]
- Cadzow methods [Trickett and Burroughs, 2009] or Singular Spectrum Analysis [Oropeza and Sacchi, 2009]
- Empirical Mode Decomposition [Bekara and Van der Baan, 2009]
- \textit{f-k} velocity filtering
- \ldots
Principle of single frequency de-noising (I)
Principle of single frequency de-noising (II)

![Diagram showing t-x domain and f-k domain with marked frequencies.](image-url)
1 Introduction
 - Motivations
 - Overview

2 Theory
 - Identifying dominant dips in f-k domain
 - Building a mask function
 - Least-squares fitting

3 Examples
 - Synthetic data
 - Real data

4 Conclusions
f-k spectra of linear events (I)
f-k spectra of linear events (II)
f-k spectra of linear events (III)
Angular summation in the \(f-k \) domain

Search for dominant energy dips

- \(d(t, x) \): Data in the \(t-x \) domain
- \(D(\omega, k) \): Data in the \(f-k \) domain
- \(0 < \omega < 0.5 \): Normalized frequencies
- \(-0.5 < k < 0.5 \): Normalized wavenumbers
- \(p \): Slope of summation path in the \(f-k \) domain

\[
M(p) = \sum_{n=1}^{N_\omega} D(\omega_n, k = p.\omega_n - \left\lfloor \frac{p + 1}{2} \right\rfloor)
\]
Schematic representation of angular summation in the f-k domain.
Thresholding for dominant energy dips

Identifying peak values

Locating peak values above a threshold value and marking them as dominant energy dips.
1 Introduction
 - Motivations
 - Overview

2 Theory
 - Identifying dominant dips in f-k domain
 - Building a mask function
 - Least-squares fitting

3 Examples
 - Synthetic data
 - Real data

4 Conclusions
A mask function for \(f-k \) domain

From dominant dips to mask function

1. \(\rho_1, \rho_2, \ldots, \rho_L \) are the identified dominant dips.

2. Deploying rays of dominant dips in \(f-k \) domain. Initiating \(H \) matrix with zeros,

\[
H(\omega_n, k = \rho_j \omega_n - \left\lfloor \frac{\rho_j + 1}{2} \right\rfloor) = 1, \quad \{ n = 1, 2, \ldots, N_\omega, j = 1, 2, \ldots, L. \}
\]

3. Mask Widening to account for uncertainties. Convolving \(H \) with a 1D box car function, \(B(1, L_b) \),

\[
W(\omega, k) = H(\omega, k) \ast B,
\]
Mask function

Normalized wavenumber

Normalized frequency

f-k domain
1 Introduction
- Motivations
- Overview

2 Theory
- Identifying dominant dips in f-k domain
- Building a mask function
- Least-squares fitting

3 Examples
- Synthetic data
- Real data

4 Conclusions
A stable and unique solution can be found by minimizing the following cost function [Tikhonov and Goncharsky, 1987]

\[J = \| d - T F^H W D \|_2^2 + \mu^2 \| D \|_2^2. \]

- **d**: Data in \(t-x \) domain
- **D**: Data in \(f-k \) domain
- **T**: Sampling function
- **F**: Fourier transform
- **W**: Mask function
- **\(\mu \)**: Trade-off parameter
1 Introduction
 - Motivations
 - Overview

2 Theory
 - Identifying dominant dips in f-k domain
 - Building a mask function
 - Least-squares fitting

3 Examples
 - Synthetic data
 - Real data

4 Conclusions
Original data

![t-x domain](image)

- Distance (m)
 - 500, 1000, 1500, 2000

- Time (s)
 - 0.1, 0.2, 0.3, 0.4

- Normalized frequency
 - -0.4, -0.2, 0, 0.2, 0.4

- Normalized wavenumber
 - -0.4, -0.2, 0, 0.2, 0.4

![f-k domain](image)
Noisy data (SNR=1.0)

t-x domain

- Time (s): 0.1, 0.2, 0.3, 0.4
- Distance (m): 500, 1000, 1500, 2000

f-k domain

- Normalized frequency: -0.4, -0.2, 0, 0.2, 0.4
- Normalized wavenumber: -0.4, -0.2, 0, 0.2, 0.4
De-noised data using Canales f-x method

Distance (m)

Time (s)

Normalized frequency

Normalized wavenumber

f-k domain

t-x domain
De-noised data using the proposed method

t-x domain

Distance (m)

Time (s)

f-k domain

Normalized wavenumber

Normalized frequency
The mask function used for de-noising
Irregularly sampled data
Interpolation of irregularly sampled data

![Graph showing t-x and f-k domains with distance and time axes.](image)
Data with gap

![Graph showing t-x and f-k domains with labeled axes and scales.](image)

- **t-x domain**
 - Time (s): 0.1, 0.2, 0.3, 0.4
 - Distance (m): 500, 1000, 1500, 2000

- **f-k domain**
 - Normalized wavenumber
 - Normalized frequency
Gap interpolation
Data which needs extrapolation
Dealiased data

t-x domain

- Time (s): 0.1, 0.2, 0.3, 0.4
- Distance (m): 500, 1000, 1500, 2000

f-k domain

- Normalized wavenumber: -0.4, -0.2, 0, 0.2, 0.4
- Normalized frequency: 0.1, 0.2, 0.3, 0.4
1 Introduction
 • Motivations
 • Overview

2 Theory
 • Identifying dominant dips in f-k domain
 • Building a mask function
 • Least-squares fitting

3 Examples
 • Synthetic data
 • Real data

4 Conclusions
Original data from the Gulf of Mexico
Interpolated data from the Gulf of Mexico

t-x domain

f-k domain
A time window of original data
A time window of interpolated data
Ground-roll elimination by proposed method

Noisy data

De-noised (proposed method)

De-noised (f-k filtering)
For linear seismic events information from any band of frequencies can be utilized to interpolate or de-noise any frequency.

The assumption of linear events needs to be fulfilled for the success of the proposed method. Therefore, proper spatial windowing is required for optimal performance.

The least-squares fitting of f-k and t-x domains prevents the appearances of artifacts akin to f-x methods.

The thresholding criteria requires special care otherwise the algorithm can create artificial unrealistic events.

The Proposed method can be used for both random and coherent noise elimination.
Acknowledgments

- Sponsors of Signal Analysis and Imaging Group (SAIG) at the University of Alberta.
- Sponsors of CREWES at the University of Calgary.
- Dr. Mauricio D. Sacchi
- Dr. Sam T. Kaplan

——– 2010, Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data: Geophysics, 75, ???–???

Tikhonov, A. N. and A. V. Goncharsky, 1987, Ill-posed problems in the natural sciences: MIR Publisher.
