
Torrent: Strong, Fast Balance Discovery in the
Lightning Network
Sonbol Rahimpour, Majid Khabbazian

University of Alberta, Edmonton Canada
Email: {rahimpou, mkhabbazian}@ualberta.ca

Abstract—The owners of channels in the Bitcoin’s Lightning
Network do not disclose their balances in order to protect their
privacy, and conceal payment transfers through their channels.
Nevertheless, recent studies have shown that channel balances can
be discovered using simple probing techniques. These techniques
are, however, slow, often rely on specific control messages, and
require to open a new channel for every single channel balance
discovery or have limited power in discovering balances of remote
channels. In this work, we present a powerful balance discovery
method called Torrent that overcomes these limitations of existing
methods. Unlike the existing techniques, Torrent uses multi-path
payments instead of single-path payments. This—together with a
novel max flow algorithm designed for the Lightning Network—
allows a single probing node to push a large flow of payments
through any target channel, making it more likely to discover
its balance. Moreover, Torrent can speed-up balance discovery
through parallel payment transfers, and pre-computation of
payment paths. In addition, Torrent can operate in the absence of
routing control messages that are often relied on by the existing
channel discovery methods.

Index Terms—Lightning network, balance discovery, privacy

I. INTRODUCTION

The low throughput and high latency of Bitcoin transactions
have inspired many researchers to look for scalable solutions.
Today, one of the most promising scalable solutions designed
for Bitcoin is the Lightning Network. Deployed in 2018, the
Lightning Network creates a network of connected payment
channels through which Bitcoin payments are transferred from
one end to another. These payment transfers are carried
off-chain and do not involve the Bitcoin blockchain. As a
result, payments in the Lightning Network can be made at
a significantly higher rate and speed than what the Bitcoin
blockchain can handle.

In addition to enabling faster transactions, the Lightning
Network offers lower transaction fees and higher privacy than
the Bitcoin blockchain. To enhance privacy, the Lightning
Network employs several mechanisms including onion routing
and balance concealment [1]. The onion routing hides the
sender and the recipient of a payment by encapsulating the
payment information in layers of encryption. As a result, each
node on the payment path can identify only its immediate
predecessor and successor.

A successful payment will change the balance of all the
channels on its path from the sender to the recipient of the
payment. Therefore, if channel balances are made public, any
network observer can extract payment transfer information

(including the source, destination, and the value of a payment)
by simply observing changes in the balance of channels. To
prevent this, the Lightning Network requires nodes to conceal
the balance of their channels from others.

Although balances are kept secret, several recent studies
have shown that they can be discovered or at least estimated
using simple probing techniques: suppose Carol is interested
to know Alice’s balance on a channel between Alice and Bob.
A basic approach described in [2], is for Carol to first open a
channel with Alice. If successful, as shown in Figure 1, Carol
then sends a “fake payment” to Bob through Alice. Such a fake
payment will trigger an error message. If Carol receives the
error message from Alice, she concludes that Alice’s balance
is lower than the amount of payment because only Bob, the
recipient of the payment, can determine that the payment is
fake. Otherwise, if Carol receives the error message from Bob,
she knows that the payment has successfully passed through
the Alice-Bob channel, thus Alice’s balance must be higher
than the value of the payment. Carol can repeat sending fake
payments with different values (following, say, a binary search
pattern) to Bob, improving her estimate on Alice’s balance
with transmission of each such fake payment.

The above balance discovery method does not work if
neither Alice nor Bob accepts Carol’s request for opening
a channel. Furthermore, the method does not scale: if Carol
wants to discover balances of many channels, she has to open
many channels, too. This is costly as Carol has to lock funds
and pay transaction fees for opening each channel.

Recent extensions [3]–[5] have shown that Carol does not
need to open a channel with Alice to discover her balance.
Instead, she can use any channel, and send fake payments
using a path P that goes through the Alice-Bob channel. If
she receives an error message from Bob or any other node
after Bob on path P , she knows that the payment has passed
through the Alice-Bob channel, hence Alice’s balance must
be higher than the payment’s value. If she receives an error
message from Alice, on the other hand, she can conclude that
Alice’s balance was not enough to let the payment go through.
If Carol receives an error message from a node that is before
Alice on path P , however, she will not gain any information
about Alice’s balance. In other words, Carol cannot gain any
information on Alice’s balance if she cannot push enough flow
of money to Alice through P . Of course, Carol can try again
by choosing a different path. However, there is no guarantee
that the new path can carry enough flow to Alice. In fact, there978-1-6654-9538-7/22/$31.00 ©2022 IEEE

BobAliceCarol

m BTC

(a) Carol sends a fake payment (with value m Bitcoin) to Bob
through Alice.

BobAliceCarol
error message

Alice

Alice's Balance < m

m BTC

(b) Carol receives an error message from Alice.

BobAliceCarol
error message

Bob

Alice's Balance > m

m BTC m BTC

error message
Bob

(c) Carol receives an error message from Bob.

Figure 1: A simple probing technique for discovering Alice’s
Balance.

may be no single path that can carry enough flow from Carol
to Alice.

Existing extensions use a sequential probing process in
which fake payments are sent sequentially. This slows down
the balance discovery process. This is not desired because
Carol may need to know balances as soon as possible since
the Lightning Network is dynamic and balances can change
quickly.

To address the above shortcomings, we present Torrent.
Unlike the existing methods, Torrent can concurrently send
several payments through multiple paths. These payments are
temporarily held at a receiving node to prevents payment can-
cellations during the balance discovery process. This technique
allows Carol to quickly push a large flow of money through
Alice using concurrent payments. Using Torrent, Carol can
discover Alice’s balance if the maximum flow that she can
bring to Alice is larger than Alice’s balance. To achieve the
maximum flow (or get close to it), we devise new algorithms
that work within the unique limitations of the Lightning
Network and our specific channel discovery problem. We
show that, using these algorithms, Carol can quickly discover
balances of many remote channels with opening at most two
channels.

We remark that Carol will know Alice’s balance if she
discovers Bob’s balance. It is because the channel capacity
(which is the sum of the balances of its owners) is public
information. Therefore, in all the above methods, an alternative
way for Carol to discover Alice’s balance is to discover Bob’s
balance. We also remark that Carol’s intention in discovering

balances may not be malign. For instance, Carol may want
to discover channels with low balances so she can help her
clients avoid payment routes that can fail.

II. BACKGROUND

A. Payment Channels

Two parties can open a payment channel by publishing
a transaction on the Bitcoin blockchain. This transaction
locks their funds into a 2-of-2 multi-signature address that
is controlled jointly by the two parties. When this opening
transaction is confirmed, the two parties can exchange any
number of private transactions off the Bitcoin blockchain
without requiring any confirmation from the blockchain. Each
of these so called off-chain transactions essentially changes
the channel state by updating balances on the channel. If one
party cheats and closes the channel with an earlier state, the
other party can dispute and collect the whole channel’s fund
if the party reacts within a certain timeout.

B. The Lightning Network

The Lightning Network (LN) is a network of payment
channels. LN allows any party to make a payment to another
party provided that there is a path of payment channels
between the two parties, and all the channels on the path have
enough balances to transfer the payment.

To enable parties to discover paths to each other, LN
nodes advertise their channels by gossiping their channel’s
information. This information includes the channel capacity,
but dose not include the channel balances to comply with the
channel concealment policy. Since channel balances are not
known, a payer cannot guarantee that their payment will go
through a path as one of the channels on the path may simply
not have an enough balance. If this occurs, the payment will
fail, and the payer will receive an error message, which notifies
the channel that failed. This helps the payer to avoid the failed
channel in their subsequent attempts.

C. Maximum Flow

The maximum flow problem is about finding the maximum
amount of feasible flow that a node (source) can send to
another node (sink) in a flow network. A flow network is a
directed graph, where each edge has a capacity that restricts
the maximum flow that can pass through the edge. The amount
of flow that enters a node (other than the source and the sink)
must be equal to the amount of flow that leaves the node.

The maximum flow problem was first formulated in 1954
by Harris and Ross for Soviet railway traffic flow [6]. Soon
after, Ford and Fulkerson proposed the first algorithm to
solve the problem [7]. Since then many improved solutions
with lower computational complexities have been proposed.
These solutions are used today in various applications in-
cluding mining industry [8], optimizing spatiotemporal data
scheduling methods [9], optimizing complex transactions in a
traditional bank accounts, Bitcoin wallet accounts and Bitcoin
exchanges [10] and controlling power transmission [11].

Despite the existing solutions, solving the maximum flow
problem in the Lightning Network is challenging because
balances are not known. In the absence of balance information,
we can access an oracle1. The oracle can tell us whether a
given path can carry a given flow, and if so, can be asked to
make the payment and update balances of the channels on the
given path. An interesting open question is at least how many
oracle accesses we need to calculate the maximum flow.

III. TORRENT

Torrent can be viewed as a multi-path payment approach to
channel discovery; rather than probing the balance of a target
channel through a series of sequential single-path payments—
as done in the existing methods—Torrent uses multiple paths
to concurrently transmit partial payments through the target
channel. To ensure that these partial payments are not canceled
during the channel discovery process, receiver(s) in Torrent
temporarily hold the received payments.

Let fmax denote the maximum flow that Torrent can push
through the target channel assuming that the target channel
has an infinite balance. Torrent works based on the idea that
the balance of a target channel can be discovered if fmax is
greater than the balance of the channel. This is because, under
the above condition, the balance of the target channel becomes
the bottleneck for the maximum flow that can be transferred
through the target channel. Under this condition, therefore,
balance of the target channel is equal to the maximum amount
of money that can be sent through the target channel.

In this work, we show this condition holds for a vast
majority of channels in the Lightning Network.

Example 1. Figure 2 shows a small payment networks with 11
channels and 10 nodes. Carol has two nodes and is interested
to know the balance of Alice on the Alice-Bob channel. Assume
that there are enough balances on Carol’s channels. If we
change Alice’s balance from 200k to ∞, then the maximum
flow that Carol’s node on the left (the sender) can send to her
node on the right (the receiver) is 230k Satoshis. Note that
Carol can send

60k via path (n1, n2, Alice,Bob, n4, n6)
160k via path (n1, n3, Alice,Bob, n5, n6)
10k via path (n1, n2, Alice,Bob, n5, n6)

Also, note that cutting channels (Bob, n4) and (n5, n6) will
disconnect the sender and the receiver. These two channels
can carry a total flow of

60k + 170k = 230k

Therefore, fmax = 230k, which is higher than Alice’s balance
of 200k. Consequently, in this example, Torrent is able to
discover Alice’s balance. We remark that the maximum flow
that a single path from Carol’s sender to her receiver can
carry is at most 160k. Therefore, the best conclusion that the
existing channel discovery methods can make in this example
is that Alice’s balance is at least 160k.

1The oracle [12] is the Lightning Network itself.

Types of Torrents. As mentioned earlier, Torrent requires
the receiver(s) of payments to temporarily hold any received
payment. To achieve this, Torrent can employ its own re-
ceiver(s). Clearly, in this case, receivers would follow Torrent
and temporarily withhold received payments as needed. We
refer to the case where Torrent uses its own receiver(s) as
Torrent Type A.

Alternatively, in what we call Type B, Torrent uses Alice
and/or Bob as receivers. This is possible if Alice and/or Bob
support AMP [13], a multi-path payment method supported in
the new versions of LND2 [15]. Note that in AMP (as in any
multi-path payment method) a receiver needs to hold partial
payments until it receives the payment in full. Torrent can
benefit from this property of AMP and use Alice and/or Bob
as receivers instead of employing its own receiver(s).

Note that Torrent Type A not only needs to push a large
flow into the target channel, but also has to push this flow out
of the target channel and deliver it to its receiver(s). Torrent
Type B, however, only needs to push a large flow towards the
target channel. As a result, in general, Torrent Type B can
push a larger flow than Type A. For instance, in the network
of Figure 2, Carol can send a flow of size 110k+160k= 270k
in Torrent Type B, while the maximum possible flow in Type
A (as shown in Example 1) is 230k.

IV. IMPLEMENTATION

As before, suppose Carol is interested to know Alice’s
balance. To implement Torrent, Carol needs to open a set
of channels, and use them to send/receive a large flow of
payments through the target channel, i.e. Alice’s channel. If
Carol knows balances of all channels except the target channel,
then she can use linear programming—as we will show later—
to find an optimal set of payment paths that can transfer
the maximum flow through the target channel. In practice,
however, Carol does not know balances of channels. This
makes the problem of finding the max flow challenging.

To solve the above unique max flow problem, we propose
two algorithms. The first algorithm assumes that all channels,
except the target channel, have a certain minimum balance.
For example, it may assume the balance of every channel is at
least 5% of its capacity. Using this assumption, the algorithm
uses a linear program to solve the max flow problem. The
advantage of this approach is that it can discover balances
very fast because 1) it can pre-compute paths and the amount
of payments that should be transferred on each path; 2)
it can send all the payments in parallel as the amount of
payments are known a priori. Of course, the minimum balance
assumption may not hold for all channels. However, this does
not negatively impact the algorithm if the feasible max flow
is considerably higher than the balance of the target channel.
Besides, the algorithm can always re-attempt a failed payment
by trying smaller payments on the failed path.

The second algorithm is a greedy iterative algorithm. In
each iteration, the algorithm updates its view of the network

2About 90% of nodes in the Lightning Networks are LND nodes [14].

Carol CarolBobAlicen1

n2

n3

n6

n4

n5

11
0K

14
0K

16
0K

10
0K

60
K

14
0K

17
0K

20
0K

200K

150K180K

120K

130K

140K

300K

250K

190K

50K

Figure 2: A small payment network. Carol has two channels with nodes n1 and n6, and is interested to discover balance of
the channel between Alice and Bob. Balances of Alice and Bob on this channel are 200k and 150k Satoshis, respectively.

based on results of the previous iteration, then selects a set
of short disjoint paths and pushes the maximum possible flow
through these paths.

In the following, we explain these two algorithms for
Torrent Type A. These algorithms can be easily converted and
used for Type B, because Type B is essentially a special case
of Type A where receivers are the owners of the target channel.
We start by modeling the Lightning Network and defining our
max flow problem.

A. Network Model and Problem Definition

We model the Lighting Network as a graph G = (V,E),
where V is the set of nodes and E is the set of channels.
For any channel (u, v) ∈ E, let b(u, v) denote the balance of
node u, and c(u, v) denote the channel capacity. Therefore, we
have c(u, v) = b(u, v) + b(v, u). Recall that c(u, v) is public
information while b(u, v) is private to nodes u and v.

The Max Flow Problem in LN. Given a graph G, a
capacity function c(.), a source s ∈ V , a destination d ∈ V ,
and a target channel (a, b) ∈ E, the problem is to find the
maximum flow that s can send to d through the target channel
(a, b). In addition to finding the maximum flow, the problem
asks for a set of paths and payments that can achieve the
max flow. Note that, in this problem, the balance function
b(.) is unknown. However, there is an access to an “oracle”,
which can be asked whether or not a given path can transfer
a given payment. The oracle can also make a payment on a
given path—assuming that the path can carry the payment—
and accordingly update the balance of channels on the path.
Note that this oracle is the Lighting Network itself.

B. Linear Programming

Given the balance function b(.), the max flow problem
can be solved in polynomial time using the following linear
program (LP). This LP is similar to the one used to solve the
traditional max flow problem with the main difference being
that our LP maximizes the flow that enters the target channel
while the traditional one maximizes the flow that leaves the
source.

max fab

s.t. 0 ≤ fuv ≤ b(u, v), ∀(u, v) ∈ E∑
u:(u,v)∈E

fuv =
∑

w:(v,w)∈E

fvw, ∀v ̸= s, d
(1)

In the above linear program, the variable fuv represents the
flow from u to v on channel (u, v) ∈ E. To avoid the target
channel (a, b) to become the bottleneck, we set b(a, b) = ∞
in the above linear program.

LP Advantages. As mentioned earlier, in practice we do not
have a direct access to the balance function b(.) (we only have
access to the oracle). Nevertheless, we can still benefit from
solving the above LP by approximating the function b(.). For
instance, we may assume that b(u, v) = 0.1×c(u, v) for every
channel (u, v) ̸= (a, b). This assumption may not hold for all
channels although the assumption is somewhat conservative—
for each channel (u, v) either b(u, v) ≥ 0.5 × c(u, v) or
b(v, u) ≥ 0.5 × c(u, v). Nevertheless, if by using the above
assumption, we find that the max flow that can go through the
target channel is considerably higher than, say, the capacity of
the target channel, we can most likely discover the balance of
the target channel in practice. The second advantage of this
approach is that it can significantly speed up balance discovery
because 1) we can use the method to pre-compute paths and
payments, and 2) transmit all these payments in parallel. Note
that if the max flow that Torrent can send through the target
channel is higher than the balance of the channel, the balance
of the channel can be safely assumed to be equal to the total
amount of payments received at the receiver.

C. Greedy Algorithm

Our second algorithm is a greedy algorithm that works in
iterations. In the first iteration, the algorithm finds a maximal
set of disjoint paths3 that go through the target channel. It
then transmits payments on the selected paths until it saturates
every single one of them. Before moving to the next iteration,

3These paths share the target channel as well as the source and destination
channels; otherwise, they are disjoint.

the algorithm removes bottleneck channels, i.e. those from
which it received an error message. For instance, if the
algorithm receives an error message from node u indicating
an insufficient balance on channel (u, v), then the algorithm
removes the channel (u, v) in the direction of u to v. The
algorithm, however, keeps the other direction (i.e. v to u) of
channel (u, v) as the channel may be able to transfer payments
in this direction.

After removing channels, the algorithm proceeds to the
next iteration and repeats the above process. The algorithm
terminates as soon as it concludes that it cannot transfer more
payments though the target channel. This happens if it receives
an error message indicating an insufficient balance on the
target channel, or if the algorithm is unable to transmit more
payments using new paths. When the algorithm terminates, it
returns the amount of total payments collected at the receiver
as the balance of the target channel.

Example 2. Consider the simple payment network shown in
Figure 2. If we run the greedy algorithm on this network, the
algorithm can select paths

p1 = (n1, n2, Alice,Bob, n4, n6)

and
p2 = (n1, n3, Alice,Bob, n5, n6)

in its first iteration. In this network, the algorithm can send
up to 60k on path p1 and up to 160k on path p2. Since the
sum of these two payments is higher than Alice’s balance of
200k, at some point in this iteration the algorithm may receive
an error message from Alice indicating insufficient balance. If
this happens, the algorithm terminates and returns 200k as
Alice’s balance since this is the maximum it could transfer
through her channel.

If Alice avoids sending error messages, the algorithm will
move to next iterations and tries to find new paths and
send new payments to increase the total received amount of
200k. Ultimately, the algorithm will terminate. Clearly, the
algorithm can never deliver more than 200k to its receiver
because Alice’s channel is the bottleneck. Therefore, when the
algorithm terminates, it will return the max amount it could
deliver to its receiver (i.e. 200k) as Alice’s balance.

V. SIMULATION RESULTS

To evaluate the performance of Torrent, we downloaded
a snapshot of the Lightning Network4, which included 9169
nodes, and 76856 channels. We used the snapshot to generate
the topology graph G and the capacity function c(.). The
snapshot does not include the balance information as this
information is private. Therefore, we used the following two
methods to assign balances to channels:

• Fractional Balance. In this method, balances of every
channel (u, v) ∈ E, except the target channel, are set to
a fixed fraction of the channel capacity. That is, for every

4The snapshot was downloaded in March 2021.

0.05 0.1 0.2 0.3
α

0

20

40

60

80

100

T
he

pe
rc

en
ta

ge
of

di
sc

ov
er

ab
le

ch
an

ne
ls

Single-path: Type A
Single-path: Type B
Torrent (LP): Type A
Torrent (LP): Type B

Figure 3: The percentage of discoverable channels by Torrents.

(u, v) ∈ E both b(u, v) and b(v, u) are set to α · c(u, v),
where α < 0.5 is a fixed number.

• Random Balance. This method selects balance of every
channel (u, v), except the source and destination chan-
nels, uniformly at random from the interval [0, c(u, v)].

To run Torrent Type A, we open two channels with the two
nodes that have the highest degrees in the network (recall that
the network topology is public information).

For Torrent Type B, we use only one of these two channels.
In our simulations, we assume that the opened channels have
enough balances.

A. Linear Programming

In our first set of simulations, we set the balances of all
channels (except the source, target and destination channels)
to a fraction 0.05 ≤ α ≤ 0.3 of their capacity (recall that the
capacity of every channel is public information). Then, we
run Torrents Type A and B by solving the max flow problem
using linear programming. We marked a target channel as
discoverable if Torrent could generate a flow that is at least
equal to the capacity of the target channel. Note that this
amount of flow is guaranteed to be at least equal to the balance
of the target channel as balances of every channel are capped
by the channel capacity.

Figure 3 shows the percentage of discoverable channels
by Torrents Type A and B. As shown, Torrent (particularly
Type B) can discover balances of a large percentage of
channels even in this restricted setting. For instance, if we set
α = 0.05—that is we set the two balances of every channel
to 5% of the channel capacity—then Torrent Type A and B
can, respectively, discover balances of 84% and 94.9% of all
channels in the network.

Figure 3 also shows the the percentage of discoverable
channels when the best single path (i.e., the path that can carry
the maximum flow to the target channel) is used. As shown,
the performance of single-path based discovery methods is
significantly lower than the performance of Torrent. This is

discoverable
87%

13%

(a) Type A

discoverable
97.87% 2.13%

(b) Type B

Figure 4: The percentage of discoverable channels by Torrents
Type A and B when they use the greedy algorithm.

somewhat expected because the flow that any single-path can
push through the target channel can be significantly lower than
the flow that multiple-path payment methods can push.

B. Greedy Algorithm

To evaluate the performance of Torrent powered by the
greedy algorithm, we used the Random Balance method.
Recall that in this method, balances of channels (except the
source and destination channels) are selected uniformly at
random. In this set of simulations, a target channel was marked
as discoverable if Torrent could generate a flow that is at least
equal to the balance of the target channel. Figure 4 shows the
percentage of channels that could be discovered by Torrents
Type A and B, respectively. This percentage is about 97.8%
in the case of Torrent Type B. This is remarkable as, in Type
B, Torrent only uses one channel, yet it can discover balances
of nearly all the channels in the network.

As stated earlier, Torrent Type A is expected to discover a
smaller percentage of balances that Type B. This is because
Torrent Type A has to not only deliver a large flow of payments
to the target channel, but also must deliver this large flow to
its own receiver. To improve the performance of Torrent Type
A, we can use multiple receivers (in our simulations, we used
only a single receiver).

An interesting question here is how well the greedy algo-
rithm performs compared to the optimal solution. To answer
this question, we used a linear program, with the same
balance function used in the greedy algorithm, to find the
maximum number of discoverable channels. Recall that, given
the balance function, linear programming can find the optimal
solution to the max flow problem. The results of this simula-
tion are shown in Figure 5. A parallel comparison between
Figures 4 and 5 shows the greedy algorithm can discover
balances of the vast majority of the channels that are possibly
discoverable. This is particularly the case for Torrent Type B.

discoverable
95.1%

4.9%

(a) Type A

discoverable
99.78% 0.22%

(b) Type B

Figure 5: The optimal percentage of discoverable channels.

VI. RELATED WORK

Table I compares Torrent with the existing balance discovery
methods. As reflected in Table I, the methods proposed in [2],
[16], [17] require opening a channel directly connected to the
target channel. This may not be possible in practice as the
owners of the target channel may not accept new channels. In
addition, these methods are not scalable because they have to
open a new channel for every target channel.

The remaining balance discovery methods [3]–[5] do not
require direct connection to the target channel. However,
they all use single-path payments, and sequentially probe the
target channel. As mentioned earlier, single-path payments
can generate a limited flow compared to multi-path payments,
hence have limited capability to discover balances of remote
channels. Moreover, these methods are slower than Torrent as
they do not transmits payments in parallel.

The major cost of balance discovery is due to opening
channels for probing purposes. The methods in [2] and [16],
[17] require to open up to two payment channels per each
single target channel. Other methods such as NIBT [5] open
two channels irrespective of the number of target channels.
This significantly reduces the cost of channel discovery. As
in NIBT, our method requires at most two channels. Unlike
NIBT, our methods cancels payments, and this way avoids
paying transaction fees.

VII. CONCLUSION AND FUTURE WORK

We proposed Torrent, a powerful balance discovery ap-
proach. Unlike the existing balance discovery methods that use
single-path payments, Torrent uses multi-path payments. This
allows a single node to push a large flow of payments through
any target channel. Torrent can work even when the Lightning
Network does not transmit error messages to indicate insuffi-
cient balances. It is because Torrent can estimate a balance by
calculating the maximum amount of fund that it can deliver to
its receiver(s) through the target channel. For many channels in
the Lightning Network, this maximum is equal to the balance

Method Need a direct
channel?

Relies on control
messages?

Success
rate

Balance discovery
attack [2]

Yes No 89.1%

Improved balance
discovery attack [16]

Yes No 98.37%

Generic attack [17] Yes Yes No Data
Probing channel

balances [3]
No. No 65%

Probing attack [4] No No No Data
Probing of Parallel

Channels [18]
No No 80%

NIBT [5] No. Yes 92%
Torrent No. No 87%–97%

Table I: Existing balance discovery methods.

of the target channel thanks to the large flow that Torrent
can generate. Another advantage of Torrent is that, unlike the
existing methods, it transmits payments in parallel, which can
significantly speed up the balance discovery process.

A future research work is to use the technique presented in
this paper to learn about the balances all over the network; that
is to take a snapshot of the network’s balances. Another inter-
esting future work is to find an efficient algorithm to solve the
max flow problem in the Lightning Network. The algorithm
can receive the network topology and channel capacities (but
not balances) as input. It also has access to an oracle that
answers to questions on whether or not a path p can transfer
an amount m, and if so, can transfer the payment by updating
balances of the channels on path p. Unlike the existing
maximum flow solution, the efficiency of the algorithm will
be determined by the number of times it accesses the oracle
(rather than the algorithm’s time complexity).

REFERENCES

[1] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” 2016.

[2] J. Herrera-Joancomartı́, G. Navarro-Arribas, A. Ranchal-Pedrosa,
C. Pérez-Solà, and J. Garcı́a-Alfaro, “On the difficulty of hiding
the balance of lightning network channels,” in Proceedings of the
2019 ACM Asia Conference on Computer and Communications
Security, AsiaCCS. ACM, 2019, pp. 602–612. [Online]. Available:
https://doi.org/10.1145/3321705.3329812

[3] S. Tikhomirov, R. Pickhardt, A. Biryukov, and M. Nowostawski,
“Probing channel balances in the lightning network,” CoRR, vol.
abs/2004.00333, 2020. [Online]. Available: https://arxiv.org/abs/2004.
00333

[4] U. Nisslmueller, K. Foerster, S. Schmid, and C. Decker, “Toward
active and passive confidentiality attacks on cryptocurrency off-chain
networks,” in Proceedings of the 6th International Conference on
Information Systems Security and Privacy, ICISSP 2020, Valletta,
Malta, February 25-27, 2020, S. Furnell, P. Mori, E. R. Weippl, and
O. Camp, Eds. SCITEPRESS, 2020, pp. 7–14. [Online]. Available:
https://doi.org/10.5220/0009429200070014

[5] Y. Qiao, K. Wu, and M. Khabbazian, “Non-intrusive and high-efficient
balance tomography in the lightning network,” in ASIA CCS ’21: ACM
Asia Conference on Computer and Communications Security, Virtual
Event, Hong Kong, June 7-11, 2021, J. Cao, M. H. Au, Z. Lin,
and M. Yung, Eds. ACM, 2021, pp. 832–843. [Online]. Available:
https://doi.org/10.1145/3433210.3453089

[6] A. Schrijver, “On the history of the transportation and maximum flow
problems,” Mathematical programming, vol. 91, no. 3, pp. 437–445,
2002.

[7] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,”
Canadian journal of Mathematics, vol. 8, pp. 399–404, 1956.

[8] A. Paithankar and S. Chatterjee, “Open pit mine production
schedule optimization using a hybrid of maximum-flow and genetic
algorithms,” Applied Soft Computing, vol. 81, 2019. [Online]. Available:
https://doi.org/10.1016/j.asoc.2019.105507

[9] Q. Zhu, M. Chen, B. Feng, Y. Zhou, M. Li, Z. Xu, Y. Ding, M. Liu,
W. Wang, and X. Xie, “Optimized spatiotemporal data scheduling
based on maximum flow for multilevel visualization tasks,” ISPRS
International Journal of Geo-Information, vol. 9, no. 9, p. 518, 2020.
[Online]. Available: https://doi.org/10.3390/ijgi9090518

[10] J. I. Orlicki, “Generalized minimum cost flow and arbitrage in bitcoin
debit and custodian networks,” in I Simposio Argentino de Informática
Industrial e Investigación Operativa (SIIIO 2018)-JAIIO 47 (CABA,
2018), 2018.

[11] A. Armbruster, M. R. Gosnell, B. M. McMillin, and M. L.
Crow, “Power transmission control using distributed max flow,”
in 29th Annual International Computer Software and Applications
Conference, COMPSAC, 2005, pp. 256–263. [Online]. Available:
https://doi.org/10.1109/COMPSAC.2005.121

[12] K. Weare, “MIT Researchers Test Oracles and Smart Contracts
on Bitcoin Lightning Network,” https://www.infoq.com/news/2018/06/
Bitcoin-Lightning-Oracles/, 2018.

[13] O. Osuntokun, “AMP: Atomic Multi-Path Payments over Lightning,”
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/
000993.html, 2018.

[14] A. Mizrahi and A. Zohar, “Congestion attacks in payment channel
networks,” CoRR, vol. abs/2002.06564, 2020. [Online]. Available:
https://arxiv.org/abs/2002.06564

[15] Lightning-Network-Daemon, “lnd v0.13.0-beta,” https://github.com/
lightningnetwork/lnd/releases/tag/v0.13.0-beta, 2021.

[16] G. van Dam, R. A. Kadir, P. N. E. Nohuddin, and H. B.
Zaman, “Improvements of the balance discovery attack on lightning
network payment channels,” in ICT Systems Security and Privacy
Protection - 35th IFIP TC 11 International Conference, SEC,
ser. IFIP Advances in Information and Communication Technology,
vol. 580. Springer, 2020, pp. 313–323. [Online]. Available: https:
//doi.org/10.1007/978-3-030-58201-2 21

[17] H. Yousaf, G. Kappos, A. Piotrowska, S. Kanjalkar, S. Delgado-Segura,
A. Miller, and S. Meiklejohn, “An empirical analysis of privacy in the
lightning network.” Financial Cryptography and Data Security, 2021.

[18] A. Biryukov, G. Naumenko, and S. Tikhomirov, “Analysis and
probing of parallel channels in the lightning network,” IACR
Cryptol. ePrint Arch., vol. 2021, p. 384, 2021. [Online]. Available:
https://eprint.iacr.org/2021/384

https://doi.org/10.1145/3321705.3329812
https://arxiv.org/abs/2004.00333
https://arxiv.org/abs/2004.00333
https://doi.org/10.5220/0009429200070014
https://doi.org/10.1145/3433210.3453089
https://doi.org/10.1016/j.asoc.2019.105507
https://doi.org/10.3390/ijgi9090518
https://doi.org/10.1109/COMPSAC.2005.121
https://www.infoq.com/news/2018/06/Bitcoin-Lightning-Oracles/
https://www.infoq.com/news/2018/06/Bitcoin-Lightning-Oracles/
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html
https://arxiv.org/abs/2002.06564
https://github.com/lightningnetwork/lnd/releases/tag/v0.13.0-beta
https://github.com/lightningnetwork/lnd/releases/tag/v0.13.0-beta
https://doi.org/10.1007/978-3-030-58201-2_21
https://doi.org/10.1007/978-3-030-58201-2_21
https://eprint.iacr.org/2021/384

	Introduction
	Background
	Payment Channels
	The Lightning Network
	Maximum Flow

	Torrent
	Implementation
	Network Model and Problem Definition
	Linear Programming
	Greedy Algorithm

	Simulation Results
	Linear Programming
	Greedy Algorithm

	Related Work
	Conclusion and Future work
	References

