
Liquidity Management Attacks on Lending Markets1

Alireza Arjmand #2

University of Alberta, Canada3

Majid Khabbazian #4

University of Alberta, Canada5

Abstract6

Decentralized Finance (DeFi) continues to open up promising opportunities for a broad spectrum of7

users, with lending pools emerging as a cornerstone of its applications. While prominent platforms8

like Compound and Aave maintain a large share of the funds in lending pools, numerous other9

smaller pools also exist. Many of these smaller entities draw heavily from the design principles of10

their larger counterparts due to the complex nature of lending pool design.11

This paper asserts that the design approaches that serve larger pools effectively may not12

necessarily be the most beneficial for smaller lending pools. We identify and elaborate on two13

liquidity management attacks, which can allow well-funded attackers to exploit specific circumstances14

within lending pools for personal gain. Although large lending pools, due to their vast and diverse15

liquidity and high user engagement, are generally less vulnerable to these attacks, smaller lending16

protocols may need to employ specialized defensive strategies, particularly during periods of low17

liquidity. We also show that beyond the six leading lending protocols, there exists a market value18

exceeding $1.75 billion. This considerable sum is dispersed among over 200 liquidity pools, posing a19

potentially attractive target for bad actors.20

Furthermore, we evaluate existing designs of lending pools and suggest a novel architecture21

that distinctly separates the liquidity and logic layers. This unique setup gives smaller pools the22

adaptability they need to link with larger, well-established pools. Despite encountering certain23

constraints, these emerging pools can leverage the considerable liquidity from larger pools until24

they generate sufficient funds to form their own standalone liquidity pools. This design cultivates a25

setting where multiple lending pools can integrate their liquidity components, thus encouraging a26

more diverse and robust liquidity environment.27

2012 ACM Subject Classification Security and privacy → Distributed systems security28

Keywords and phrases Lending Pools, DeFi, Interest Rate, Liquidity Management Attack29

Digital Object Identifier 10.4230/LIPIcs.AFT.2023.2330

1 Introduction31

Decentralized Finance (DeFi) protocols offer a solid foundation for financial investors seeking32

to earn returns on their assets in a decentralized manner. Lending and borrowing, one of33

the oldest financial applications, is transformed by blockchains, enabling the creation of34

liquidity pools that consolidate lender funds and facilitate borrowing. This arrangement35

presents an appealing opportunity for both parties; lenders earn interest from the moment36

they contribute their funds to the liquidity pools, while borrowers are assured of paying a37

fair interest rate for their borrowed amount.38

This paper primarily focuses on over-collateralized lending pools [4], where, after liquidity39

providers contribute their funds to the pool, borrowers can access these funds by offering40

collateral in other assets. The collateral amount must exceed the borrowed sum to allow41

the lending protocol to guarantee a return of funds to the liquidity providers. Should the42

collateral amount drop below a certain threshold, the collateral can be converted into the43

borrowed asset, incentivizing third parties to repay the liquidity providers in a process known44

as liquidation [24].45

© Alireza Arjmand and Majid Khabbazian;
licensed under Creative Commons License CC-BY 4.0

Advances in Financial Technologies - AFT 2023.
Editors: Alireza Arjmand and Majid Khabbazian; Article No. 23; pp. 23:1–23:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arjmands@ualberta.ca
https://orcid.org/0009-0007-2871-3888
mailto:mkhabbazian@ualberta.ca
https://orcid.org/0000-0002-6338-2945
https://doi.org/10.4230/LIPIcs.AFT.2023.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Liquidity Management Attacks on Lending Markets

Despite experiencing a decline in 2022 [26], the lending markets continue to expand,46

amassing a Total Value Locked (TVL) in excess of $13.2b across a multitude of blockchains [10].47

While dominant lending markets such as Compound [7, 18] and Aave [1, 2] maintain the48

bulk of this value, new lending protocols inspired by these major lending pools are constantly49

emerging, contributing novel capabilities to the application layer for users. To gain traction,50

these newer lending protocols need to incentivize users to entrust their funds to their platforms.51

This often requires competition with larger lending pools through attractive incentives such52

as higher interest rates and novel application layer opportunities.53

A key part of any lending pool is its interest rate formula, which determines how much54

borrowers have to pay back based on what they borrow. The importance of this formula55

lies in its potential to encourage certain behaviors: (i) It should incentivize borrowing by56

decreasing interest rates when ample liquidity is available; (ii) It should attract external57

liquidity providers to participate in the protocol by elevating interest rates when a significant58

portion of the liquidity is borrowed; (iii) It should stimulate the retention of some liquidity in59

the pool, enabling providers to withdraw at any time. To encourage these behaviors, several60

recognized formulas/models are frequently used by lending protocols [15].61

In the widely adopted model, lending pools implement high interest rates on borrowed62

funds when usage approaches 100%. Consequently, if this level of usage persists for an63

extended duration, borrowers will be subject to significantly increased fees compared to the64

norm. To address this issue, these lending protocols depend on diligent users who actively65

monitor the situation. These users are incentivized to inject funds into the pool when interest66

rates are high. However, if these users lack sufficient funds to effectively reduce the usage67

or if there is a delay in their actions, borrowers in the lending pools may suffer substantial68

losses due to the elevated interest rates.69

In this paper, we focus on small lending pools that adopt similar models. We postulate70

that a malicious liquidity provider, owning a significant share of a liquidity pool’s reserves,71

can manipulate other actors to align with certain conditions for their benefit, potentially72

causing harm to others. We demonstrate that the relative lack of substantial liquidity funds73

and centralized liquidity providers in these smaller pools can expose them to various threats.74

In particular, we make the contributions:75

Liquidity Management Attacks: To highlight the vulnerability of small lending pools,76

we present two different liquidity management attacks on these pools. Furthermore, we77

delve into a general strategy that could be implemented by an attacker with sufficient78

funds, highlighting the incentives for users and a long-term approach that could prove79

profitable for the attacker but detrimental to the ecosystem. We also evaluate potential80

mitigation as well as risks involved in launching the proposed attacks.81

Liquidity Aggregator: We present a model in which lending pools separate their82

liquidity layer from their logic layer. By this means, smaller lending pools can integrate83

their applications with larger lending pools, thereby enhancing their liquidity safeguards.84

In this model, lending pools can coexist in dependent or standalone modes, allowing the85

community to avoid scattering liquidity across numerous platforms.86

Lending Protocol Data Extraction: We gathered data from the six biggest lending87

pools. Even though they hold most of the TVL, it’s important to note that there is still88

a considerable amount of value in the remaining lending pools. This could potentially89

make them targets for malicious users.90

The rest of this paper is organized as follows, Section 2 provides necessary background91

information. Section 3 introduces the mathematical model that forms the basis for our92

discussions throughout the paper. Section 4 outlines the logic behind two types of liquidity93

A. Arjmand and M. Khabbazian 23:3

management attacks we investigate and illustrates how malicious actors can manipulate94

economic principles to meet their goals. Section 5 presents a design proposal to bolster the95

security of emerging lending pools, especially those with limited overall liquidity. In Section96

6, we analyze the total value locked in on-chain lending pools, focusing on the six largest97

protocols from various perspectives. Section 7 surveys related work in this field. Finally, in98

Section 8, we wrap up our discussions and suggest potential avenues for future research.99

2 Background100

In this section, we present the fundamental concepts necessary to comprehend the subsequent101

content of the paper.102

2.1 Blockchains103

Blockchains comprise numerous underlying nodes that disseminate transactions throughout104

the system using a Peer-to-Peer (P2P) network [20, 6]. Each transaction typically aims to105

uniquely alter the global state. Transactions are appended to the blockchain within blocks106

in each round, following a consensus algorithm that determines the transactions’ inclusion107

and sequence.108

2.2 Decentralized Finance (DeFi)109

Ethereum [32] employs a Turing-complete language named Solidity, enabling users to deploy110

smart contracts. These contracts broaden user capabilities by facilitating the creation of111

decentralized applications, giving rise to DeFi applications [31]. At present, Ethereum112

employs the Proof of Stake (PoS) consensus algorithm, which designates a block builder113

each round to select the transactions’ order, which is then subjected to voting by other block114

builders. Once a block is produced in each round, all users can sequentially execute each115

transaction within the Ethereum Virtual Environment (EVM) to ascertain the current global116

state. One distinctive feature of the EVM is that its operations are deterministic and atomic,117

altering the state only upon success. Therefore, given any pre-state and specific inputs,118

each node would produce identical outputs. These attributes, coupled with Ethereum’s119

high throughput, have led to novel, transparent DeFi applications not traditionally found120

in Centralized Finance (CeFi) [23]. Furthermore, Ethereum’s allowance for smart contract121

composability has resulted in the establishment of complex ecosystems.122

DeFi has continued to thrive over the past year, attracting numerous users and boasting123

more than $41.5b in TVL. The absence of third parties and the transparency offered by DeFi124

applications make them an attractive prospect for many. Popular applications of DeFi include125

lending pools [4], Decentralized Exchanges [33], Yield aggregators [8], and stablecoins [19].126

2.3 Attacks on DeFi127

While code transparency is beneficial, it can also simplify the task of spotting faulty code. If128

such vulnerabilities are detected by attackers, they could lead to massive security breaches. In129

some of the most significant hacks, such as [22, 5], attackers exploited application layer bugs130

to siphon user funds. The classification of attack strategies has been thoroughly documented131

in the literature [35, 3, 14, 11], which is essential in assisting the community in identifying132

and avoiding patterns that could lead to undesirable consequences. Concurrently, there exist133

open-source libraries [21] that strive to provide secure building blocks for contracts. This134

enables protocol developers to ensure the safety of their code’s foundational elements.135

AFT 2023

23:4 Liquidity Management Attacks on Lending Markets

2.4 High frequency trading136

Decentralized markets have given rise to on-chain high-frequency trading [9, 34]. This137

environment, while presenting many opportunities, also attracts malicious users aiming138

to seize on-chain opportunities by tampering with transaction ordering. Tactics such as139

front-running and sandwich attacks are used to drain funds or steal opportunities away from140

unsuspecting users. To mitigate this, private relayers such as Flashbots [12] have emerged.141

These entities promise users certain assurances about their transaction inclusion, thereby142

safeguarding them from generalized front-runners.143

3 System model144

In this section, we aim to formalize the actions of users who can impact a lending protocol.145

To simplify the analysis, we focus on a specific subset of actions in lending pools and disregard146

other activities such as liquidations and absorptions. We assume the presence of numerous147

users in the system. A user u in our system model is a tuple u = (S, B, C), where S is the148

amount of fund the user has supplied to the protocol, B is the amount of funds borrowed by149

the user, and C is the total collateral the user provided to the protocol. For simplicity, in150

our model, we convert the values of S, B, and C to a common base value (e.g. USD).151

The balance of a user ui = (Si, Bi, Ci) is defined as Si − Bi. If a user’s balance is greater152

than zero, the user is considered a liquidity provider ; otherwise, if its balance is less than153

zero, the user is identified as a borrower. A borrower must have adequate collateral in the154

system for the borrowed balance. Since liquidations are not factored into our model, the155

following condition should be true for each user ui:156

Si + ECi > Bi,157

where ECi is the effective collateral for each user, that is158

ECi = Σjcij × fj × rateUSD/j159

Here, fj represents the collateral factor for each asset. We denote the total amount of each160

variable in the entire protocol using the “total” subscript, such as Stotal.161

In our system, the borrowers in the system are subject to an interest R calculated using162

the kinked interest rate model as follows:163

R =
{

R0 + Rlow × U if U ≤ kink

R0 + Rlow + Rhigh × (U − kink) if U > kink
(1)164

Table 1 Terminology used in system model.

Character Meaning

L Supplied liquidity
B Borrowed amount
R Interest rate
U Utilization
α Attacker liquidity percentage
EC Effective collateral
kink Optimal utilization

A. Arjmand and M. Khabbazian 23:5

In this formulation, U denotes the protocol’s utilization, calculated as Btotal

Stotal
, where kink165

represents the optimal utilization rate, often referred to as the ’kink rate’. The terms R0,166

Rlow, and Rhigh signify the base interest rate, the lower slope for utilization, and the sharp167

increase in interest rates when utilization surpasses the kink rate, respectively. Borrowers are168

assumed to accrue interest with each passing block, adhering to this interest rate model:169

Feei = RU × Bi × t (2)170

We also assume that the protocol reserve doesn’t accumulate any yields and all borrower171

fees are shared among the liquidity providers. To model the reserve, we can consider the172

reserve amount as one of the liquidity providers.173

Collusion model: In the context of lending protocols, it is conceivable that a group of174

users may collude to achieve a common objective. Thus, we consider an adversary A who175

can compromise multiple accounts with cumulative supply of up to fraction α, such as:176

α ≥ ΣeSe

Stotal
(3)177

Where α is the maximum fraction of overall funds that an attacker can control.178

4 Attacks on lending markets179

In this section, we examine the overarching structure of lending pools and present two forms180

of attacks that enable an adversary to impose specific conditions on the liquidity pool by181

employing economic strategies to secure a desired outcome. These outcomes could be:182

More income: An attacker can augment the fees extracted from other participants183

within the pool over a specific time frame.184

Denial of Service: An attacker can obstruct access to the rest of the participants,185

effectively preventing them from either borrowing or withdrawing their liquidity from the186

pool.187

While these attacks pose potential complications for other users, they necessitate a substantial188

amount of liquidity from the attacker to fulfill the preconditions of launching the attack.189

Consequently, the attacker’s risk level escalates in correlation with the growth of this190

prerequisite amount. The Compound and Aave protocol models are currently the most191

influential among the lending pools, widely implemented by smaller lending pools and192

occasionally forked from the main projects. Given the vast liquidity diversity and substantial193

user base of the top protocols with the highest TVL, an adversary would face a formidable194

task executing these attacks. However, the situation is different for smaller pools. Here, an195

attacker could instigate these attacks with a lower risk and initial capital, thereby realizing a196

profit. Thus, we demonstrate that smaller pools cannot merely replicate the strategies of197

larger entities. They must devise additional defence mechanisms against such attacks while198

their liquidity pool is relatively small, thereby safeguarding their liquidity providers and199

borrowers.200

In the remainder of this section, we commence by elucidating the potential attacks and201

demonstrating how an attacker with sufficient liquidity can enforce other actors to comply202

with specific conditions. We then proceed with an analysis of the attacker’s risk before203

deliberating on some design decisions that new lending pools should avoid.204

AFT 2023

23:6 Liquidity Management Attacks on Lending Markets

4.1 Utilization kink attack205

While borrowers secure funds by depositing an overcollateralized quantity of tokens in the206

protocol, they pay ongoing fees determined by the length of their loan. These fees fluctuate207

based on the degree of liquidity utilization, with adjustments made following each transaction208

processed by the protocol. Generally, it is anticipated that the borrowing rate maintains209

proportionality with the borrowed amount and the Rlow delineated in the interest rate210

formula. However, when the utilization quantity exceeds a predetermined threshold or "kink",211

all borrowers become liable to pay supplemental fees to the liquidity providers. The objective212

of this kink value is to motivate all participants to act, thereby releasing liquidity within the213

protocol: (1) as a liquidity provider, the increased fees offer an incentive to contribute more214

liquidity from out of the protocol, and (2) as a borrower, the prospect of evading excessive215

fees incentivizes the repayment of the borrowed amount. Both actions lead to a decrease in216

total utilization and consequently a reduction in fees. By comparing the fees at maximum217

lending protocol utilization and at the kink value, we notice that in some protocols the fees218

can unexpectedly jump to more than ten times. This indicates that if an attacker were to219

elevate these values by either borrowing the rest of the remaining liquidity, or pulling out his220

own liquidity out of the protocol, they could compel borrowers to bear extensive fees. In such221

scenarios, smaller pools face two significant threats compared to their larger counterparts:222

Lesser liquidity required: Attackers need a smaller volume of liquidity to drive up223

fees, consequently exposing themselves to lower risks.224

Smaller group of active users: In such circumstances, the lending pool requires either225

active external liquidity providers or borrowers to regulate utilization. A smaller lending226

pool implies a lower number of participants monitoring such activities in the system,227

hence increasing the likelihood of such attacks.228

4.1.1 Simplified attack229

In order to exemplify this attack, we explore a hypothetical scenario involving a single liquidity230

provider, Alice, and a borrower, Bob. This analysis demonstrates how Alice can increase the231

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

Utilization

In
te

re
st

R
at

e

Rlow

Rhigh

Figure 1 The kinked rate model can be exploited by an attacker through either increasing the
utilization of the protocol by borrowing more or withdrawing funds.

A. Arjmand and M. Khabbazian 23:7

utilization potentially to secure additional fees from Bob. Subsequently, real-world protocol232

figures are utilized to replace the formulas and estimate the possible damage an attacker can233

cause borrowers to pay.234

Scenario Setup: Consider a lending platform characterized by parameters Rlow, Rhigh,235

and kink, which are used to compute the interest rate. Initially, Alice contributes S initial236

funds to the protocol. Subsequently, Bob borrows an amount B, setting the protocol’s237

utilization at the kink amount by offering C in collateral value with collateral factor f .238

Attack Execution: Alice currently receives fees from Bob proportionate to kink ∗ Rlow.239

Nonetheless, Alice can elevate the utilization by opting for one of the following strategies to240

increase the protocol’s utilization:241

She may withdraw (1 − kink) ∗ S liquidity from the protocol.242

She might borrow the remaining amount of (1 − kink) ∗ S and pay those fees to herself,243

since she is the sole liquidity provider. In this case, Alice needs more funds comparing to244

the previous method to borrow and execute the attack.245

Any of these actions would surge the protocol utilization to 100%, thereby significantly246

escalating Bob’s fee. We can calculate the Bob’s new fee, which is proportionate to kink ∗247

Rlow + (1 − kink) ∗ Rhigh. We can see that Bob needs to pay 1 + (1−kink)∗Rhigh

kink∗Rlow
times more248

fees.249

Aftermath: Although Bob retains the option to stop this attack at any point by repaying250

his borrowed positions, he remains accountable for fees corresponding to the duration he251

borrowed the funds from the protocol. Nevertheless, Bob’s response may be hindered for252

various reasons:253

He may not have enough liquidity to repay the borrowed sum, especially if these funds254

have been invested and locked elsewhere.255

He may be offline or negligent in monitoring the protocol’s fees.256

Furthermore, many protocols accumulate fees for borrowers in a manner that escalates their257

borrowing position over time. This means that by exploiting these circumstances, Alice not258

only forces Bob to endure higher fees but could also cause the liquidation of his position if259

the accumulated fees surpass Bob’s initial estimations. Bob’s position can even get liquidated260

if the following formula becomes true:261

ECBob < B + fee (4)262

While Bob may have provided ample collateral to cover the protocol’s standard fees, Alice263

could potentially elevate Bob’s fees, leading to the liquidation of his position and opening up264

another potential profit source.265

Numerical example: As a straightforward example, consider a lending pool emulating266

the interest rate parameters of Compound V2’s cETH contract. As of this writing, this267

contract has an Rhigh/Rlow ratio of 217.78 and a kink value of 0.8. Consequently, for268

utilization rates exceeding 80 percent, we observe a significant increase in the fees taken269

from borrowers. Yet, Compound V2 is a well-known contract, frequently monitored by270

numerous users. In contrast, for newly generated contracts which are copying these values,271

the utilization kink attack can present a genuine threat. An attacker could amplify fees by272

escalating utilization from 80 to 100 percent, by ((1 − 0.8)/0.8) × 217.78 = 54.445 times.273

Thus, if Alice successfully executes this attack against Bob for merely a single day, the profits274

generated would approximate those accrued from nearly two months of honest investment.275

AFT 2023

23:8 Liquidity Management Attacks on Lending Markets

4.1.2 Utilization kink attack in general setting276

While the prior example was a basic version of the attack with just two actors in the system,277

it served to illustrate that such attacks are indeed possible. However, in real-world situations,278

the number of actors, including both honest users and adversaries, is typically greater than279

one. In this section, we aim to shape a scenario involving multiple actors, where adversaries280

might work together to conduct the explained attack on a specific lending pool.281

Collusion among liquidity providers: In order to examine the attack in a broader282

context, we need to account for realistic interactions among actors. In this section, we283

concentrate on a specific scenario where attackers could potentially enhance the utilization284

rate by withdrawing their available liquidity. To simplify this without compromising the285

mathematical validity of our analysis, we assume that a fraction, represented as α, of all286

liquidity provided to the pool is controlled by colluding adversaries. In this system, where287

1 − α represents honest participants, the adversaries decrease their shares by withdrawing288

their funds. Interestingly, under certain conditions met by the interest rate formula, attackers289

could increase their fees even after reducing their shares. One approach for adversaries to290

collude atomically, would be through a smart contract. The progression of steps is outlined291

below:292

1. Any adversary could deploy an attack smart contract, equipped with three key func-293

tionalities: (1) obtaining permission from users to manage their liquidity tokens, (2)294

withdrawing funds from each adversary’s account to increase the utilization while reducing295

their respective shares, and (3) returning funds to the liquidity pool if the liquidity kink296

attack ceases to be profitable.297

2. Each adversary could then grant a certain amount of liquidity provider tokens to the298

deployed contract using the pool’s functions, permitting the contract to manage liquidity299

on behalf of each adversary.300

3. Once all permissions are received, a specific threshold of signatures from adversaries could301

initiate the event of pulling liquidity from the protocol to boost utilization.302

4. At this point, adversaries can monitor on-chain events to assess the profitability of the303

lending pool.304

5. Should a new honest liquidity provider join the lending pool, or borrowers repay their305

borrowed amounts to an extent that it no longer remains profitable for attackers to306

withhold their funds, they can refund all the liquidity and revert to the initial state.307

This strategy enables adversaries to minimize liquidity management risks and, in the worst-308

case scenario, return to the starting state. By providing adequate permissions, adversaries309

can utilize the attack contract to impose higher fees when feasible.310

Scenario Setup: In this particular situation, we presume that attackers are already in311

possession of α percent of the total liquidity pool, denoted as L. The borrowed amount is312

represented by B. The kinked model, which we discussed earlier, guides the calculation of313

the interest rate. Moreover, we operate under the assumption that the attackers have already314

initiated the attack contract and have authorized it to either deposit or withdraw funds as315

necessary. We assume that prior to the attack, the utilization U is less than the kink value.316

We also assume that attackers possess sufficient liquidity to elevate the protocol’s utilization317

above the kink value. If they lack this amount, the attack would be ineffective and they318

would merely diminish their own shares. Finally, we operate under the assumption that all319

fees derived from borrowers are directed to the liquidity providers, with none retained by320

the protocol itself. This simplifying assumption aids in streamlining the model, though in321

real-world applications, a portion of the fees is typically allocated to a community wallet322

managed by a DAO or an admin. Should the attackers choose to retain all their funds323

A. Arjmand and M. Khabbazian 23:9

within the liquidity pool, behaving honestly, the fees they would receive would equate to the324

following amount:325

feehonest ∝ (R0 + B

L
∗ Rlow) ∗ α (5)326

Attack Execution: For attackers to boost the utilization, they initially need to calculate327

the exact amount of funds, termed as x, to withdraw from the protocol to yield higher fees.328

We assume that when attackers extract this x amount from the protocol’s reserves, it drives329

the utilization beyond the kink value. As a consequence, the fees that would then accrue to330

the attackers can be computed as follows:331

feeattack ∝ (R0 + Rlow × kink + ((B

L − x
) − kink) × Rhigh)(α − x

L
) (6)332

In the preceding equation, the attackers’ shares drop from α to α − x/L. Simultaneously, the333

total amount of funds in the protocol diminishes by x, though the borrowed amount remains334

unchanged.335

Our objective is to pinpoint the ideal amount that adversaries should extract from336

the protocol to maximize feeattack. We attain this by identifying the global maximum337

obtained from the function’s derivative. The solution to this is realized when the condition338

dfeeattack/dx = 0 is fulfilled, the optimal amount can be determined by solving the following339

equation:340

B × Rhigh × (a − x
L)

(L − x)2 =
Rhigh × (B

L−x − U) + Rlow × U + R0

L
(7)341

This, naturally, would be the ideal value according to the condition if it lies within the range342

x < L − B, and x > kink ∗ L − B.343

Risks: Even though attackers stand to profit while the utilization remains high, they are344

simultaneously accepting certain risks. We explore these primary risks in this section.345

Borrower Attrition: By initiating the utilization kink attack, attackers risk comprom-346

ising their long-term income. Specifically, they may incentivize borrowers to withdraw347

their money, potentially redirecting it to other protocols. Consequently, a lending pool348

subject to such attacks may fail to instill trust in new borrowers. Nonetheless, an attacker349

could easily shift their funds to other protocols, given there are multiple that offer such350

services.351

Monitoring Challenges: The preceding section demonstrated that certain conditions352

need to be met for a profitable scenario. Given these conditions may change as new actors353

join and leave the system, attackers can respond quickly when the situation ceases to be354

profitable. Failure to do so could result in a loss of potential fees that could have been355

earned through honest investing.356

Security Considerations: Participating in a protocol implies that users, both honest357

and dishonest, trust the protocol to be secure. However, there’s always a risk that a358

protocol may contain a bug leading to a loss of all funds. When an attacker moves359

between protocols to execute liquidity management attacks, they are inherently trusting360

these protocols not to be compromised. If a breach does occur, they might lose all their361

funds.362

Mitigation recommendations: The potential threat of liquidity kink attacks can363

be partially mitigated at the protocol’s design phase, offering some level of protection364

to borrowers. One potential remedy involves demanding a commitment of liquidity from365

AFT 2023

23:10 Liquidity Management Attacks on Lending Markets

providers. The majority of honest liquidity providers aim to keep their resources in the366

market for an extended duration. In defense of borrowers, the protocol could stipulate a367

minimum time commitment from these providers, thereby inhibiting attackers from removing368

their funds and artificially increasing the protocol’s utilization. An alternative could be369

the establishment of "fee tiers", whereby the protocol rewards providers who have pledged370

their resources over a longer time frame with higher fees. However, this strategy only stops371

attackers from withdrawing their funds, while the possibility of borrowing the remaining372

amount to amplify utilization still exists.373

4.2 DoS attack on liquidators374

When liquidity providers contribute funds to a protocol, it is generally assumed that sufficient375

funds will be available for regular withdrawals when needed. The portion of funds supplied376

to the protocol but not borrowed is typically eligible for withdrawal. However, it is crucial377

to acknowledge that this mechanism does not guarantee withdrawals, as it is incentivized by378

imposing fees on borrowers when the total protocol utilization exceeds the specified threshold379

(kink). Additionally, the fee mechanism is often time-based, considering the duration between380

borrow and repayment transactions to calculate the final fee. Consequently, if liquidity is381

borrowed and repaid within the same block, the borrower only needs to cover the gas fee382

and is not subject to additional fees from the protocol.383

An adversary could exploit (1) the absence of guaranteed withdrawals and (2) borrow384

fees based on time, to launch a DoS attack. This attack could impact liquidity providers385

who are trying to withdraw their funds from many lending protocols, as well as borrowers386

attempting to secure a loan after providing sufficient collateral.387

4.2.1 Simplified Attack388

Here, we discuss a simple attack scenario, Suppose Alice is a liquidity provider in a lending389

protocol, supplying $300,000 out of a $1 million pool. The utilization level is currently390

at 70%, meaning $300,000 of the pool remains available for both borrowers and liquidity391

providers to utilize. Alice urgently needs to withdraw the entire $300,000 from the protocol.392

Bob, observing this, aims to prevent Alice’s withdrawal opportunity. He already has sufficient393

collateral provided to the protocol and initiates two transactions: (1) a transaction with394

a higher gas fee than Alice’s to front-run her transaction and borrow the entire $300,000,395

resulting in 100% utilization, and (2) a transaction with a lower gas fee than Alice’s to back-396

run her transaction and push the borrowed amount back into the protocol. By sandwiching397

Alice in this manner, Bob effectively denies her the withdrawal by causing her transaction to398

fail since there are no available free funds in the pool.399

It is worth noting that in the above example, any other withdrawal requests from third400

parties would also fail since Bob has drained the protocol of funds. Furthermore, during this401

process, Bob would only pay the gas fees for the two transactions, which is a relatively small402

amount compared to the disruptive impact inflicted upon Alice within the system.403

In addition to targeting specific users, an attacker can also attempt a generalized DoS404

attack against the entire network. In this scenario, the attacker aims to include one transaction405

at the beginning of a block and another transaction at the end of the same block. If successful,406

this strategy can effectively prevent anyone within the system from withdrawing funds from407

the protocol.408

A. Arjmand and M. Khabbazian 23:11

4.2.2 DoS attacks in general setting409

In order for an adversary to launch DoS attacks on real-world systems, they require access to410

an amount of funds denoted as x. They can cause any withdrawal to fail if its size surpasses411

this threshold:412

Withdrawal > L − B − x (8)413

Assuming that liquidity pools typically maintain utilization up to their optimal utilization,414

an attacker could disrupt any withdrawal provided they have access to L∗ (1−kink) funds. If415

the attacker’s funds are already in the protocol as liquidity, they could withdraw their funds.416

Alternatively, if their funds are outside of the protocol, they could borrow the necessary417

amount temporarily for just one block. Given they can perform both these actions within a418

single block, they neither forfeit any income nor incur any fees. This is because the duration419

of the liquidity withdrawal or borrowing within the same block is effectively zero.420

Risks: To execute a Denial of Service attack on users submitting transactions to a public421

mempool, an attacker can attempt to accomplish this objective by sending one transaction422

with a higher gas price and another transaction with a lower gas price. However, there is a423

risk involved as these transactions may not be included in the desired block. To mitigate424

this risk, an attacker can minimize the issue by bribing block builders within the blockchain425

network, requesting them to include all the target transactions in their subsequent block. By426

doing so, the attacker’s risk exposure would be reduced. Alternatively, the attacker can opt427

to send transactions to a private relayer, such as flashbots, which ensures the "next-block-or-428

never" attribute. This approach allows the attacker to bundle the user’s transactions into a429

meticulously constructed bundle and transmit it to the private relayer. In cases where an430

attacker is unable to successfully execute sandwich attacks on their target, their transactions431

remain valid and can be processed on the network. Hence, they might incur borrowing432

fees over several blocks, which could be a considerable amount given that the utilization is433

boosted to 100 percent, and the borrowed sum is substantial.434

Mitigation recommendations: To effectively mitigate such attacks, implementing435

protocol-level measures is crucial. It is important to acknowledge that the DoS attack436

described does not incur a protocol-level fee, making it relatively inexpensive for an attacker437

to execute. One effective mitigation strategy is to introduce a percentage-based fee within438

the borrowing process. This means that when a user borrows a certain amount, they would439

be required to pay a fee calculated as follows:440

Feei = RU × Bi × t + Bi × proportionalFee (9)441

By implementing this approach, the cost for an attacker to execute a DoS attack would442

increase proportionally with the size of the borrowed amount. As the attacker needs to443

deplete the remaining funds in the pool, the associated cost becomes significant, acting444

as a deterrent for such attacks. Furthermore, users can proactively protect themselves445

against these attacks by opting to send their transactions through a private relayer. This446

approach helps safeguard users from becoming targets of DoS attacks orchestrated by the447

attacker. However, it is important to note that these solutions may not be effective against448

the generalized DoS attacks previously discussed.449

4.3 Economical games by adversary450

In the present analysis, an attempt is made to envision the potential tactics of an adversary451

within the domain of lending pools to gain profits over an extended period. There are several452

AFT 2023

23:12 Liquidity Management Attacks on Lending Markets

incentives that may prompt adversaries to initiate such maneuvers, which are discussed in453

the ensuing sections:454

Profit Realization: The most straightforward objective for an adversary could be to455

accumulate profits. In the event an adversary consistently executes a kink utilization456

attack, they could potentially accrue multiple rounds of rewards. However, repeated457

instances of such attacks may compel borrowers to discontinue using the protocol.458

Control over Access: By leveraging a DoS attack, adversaries could exercise control459

over the liquidity providers’ access to their funds. In theory, adversaries may be able460

to immobilize users’ funds. However, in practice, it is more possible to cause delays in461

withdrawals from the protocol resulting in weak censorship [29]. Such delays can prove462

critical, particularly during periods of financial instability [30].463

Attrition of Protocol Users: A possible adversary objective could be to deter users464

from engaging with a specific protocol. If the adversary’s liquidity is sizable in comparison465

to the entire pool, by performing such attacks, they could result in actors blacklisting the466

protocol. This is feasible through two mechanisms, for liquidity providers, they may join467

the protocol when they observe a spike in utilization but as the attacker re-infuses funds,468

utilization and consequently fees drop. Borrowers, on the other hand, may be subjected469

to substantially higher fees frequently, making the protocol a less attractive option.470

An attacker can meticulously plan and execute such attacks over an extended duration471

following several steps:472

1. Firstly, the attacker must amass significant funds, either through their own capital or via473

colluding with other adversaries.474

2. Subsequently, they must identify vulnerable protocols with a small liquidity pool, relative475

to their initial funds.476

3. Initial investment in the protocol may be conventional, followed by an inflow of investment477

which reduces the overall fees paid by borrowers. This leads to a situation where other478

liquidity providers exit the protocol in pursuit of higher returns elsewhere, or more479

borrowers enter the pool. The attacker must wait until their share is significantly higher480

than the remaining liquidity to borrow in the protocol, a stage that may occur over an481

extended period, such as a week. During this time, adversaries earn interest at a standard482

rate.483

4. Once utilization has risen and remaining liquidity is considerably lower than the adversar-484

ies’ shares, attacks can be launched to achieve their objectives. This stage should ideally485

be of a short duration since the execution of a utilization kink attack incentivizes other486

actors to balance utilization. Attackers can respond by further reducing their position487

upon other actors’ actions, thereby continuing to accrue interest. If a large liquidity488

provider enters the system, attackers can reinfuse all withdrawn funds back into the489

protocol to sustain fee earnings. However, honest liquidity providers might have no490

incentive to aid a pool under attack if they anticipate temporary high utilization, making491

it unadvisable for them to move large volumes of liquidity to help the pool.492

5. Continued attacks may lead to general actors in the network blacklisting the attacked493

protocol, in such situations attackers can easily migrate to a new vulnerable protocol.494

In this economic game, attackers stand to profit over the long term. Two primary issues495

arise:496

Low-Risk, High-Reward Game for Attackers: Attackers stand to gain exponentially497

from 5 to 50 times more fees during the attack period without facing any substantial498

risks unless the protocol experiences a major hack. This allows them to perpetuate such499

activities over a long duration.500

A. Arjmand and M. Khabbazian 23:13

No Financial Incentives for Honest Players: Existing pools incentivize players by501

raising interest rates; however, if attackers respond swiftly to honest actors joining the502

pool, there would be no financial incentive for honest players to rescue minor protocols.503

Hence, protocols need to address these attacks at the design level to foster growth and504

safeguard their users against malicious activities.505

While it is feasible for an attacker to simultaneously execute the mentioned attacks by506

elevating the utilization to its maximum, the objectives for conducting each attack differ.507

Here, we discuss some of these variations:508

Utilization Kink Attack: To execute this attack, malicious liquidity providers need509

to initially supply liquidity to a specific pool and wait until a part of their liquidity510

is borrowed. Only then can they employ the remainder of their funds to increase the511

utilization. In such attacks, all borrowers within the pool are targeted, and the attacker’s512

profit accumulates over time.513

DoS Attack: In order to carry out a DoS attack, attackers can retain their funds outside514

the protocols, monitor multiple systems, and potentially target specific actors if their515

funding is sufficient. A DoS attack is intended to transpire swiftly within a specific block516

and is not a continuous action. This approach aims to avoid associated fees.517

5 Liquidity aggregation518

In previous discussions, we explored the issue of liquidity attacks. We proposed some tactical519

solutions, like extending liquidity commitments and setting base fees, to deal with such issues.520

But in this segment, our aim is to get to the core of the problem and offer a comprehensive521

solution. Our solution could safeguard new lending pools from potential attacks while522

facilitating their rapid growth.523

Often, smaller lending pools try to emulate the larger ones such as Compound and Aave.524

This leads many protocols to design their logic layer centered around their liquidity pool. In525

this setup, the logic and liquidity components become inseparable parts of a single, large526

project. Consequently, each pool has to grow independently. Our proposition is to separate527

the liquidity and logic layers in the design of such protocols. This separation could let528

several protocols combine their liquidity layers, possibly strengthening the weaker pools. We529

recommend the following three-step launch for every new liquidity pool:530

1. Design the pool such that the logic and liquidity layers are separate. The logic layer531

should only interact with the liquidity layer when necessary. This arrangement could532

allow the liquidity layer to be shared among many protocols.533

2. Initially, smaller liquidity pools can connect themselves to larger pools such as Compound.534

This connection means that they only run out of liquidity when Compound does, protecting535

them from most liquidity management attacks. This method enforces some limitations536

on the smaller pool, as it has to conform to the larger pool’s constraints.537

3. Once the connected pool has sufficient funds, it can operate independently and set its538

own rules.539

By following these steps (as shown in Figure 2), an ecosystem of lending pools can reap540

mutual benefits. These benefits include:541

Attack Resilience: Smaller pools protect their users from attacks. It becomes more542

difficult for an attacker to raise borrowers’ fees. Also, liquidity providers have the freedom543

to withdraw their funds at any time since the larger underlying pool provides more544

liquidity.545

AFT 2023

23:14 Liquidity Management Attacks on Lending Markets

Logic Layer

Liquidity Layer

Small Pool A

Logic Layer

Liquidity Layer

Small Pool B

Logic Layer

Liquidity Layer

Small Pool C

Logic Layer Liquidity Layer

Bigger Liquidity Pool

Logic A Logic B Logic C

Logic Layer Liquidity Layer

Figure 2 Liquidity aggregation process, how smaller pools can piggyback off larger pools.

Larger Shared Pool: The larger pools also benefit from this arrangement. They now546

have a larger pool of liquidity providers. Many protocols can use their liquidity for547

security, while merging their pools to enhance the overall security of the ecosystem.548

In the following parts of this section, we aim to explain the complexity in the process of549

implementing such systems.550

5.1 Designing Logic and Liquidity Layers551

The goal of this section is to propose a design that separates the logic and liquidity layers of552

a lending pool. However, we still need these layers to merge together and form a complete553

lending system. This design expands upon the traditional lending pools’ design of one-to-one554

logic and liquidity layers. It also potentially allows for the integration of multiple logic layers555

without the need to change the implementation of the liquidity layer.556

The logic layer of the lending protocol is deployed via a smart contract, which should be557

the point of interaction for all users of the protocol. This means the logic layer must handle558

all bookkeeping and monitor each participant’s activity, and it is not designed to hold any559

funds. When users interact with the protocol via the logic layer, it facilitates the transfer560

of funds between users and the liquidity pool after conducting necessary checks. On the561

other side, the liquidity layer, which holds all funds, should only respond to the logic layer562

contract.563

A design layer should have the capability to (1) interface with another logic layer, thereby564

piggybacking on the infrastructure of another protocol, or (2) function as a standalone565

liquidity layer, in which it independently manages all of its funds.566

A. Arjmand and M. Khabbazian 23:15

5.1.1 Piggybacking Liquidity Pool567

When a design layer is in piggybacking mode, it is connected to another design layer. This568

allows us to establish a system like D1, D2, . . . , DN , LLN , where Dis are design layers and569

LLN is the liquidity layer that only responds to DN . Here, D1, D2, . . . , DN−1 are all in570

piggybacking mode, and DN operates in standalone mode. While users can interact with any571

of the Di to use their services, their liquidity will be forwarded through Di + 1, DN and must572

comply with all their logic. In this setup, each of Di has its own users, but all that Di+1573

sees from the previous logic layer is the entry of Di, which is using the system just like other574

users. The simplest version of the use case that interests us is where N = 2. Here, D1 is a575

small lending pool, and D2 is one of the largest existing lending pools, such as Compound.576

In this setting, while users interact with the D1, their funds are getting accumulated in D2’s577

pool LL2. The significant benefit here is that if D1 runs out of funds, it is backed up by the578

bigger lending pool’s funds and can support its users. We delve deeper into how each basic579

functionality changes when the design layer is piggybacking off other design layer when a580

user interacts with D1:581

Supply: Whenever a user supplies amount X to the D1, then supply of the system582

changes as:583

SD1,user += X

∀1<i≤N SDi,Di−1 += X

L += X (10)584

This means that each logic layer supplies funds to the next one, and the final pool supplies585

it to the pool.586

Collateral: when users supply collateral to the protocol, the state changes are similar to587

the supply:588

CD1,user += X

∀1<i≤N CDi,Di−1 += X

C += X (11)589

Borrow and liquidation: For a borrow of amount X to happen, the borrow process is590

happening in every single layer. Therefore, the collateral that user has provided, should591

follow the equation below:592

X > maxi(Σc(Cuser,c,i × fc,i)) (12)593

This implies that the collateral tokens submitted should exceed the borrowing amount in594

each logic layer. If the aforementioned condition is not met, the funds could potentially595

face liquidation in one of the layers. For protocols to ensure that the equation above is596

never broken, they need to limit their collateral factors, so that fc,i < fc,i+1. in such597

cases the collateral equation gets reduced to a limit against the effective collateral of the598

user at layer 1:599

X > Σc(Cuser,c,1 × fc,1) = ECuser,1 (13)600

The state changes for borrow are:601

BD1,user += X

∀1<i≤N BDi,Di−1 += X

B += X (14)602

AFT 2023

23:16 Liquidity Management Attacks on Lending Markets

When a user seeks to borrow from the protocol and a layer runs out of liquidity, the603

protocol can borrow from the layer beneath it. This mechanism increases the confidence604

in liquidity availability.605

Interest Rate Calculation: Should there be no borrow at layer i, the total liquidity606

supplied to this layer, denoted as Stotal,i, earns interest at the rate of the succeeding607

layer, or i + 1. This follows the formula:608

Ri+1 × Stotal,i (15)609

Now, if any borrowing occurs from the protocol at layer i, the interest rate from the610

underlying protocol is given by:611

Ri+1 × (Stotal,i − Btotali
) + Ri × Btotali

(16)612

Which depends on the interest rate of Di. In order to incentivize more liquidity providers613

to join the protocol with an increase in borrowing, it is necessary that the condition614

Ri ≥ Ri+1 be met. This requirement ensures that the previously mentioned formula615

progressively increases with the growth in borrowing positions. It indicates that the616

interest rate for layer i should surpass that of layer i + 1. The proposed interest rate for617

level i extends from the kinked interest rate algorithm, following the subsequent equation:618

619

∀1≤i<N , Ri =
{

Ri+1 + Rlow,i × Ui if U ≤ kink

Ri+1 + Rlow,i × kink + Rhigh,i × (Ui − kink) if U > kink
(17)620

The interest rate at each level is influenced by Ui. A significant difference in this model621

is that Ui can exceed the value of one. This is because each layer can lean on the next622

one for support, and therefore the borrowed amount within a specific protocol can go623

beyond the supplied amount. However, this also leads to a rise in the interest rate. To624

stop the growth of the interest rate at max utilization, protocol designers that are using625

this model could replace the Ui value with Min(1, Ui).626

In this setup, the outermost design layers can make use of the liquidity from all underlying627

protocols. However, this comes at the cost of stricter restrictions on their protocol variables.628

This implies that for an attacker to carry out a DoS attack on layer i, they now need to629

have enough funds to exhaust all layers from i + 1 to N . On the other hand, if a lending630

protocol wants to connect to another protocol’s logic layer, they don’t need to set a steep631

Rhigh,i fee beyond their optimal utilization. Instead, they can rely on the liquidity from the632

underlying layer. As such, this system is more resistant to utilization kink attacks due to a633

smaller Rhigh,i/Rlow,i ratio, compared to standalone pools.634

5.1.2 Standalone liquidity pool635

Once a protocol has matured and expanded its TVL by piggybacking off another lending636

pool, it may be time for the protocol owners to consider transitioning into standalone mode.637

This transition involves the protocol creating its own liquidity pool and transferring its assets638

into this new pool. It’s crucial to note here that when a protocol detaches from the next639

one, it also severs connections with all its preceding protocols and transfers them as well. In640

essence, if in the chain D1, D2, ..., Di, Di+1, ..., DN , LLN , layer i decides to detach, it would641

result in two separate chains: D1, D2, ..., Di, LLi, and Di, Di+1, ..., DN , LLN .642

Protocols should only transition to standalone mode when they have accumulated enough643

liquidity to fend off liquidity management attacks independently. Furthermore, during this644

A. Arjmand and M. Khabbazian 23:17

below 1 million (1.4% or $25.6 million)
1-10 million (12.1% or $214.8 million)
10-25 million (20.1% or $357.7 million)
25-50 million (25.6% or $455.4 million)
50-75 million (7.1% or $126.3 million)
75-100 million (5.4% or $95.5 million)
above 100 million (28.4% or $505.2 million)

Figure 3 asset distribution beyond the top 6 protocols, totaling $1.75b.

transition, it would be advantageous for the ecosystem if the funds weren’t withdrawn all at645

once. As these lending pools possess large liquidity pools, withdrawing all the funds abruptly646

could potentially trigger a spike in the underlying pools’ utilization. We recommend that, at647

this stage, lending pools transition to a new pool by gradually vesting all the liquidity over a648

certain time period. For instance, a protocol could gradually withdraw all funds over the649

course of a day, after duly notifying the community.650

6 Analyzing on-chain lending protocols651

In this section, we dive into the lending pools deployed across multiple blockchain networks.652

Our data collection efforts aim to understand their design, TVL, and potential susceptibilities653

to liquidity management attacks. Our study includes two types of pools. Initially, we analyze654

the six most prominent lending pools in the space, and then we shift our focus to scrutinize655

the rest of the lending pools. Although the larger lending pools are typically secure from656

liquidity management attacks due to their significant liquidity base, analyzing them remains657

crucial as they significantly influence numerous emerging lending protocols.658

According to reports [10], lending pools on the chain hold over $13.2b in TVL. Of this659

amount, 86.6% resides within the top six lending pools. We examine each of these influential660

pools, recognizing their role as templates and foundations for subsequent projects, which661

may adapt and develop their logic.662

We also analyze smaller pools to determine their potential vulnerability to liquidity663

management attacks. These pools hold over $1.75b across 240 protocols on various chains,664

posing a tempting target for potential attackers. As shown in Figure 4 our investigation665

reveals that 32.5% of all 240 smaller lending pools are officially forks of Compound, while over666

10% have branched off from Aave. Among the remaining 132 pools, many draw inspiration667

from the design choices of more established protocols, including aspects such as interest668

rate determination, supply, borrowing, and liquidation mechanisms. Figure 3 illustrates the669

distribution of funds across these protocols. When comparing the liquidity distribution of670

smaller pools with the daily trading volume of Aave, which has consistently exceeded $30671

million since the start of 2023, it becomes plausible that such amount of funds is not out672

of reach for users in the network. Given this amount of funds, attackers could potentially673

execute the mentioned attacks on these pools.674

Our analysis comprises a selection of noteworthy protocols, including Aave, Compound,675

JustLend [17], Venus [28], Morpho [13], and Radiant [25]. You can find the detailed informa-676

AFT 2023

23:18 Liquidity Management Attacks on Lending Markets

Table 2 Data describing the six largest lending pools.

Protocol TVL Amount Number of Markets Interest rate model Liquidity Management attacks

Aave $5.46b 13 Aave Model Vulnerable
JustLend $3.78b 1 Aave Model Vulnerable

Compound $1.92b 4 Compound Model Vulnerable
Venus $804.55m 1 Compound Model Vulnerable

Morpho $341.38m 3 P2P/Compound Model Possible
Radiant $260.09m 3 Aave Model Vulnerable

tion in Table 2. In the subsequent part of this section, we will delve into each aspect and677

investigate whether any of the protocols employ innovative approaches:678

TVL: We examine the amount of TVL each market holds and the degree of liquidity679

concentration which is shown by the number of markets. It’s common for protocols to be680

deployed on multiple chains for user accessibility. Additionally, protocols often release681

new versions over time. While users typically prefer the latest versions, older versions can682

coexist and continue to serve users. For example, despite the launch of Compound V3 in683

August 2022, a substantial sum, exceeding $1.32 billion, is still locked in Compound V2.684

Supply and Borrow Mechanism: Most lending pools utilize a similar supply and685

borrow mechanism, consistent with the one we outlined in our model. However, some686

protocols incorporate different logic, like P2P lending, and impose additional restrictions.687

Morpho, for instance, uses a P2P system to pair borrowers with lenders, transferring688

the borrower to the backup protocol, Compound, if the lender needs to withdraw their689

funding at any point. This mechanism makes Morpho somewhat resistant to liquidity690

management attacks, as borrowers borrowing from honest liquidity providers remain691

secure.692

Interest Rate Model: The interest rate model we presented in this paper generalizes693

those used in the mentioned protocols. Typically, smaller pools widely adopt two main694

models, those being Compound and Aave, due to their proven efficacy and popularity.695

The Compound model aligns with the model we utilized in this paper, while Aave’s model,696

though similar, employs different variables:697

R =
{

R′
0 + R′

low × U
kink if U ≤ kink

R′
0 + R′

low + R′
high × U−kink

1−kink if U > kink
(18)698

Even though the formulas bear strong resemblances, they are provided to allow readers699

to reason with numerical examples. Aave also offers users a choice between stable and700

variable rates. In this paper, we presumed that protocols only offer variable rates for701

simplicity. Although stable rates do not alter the assumptions and results of our analysis,702

we direct the reader to the Aave white paper for more information on stable rates [2].703

Attack Vulnerability: We assess whether the pool is generally susceptible to liquidity704

management attacks. In each case, we assume the attacker possesses ample funds and is705

pursuing a specific objective. This section highlights the importance of design choices for706

new protocols adopting each of these larger protocols’ designs during their initial public707

usage, a phase when they may have limited overall liquidity and thus be vulnerable to708

potential exploitation by an attacker.709

A. Arjmand and M. Khabbazian 23:19

Com
po

un
d

Aave

Alpa
ca

Fina
nc

e

Im
pe

rm
ax

Fina
nc

e

Rari
Cap

ita
l

Unis
wap

Taro
t

Liqu
ity

0

20

40

60

80 78

24

1 1 1 1 1 1

Protocol Names

Fr
eq

ue
nc

y

Figure 4 Frequency of protocols forked by newer projects.

7 Related work710

Gudgeon et al.[15] use the term Protocols for Loanable Funds (PLF) to denote markets for711

loanable funds. Their work classifies various interest rate models utilized by leading lending712

protocols, including the "kinked rates" model, which is widely used by the protocols examined713

in our study. Bartoletti et al.[4] conceptualize the overall structure of lending pools as a714

state machine, analyzing different state transitions and potential threats. They introduced715

concepts such as over-utilization and under-utilization attacks, where attackers drive the716

utilization to its maximum or minimum. Sun et al.[27] explore various liquidity risks, using717

Aave as a case study to emphasize the significance of the issue. Hafner et al.[16] assess the718

degree of centralization among liquidity providers in a pool, identifying scenarios where low719

initial centralization could lead to liquidity shortages following substantial withdrawals. Our720

work extends these studies by defining liquidity management attacks and examining the721

motivations of a potential attacker.722

8 Conclusion and future work723

In this paper, we have introduced and formalized two liquidity management attacks, where724

an attacker with sufficient resources can exploit specific conditions within lending pools.725

We have demonstrated that such attacks are not only feasible but also incentivized, given726

the considerable amount of liquidity dispersed across numerous small liquidity pools. We727

further explored possible mitigation strategies and risks at the application layer that could728

aid upcoming lending protocols.729

We additionally analyzed a specific design, wherein the design and application layer are730

structured as separate systems that can interact with each other. This structure enhances the731

flexibility of options available to liquidity pools and allows for the combination of multiple732

design layers that can utilize the same liquidity pool. While we scrutinized the overarching733

design of such systems, there remain considerable complexities to be addressed in their734

implementation. It is our hope that new lending pools will adopt this design and potentially735

AFT 2023

23:20 Liquidity Management Attacks on Lending Markets

establish a standard set of defensive mechanisms against liquidity management attacks.736

References737

1 Aave protocol website, 2023. URL: https://aave.com/.738

2 Aave protocol whitepaper v1.0, 2020. URL: https://github.com/aave/aave-protocol/blob/739

master/docs/Aave_Protocol_Whitepaper_v1_0.pdf.740

3 Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on ethereum smart741

contracts. Cryptology ePrint Archive, Paper 2016/1007, 2016. https://eprint.iacr.org/742

2016/1007. URL: https://eprint.iacr.org/2016/1007.743

4 Massimo Bartoletti, James Hsin yu Chiang, and Alberto Lluch-Lafuente. Sok: Lending pools744

in decentralized finance, 2020. arXiv:2012.13230.745

5 Bnb bridge - rekt, 2022. URL: https://rekt.news/bnb-bridge-rekt/.746

6 Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A. Kroll, and747

Edward W. Felten. Sok: Research perspectives and challenges for bitcoin and cryptocurrencies.748

In 2015 IEEE Symposium on Security and Privacy, pages 104–121, 2015. doi:10.1109/SP.749

2015.14.750

7 Compound protocol website, 2023. URL: https://compound.finance/.751

8 Simon Cousaert, Jiahua Xu, and Toshiko Matsui. SoK: Yield aggregators in DeFi. In752

2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE,753

may 2022. URL: https://doi.org/10.1109%2Ficbc54727.2022.9805523, doi:10.1109/754

icbc54727.2022.9805523.755

9 Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz756

Breidenbach, and Ari Juels. Flash boys 2.0: Frontrunning, transaction reordering, and757

consensus instability in decentralized exchanges, 2019. arXiv:1904.05234.758

10 Defillama, 2023. URL: https://defillama.com/.759

11 Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy Clark. Sok: Transparent dishonesty:760

front-running attacks on blockchain, 2019. arXiv:1902.05164.761

12 Flashbots documentation, 2023. URL: https://docs.flashbots.net/.762

13 Mathis Gontier Delaunay, Quentin Garchery, Paul Frambot, Merlin Égalité, Julien Thomas,763

and Katia Babbar. Morpho V1 Yellow Paper. working paper or preprint, May 2023. URL:764

https://hal.science/hal-04087388.765

14 Lewis Gudgeon, Daniel Perez, Dominik Harz, Benjamin Livshits, and Arthur Gervais. The766

decentralized financial crisis, 2020. arXiv:2002.08099.767

15 Lewis Gudgeon, Sam M. Werner, Daniel Perez, and William J. Knottenbelt. Defi protocols768

for loanable funds: Interest rates, liquidity and market efficiency, 2020. arXiv:2006.13922.769

16 Matthias Hafner, Romain de Luze, Nicolas Greber, Juan Beccuti, Benedetto Biondi,770

Gidon Katten, Michelangelo Riccobene, and Alberto Arrigoni. Defi lending platform771

liquidity risk: The example of folks finance: Published in the journal of the brit-772

ish blockchain association, Apr 2023. URL: https://jbba.scholasticahq.com/article/773

74150-defi-lending-platform-liquidity-risk-the-example-of-folks-finance.774

17 Justlend dao money market protocol v1.0, Dec 2020. URL: https://portal.justlend.org/775

docs/justlend_whitepaper_en.pdf.776

18 Robert Leshner and Geoffrey Hayes, Feb 2019. URL: https://compound.finance/documents/777

Compound.Whitepaper.pdf.778

19 Amani Moin, Kevin Sekniqi, and Emin Gun Sirer. Sok: A classification framework for779

stablecoin designs. In Joseph Bonneau and Nadia Heninger, editors, Financial Cryptography780

and Data Security, pages 174–197, Cham, 2020. Springer International Publishing.781

20 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, May 2009. URL: http:782

//www.bitcoin.org/bitcoin.pdf.783

21 OpenZeppelin. Openzeppelin/openzeppelin-contracts: Openzeppelin contracts is a lib-784

rary for secure smart contract development. URL: https://github.com/OpenZeppelin/785

openzeppelin-contracts.786

https://aave.com/
https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_Whitepaper_v1_0.pdf
https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_Whitepaper_v1_0.pdf
https://github.com/aave/aave-protocol/blob/master/docs/Aave_Protocol_Whitepaper_v1_0.pdf
https://eprint.iacr.org/2016/1007
https://eprint.iacr.org/2016/1007
https://eprint.iacr.org/2016/1007
https://eprint.iacr.org/2016/1007
http://arxiv.org/abs/2012.13230
https://rekt.news/bnb-bridge-rekt/
https://doi.org/10.1109/SP.2015.14
https://doi.org/10.1109/SP.2015.14
https://doi.org/10.1109/SP.2015.14
https://compound.finance/
https://doi.org/10.1109%2Ficbc54727.2022.9805523
https://doi.org/10.1109/icbc54727.2022.9805523
https://doi.org/10.1109/icbc54727.2022.9805523
https://doi.org/10.1109/icbc54727.2022.9805523
http://arxiv.org/abs/1904.05234
https://defillama.com/
http://arxiv.org/abs/1902.05164
https://docs.flashbots.net/
https://hal.science/hal-04087388
http://arxiv.org/abs/2002.08099
http://arxiv.org/abs/2006.13922
https://jbba.scholasticahq.com/article/74150-defi-lending-platform-liquidity-risk-the-example-of-folks-finance
https://jbba.scholasticahq.com/article/74150-defi-lending-platform-liquidity-risk-the-example-of-folks-finance
https://jbba.scholasticahq.com/article/74150-defi-lending-platform-liquidity-risk-the-example-of-folks-finance
https://portal.justlend.org/docs/justlend_whitepaper_en.pdf
https://portal.justlend.org/docs/justlend_whitepaper_en.pdf
https://portal.justlend.org/docs/justlend_whitepaper_en.pdf
https://compound.finance/documents/Compound.Whitepaper.pdf
https://compound.finance/documents/Compound.Whitepaper.pdf
https://compound.finance/documents/Compound.Whitepaper.pdf
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts

A. Arjmand and M. Khabbazian 23:21

22 Poly network - rekt, 2021. URL: https://rekt.news/polynetwork-rekt/.787

23 Kaihua Qin, Liyi Zhou, Yaroslav Afonin, Ludovico Lazzaretti, and Arthur Gervais. Cefi vs.788

defi – comparing centralized to decentralized finance, 2021. arXiv:2106.08157.789

24 Kaihua Qin, Liyi Zhou, Pablo Gamito, Philipp Jovanovic, and Arthur Gervais. An em-790

pirical study of DeFi liquidations. In Proceedings of the 21st ACM Internet Measure-791

ment Conference. ACM, nov 2021. URL: https://doi.org/10.1145%2F3487552.3487811,792

doi:10.1145/3487552.3487811.793

25 Radiant documentation, 2023. URL: https://docs.radiant.capital/radiant/.794

26 Huobi Research. Global crypto industry overview and trends[2022–2023 an-795

nual report](first part), Dec 2022. URL: https://medium.com/huobi-research/796

global-crypto-industry-overview-and-trends-2022-2023-annual-report-first-part-e15372f29c.797

27 Xiaotong Sun, Charalampos Stasinakis, and Georgios Sermpinis. Liquidity risks in lending798

protocols: Evidence from aave protocol, 2023. arXiv:2206.11973.799

28 Venus protocol documentation, 2023. URL: https://docs.venus.io/docs/getstarted.800

29 Anton Wahrstätter, Jens Ernstberger, Aviv Yaish, Liyi Zhou, Kaihua Qin, Taro Tsuchiya,801

Sebastian Steinhorst, Davor Svetinovic, Nicolas Christin, Mikolaj Barczentewicz, and Arthur802

Gervais. Blockchain censorship, 2023. arXiv:2305.18545.803

30 Anton Wahrstätter, Liyi Zhou, Kaihua Qin, Davor Svetinovic, and Arthur Gervais. Time to804

bribe: Measuring block construction market, 2023. arXiv:2305.16468.805

31 Sam M. Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz, and806

William J. Knottenbelt. Sok: Decentralized finance (defi), 2022. arXiv:2101.08778.807

32 Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum808

project yellow paper, 151:1–32, 2014.809

33 Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng. SoK: Decentralized exchanges810

(DEX) with automated market maker (AMM) protocols. ACM Computing Surveys, 55(11):1–50,811

feb 2023. URL: https://doi.org/10.1145%2F3570639, doi:10.1145/3570639.812

34 Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and Arthur Gervais. High-frequency813

trading on decentralized on-chain exchanges, 2020. arXiv:2009.14021.814

35 Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, Zhipeng Wang, Ye Wang,815

Kaihua Qin, Roger Wattenhofer, Dawn Song, and Arthur Gervais. Sok: Decentralized finance816

(defi) attacks, 2023. arXiv:2208.13035.817

AFT 2023

https://rekt.news/polynetwork-rekt/
http://arxiv.org/abs/2106.08157
https://doi.org/10.1145%2F3487552.3487811
https://doi.org/10.1145/3487552.3487811
https://docs.radiant.capital/radiant/
https://medium.com/huobi-research/global-crypto-industry-overview-and-trends-2022-2023-annual-report-first-part-e15372f29c
https://medium.com/huobi-research/global-crypto-industry-overview-and-trends-2022-2023-annual-report-first-part-e15372f29c
https://medium.com/huobi-research/global-crypto-industry-overview-and-trends-2022-2023-annual-report-first-part-e15372f29c
http://arxiv.org/abs/2206.11973
https://docs.venus.io/docs/getstarted
http://arxiv.org/abs/2305.18545
http://arxiv.org/abs/2305.16468
http://arxiv.org/abs/2101.08778
https://doi.org/10.1145%2F3570639
https://doi.org/10.1145/3570639
http://arxiv.org/abs/2009.14021
http://arxiv.org/abs/2208.13035

	1 Introduction
	2 Background
	2.1 Blockchains
	2.2 Decentralized Finance (DeFi)
	2.3 Attacks on DeFi
	2.4 High frequency trading

	3 System model
	4 Attacks on lending markets
	4.1 Utilization kink attack
	4.1.1 Simplified attack
	4.1.2 Utilization kink attack in general setting

	4.2 DoS attack on liquidators
	4.2.1 Simplified Attack
	4.2.2 DoS attacks in general setting

	4.3 Economical games by adversary

	5 Liquidity aggregation
	5.1 Designing Logic and Liquidity Layers
	5.1.1 Piggybacking Liquidity Pool
	5.1.2 Standalone liquidity pool

	6 Analyzing on-chain lending protocols
	7 Related work
	8 Conclusion and future work

