
ar
X

iv
:2

01
2.

10
82

5v
1

 [
cs

.C
R

]
 2

0
D

ec
 2

02
0

Hashcashed Reputation
with Application in Designing Watchtowers

Sonbol Rahimpour

Electrical and Computer Engineering

University of Alberta

Edmonton, Canada

rahimpou@ualberta.ca

Majid Khabbazian

Electrical and Computer Engineering

University of Alberta

Edmonton, Canada

mkhabbazian@ualberta.ca

Abstract—We propose a novel reputation system to stimu-
late well-behaviour, and competition in online markets. Our
reputation system is suited for markets where a publicly-
verifiable “proof-of-misbehaviour” can be generated when one
party misbehaves. Such markets include those that provide
blockchain services, such as monitoring services by watchtowers.
Watchtowers are entities that watch the blockchain on behalf of
their offline clients to protect the clients’ interests in applications
such as payment networks (e.g., the Lightning network). In
practice, there is no trust between clients and watchtowers, and
it is challenging to incentivize watchtowers to well-behave (e.g., to
refuse bribery). To showcase our reputation system, in this work,
we create an open market of watchtowers, where watchtowers
are motivated to not only deliver their promised service but also
reduce their service fees in competition with each other.

Index Terms—Reputation system, Lightning network, Watch-
towers

I. INTRODUCTION

Hashcash is a cryptographic hash-based proof-of-work al-

gorithm proposed by Adam Back [1] to limit email spamming.

Over time hashcash has found other applications in mitigating

denial of service attacks [2], [3]. Today, it is perhaps most

known for its role in the consensus algorithms of Bitcoin and

other cryptocurrencies. In this work, we introduce yet another

application of hashcash: reputation system.

Reputation systems play a profound role in online markets,

where members have no prior real-world interactions with each

other. An effective reputation system enhances the honesty of

the members, and incentivizes them to follow higher standards

to maximize their profit. Nowadays, there are many different

reputation systems, each used for a specific target market. For

example, a common reputation system is the recommendation

system, used by online shopping stores such as Amazon

and eBay. In this system, buyers rate products or services

they receive; in some cases, sellers can rate buyers, too. For

example, on eBay, each party can assign a positive or negative

rate to its counter-party. The cumulative rating of each party

is then used to create a public reputation for a member or a

product.

In this work, we introduce a new reputation system, which

targets markets that provide blockchain services such as mon-

itoring services. These markets can often be designed in such

a way that a party can generate a publicly verifiable “proof-of-

breach” if the service provider does not fulfill their contractual

obligations. As an application, we use our reputation system to

design an open watchtower market for the Bitcoin Lightning

network.

Watchtower is a service to protect users who participate

in payment channels [4]. Payment channels, such as Light-

ning channels [5], enable parties to perform so-called off-

chain transactions (outside the blockchain) through private

communications. Payment channels guarantee the security of

off-chain transactions using allocated collateral. To maintain

the security of the payment channel, however, parties need to

be frequently online and watch the blockchain for possible

frauds by the counter-parties; a party that goes offline risks

losing payments as the counter-party can close the channel

using an outdated channel state. A party who decides to go

offline can employ a third-party, referred to as watchtower, to

watch the blockchain and protect the channel on the party’s

behalf.

Incentivizing watchtowers is a non-trivial task. One ap-

proach to incentivize watchtowers is to pay them at the

beginning of the watching service we expect them to provide

in the future. The challenge with this approach is to make

sure that watchtowers will, in fact, fulfill the service for which

they were paid. There are known solutions [6], [7] that can

handle this using complex smart contracts. Such solutions are,

however, not applicable to Bitcoin’s simple script language.

In addition, they generate extra load on the blockchain, which

is what payment channels try to avoid in the first place.

Another approach is to pay watchtowers a fee only when they

detect a fraud [4], [8], [9]. A major issue with this approach

is that watchtowers will not receive any fee if (thanks to

them) no fraud occurs. In fact, this approach may incentivize

watchtowers to encourage frauds.

In this work, we show how our reputation system can

be used to incentivize watchtowers. At a high level, our

solution works as follows. Consider an open market, where

any watchtower can join to provide watching services for

profit. Each watchtower has a reputation, which is basically

a proof-of-work tied to its ID. The ID of a watchtower is

essentially a public key selected by the watchtower itself. A

client (i.e., a payment channel user) first selects a watchtower.

The selection criteria are designed in such a way that a

http://arxiv.org/abs/2012.10825v1

watchtower with a higher reputation gets a higher chance of

being selected. This incentivizes watchtowers to progressively

improve their proof-of-work to gain a higher share of the

market. After selecting a watchtower, the client communicates

the terms of service with the watchtower. Accordingly, the

watchtower creates a contract1 (a stand-alone digital docu-

ment) and signs it. The contract is designed in such a way

that 1) it facilitates its exchange with money, 2) it can be used

by the client to generate a publicly verifiable proof-of-breach

if the watchtower does not fulfill its terms. Such a contract

incentivizes a watchtower to perform its service as otherwise,

it can lose its reputation, hence its share of the market. Of

course, a defaulting watchtower can start over by creating a

new ID and a new proof-of-work reputation. However, this will

be very costly in a competitive market, where watchtowers

progressively strengthen their proof-of-work to increase or

merely maintain their share of the market.

II. BACKGROUND

A. Hashcash

Hashcash is a type of proof-of-work that is based on

cryptographic hash functions such as SHA-256. Let H be such

a cryptographic hash function. For a given string s, we say h

is an n-bit hashcash of s, if H(s||h) in binary has n leading

zeros, where s||h indicates the concatenation of s and h. One

can easily verify a hashcash h by computing H(s||h), and then

counting the number of leading zeros of the result. To find

an n-bit hashcash, however, one requires to compute the hash

function 2n times, on average. Therefore, finding an (n+1)-bit

hashcash requires, on average, twice as much work as finding

an n-bit hashcash. The value of n is used as the measure of

the amount of work performed.

B. Payment channels

Bitcoin can process a small number (about 7) of transactions

per second [10]. In addition, it exhibits high transaction

latency; a transaction needs at least ten minutes, on average, to

go through. These are major impediments to further adoption

of Bitcoin.

Payment channels [5], [11] are a promising solution to the

low throughput and high latency of Bitcoin. Payment channels

achieve this by handling most transactions outside the Bitcoin

blockchain. A payment channel can be viewed as a temporary

joint account between two parties, say Alice and Bob. The

channel is opened by a Bitcoin transaction, referred to as the

opening transaction (topen). The opening transaction commits

the parties UTXOs (Unspent Transaction Outputs) into a single

2-of-2 multisig output, controlled jointly by Alice and Bob.

Once the channel is opened, Alice and Bob can exchange

private transactions off the chain. These off-chain transactions,

called commitment transactions (ctx), commit the output of

topen into a set of outputs that divide the channel fund

between Alice and Bob.

1This is not a smart contract. It is rather a stand-alone digital document
that is exchanged between a client and a watchtower through private commu-
nications.

For example, suppose Alice and Bob each deposit two

Bitcoins to open a payment channel. The first commitment

transaction, ctx1, divides the total channel fund of four

Bitcoins evenly between Alice and Bob. This commitment

transaction ensures that each party can get their money back in

case the counter-party disappears after the channel is opened.

Now, suppose that Bob wishes to purchase a good worth of one

Bitcoin from Alice. To make the payment, Bob provides Alice

with a new commitment transaction, ctx2, which updates the

channel balance by giving Alice three Bitcoins and giving Bob

one Bitcoin. In addition to this, Bob must revoke ctx1, as this

transaction now reflects an outdated balance. To this end, Bob

will give Alice a so called justice transaction jtx1. The justice

transaction is used by Alice to penalize Bob if he publishes

ctx1 in the blockchain. To enable this punishment mechanism,

commitment transaction is designed such that once published

by one party, they give the counter-party a dispute period

during which the counter-party can send a justice transaction

if there is any. In our example, if Bob publishes ctx1, Alice

can dispute it using jtx1 and collect the whole channel fund.

C. Watchtowers

The punishment mechanism explained earlier requires each

party to stay online and monitor the blockchain for possible

cheating by the counter-party. Alternatively, a party may

delegate the task of monitoring the blockchain to a third party

called watchtower. In practice, this is accomplished by giving

the watchtower the first 16 bytes of every ctx’s transaction

ID (ctxtxid), as well as every justice transaction encrypted

using the second 16 bytes of the corresponding ctxtxid. If the

watchtower finds a transaction on the blockchain with an ID

whose 16-byte prefix matches a prefix, it has stored, it will

decrypt the corresponding jtx transaction using the second

16 bytes of the transaction ID, and then broadcasts jtx to the

network to penalize the cheating party. Note that a watchtower

cannot identify a channel in this design unless one of the two

channel’s owners cheats.

There is a special case where one of the two parties does

not need to watch the blockchain, hence does not require a

watchtower when the party goes offline. This case is when

Alice opens a payment channel with Bob and uses this channel

only to pay Bob. In other words, Alice does not receive/accept

any payment from Bob on the channel. We call such a channel

a directional payment channel from Alice to Bob. For a

directional payment channel from Alice to Bob, Alice does not

need to watch the blockchain for old commitment transactions.

It is because Bob does not have any incentive to cheat, as old

transactions give Bob less money than the latest commitment

transaction. Note that unlike Alice, Bob needs to watch the

blockchain as Alice has an incentive to cheat by claiming an

old commitment transaction.

D. The Lightning network

Two parties may not have a payment channel between

themselves, but they may be connected through multiple

payment channels. For example, Alice may not have a payment

channel with Bob, but she may have a payment channel with

Charlie, who has a payment channel with Bob. In this case,

the Lightning network enables Alice to transfer money to Bob

through Charlie.

The challenge to transfer money from Alice to Bob through

Charlie is that the transfer from Alice to Charlie and the one

from Charlie to Bob are independent. Consequently, if one of

these two transfers goes through, there is no guarantee that the

other one will go through. The Lightning network handles this

issue by binding the two transfers using a Hashed TimeLock

Contract (HTLC). Using HTLC, the two transfers on the way

from Alice to Bob are conditioned on Bob releasing a secrete

preimage. This essentially ensures that Bob’s secret preimage

and Alice’s money are atomically exchanged.

III. THE PROPOSED REPUTATION SYSTEM

A. System components

Market. A market is identified by a number called the

market ID, and is composed of servers, which are entities

that provide the service to clients for profit. The markets we

consider are open, which means they allow any server to join

and offer their service. Every server is identified by an ID,

which is a public key. The market has no central authority

to assign IDs to servers. Therefore, similar to Bitcoin users,

servers select their IDs on their own. As a result, an entity

can enter the market with many different IDs, as it can create

many public keys.

Reputation. In our system, a server generates its own

reputation and proves it using a hashcash. More specifically,

given a server ID, a market ID, and a hashcash the reputation

of a server is calculated as the number of leading zeros of

H(serverID||marketID||hashcash)

in binary, where H is a cryptographic hash function (such as

SHA-256). This is illustrated in Fig. 1. Note that the hashcash

is basically a nonce, similar to the nonce in the Bitcoin block

headers. Also, note that reputation is tightly linked to a single

pair of server ID and market ID. This prevents an entity from

using a reputation for multiple IDs or over multiple markets.

A server can increase its reputation on its own by creating

a better hashcash. This is in contrast to the existing reputation

systems, where a server’s reputation is increased when it

receives good reviews from clients/customers. Finding a better

hashcash, however, is not free. The server has to mine itself,

or rent mining power (whichever the server finds more cost-

effective). A server may make such an investment to, for

example, get a better share of the market or merely maintain

its share in a competitive (but profitable) market. We remark

that anyone can join the market but may not necessarily profit

from the market because of the competition that exists between

servers to provide the service at the lowest possible fee. It is

not our intention to guarantee that the market will have many

servers in it. In fact, the market may become dominated by

a small number of “powerful” servers. However, we aim at

designing a market where every server has a strong incentive

Server ID Market ID Hashcash

H

Reputation Factor :

000000000111000100101000001010100010010011111110110101001...

Binary

Figure 1. An illustration of how a reputation is calculated.

to fulfill its contracts, and lower its service fee in competing

with other servers.

Definition 1 (Reputation cost). The reputation cost, cost(r),
is an estimate of the minimum energy (electricity) cost to

generate a server ID with reputation r. The cost of a server s

with reputation r is denoted cost(s), and is defined to be equal

to cost(r). We remark that reputation cost is time variant,

because energy cost and hardware efficiency change over time.

Documents. The system generates two types of digital

documents: contracts, and proof-of-breaches. A contract is a

stand-alone digital document that includes a server ID, terms

of the service, and the server’s signature. A proof-of-breach, on

the other hand, is a digital document that consists of a contract

and publicly-verifiable evidence proving that the server who

signed the contract has breached it.

Each contract contains two hash images: a client hash image

selected by the client and a server hash image selected by the

server. A contract is considered valid only if it is presented

along with the preimage of the server’s hash image. In contrast,

a proof-of-breach becomes invalid if the preimage of the

client’s hash image is presented. As will be explained later,

this mechanism allows a digital document to be atomically

exchanged for cryptocurrency. One can view these preimages

as one-time use on/off switches: the server’s preimage activates

the contract, while the client’s preimage terminates it.

Distributed storage system. The reputation system utilizes

a distributed storage system to store servers’ records, including

IDs, hashcash, and proof-of-breaches. The main requirement

of this storage system is to ensure that each server’s record

is stored by at least one node, who is willing to share the

record with others. As stated in the next proposition, this

is a condition that is naturally achievable in our system.

Consequently, the proposed reputation system can rely on the

set of servers/clients as part of a (perhaps larger) distributed

storage system that stores servers’ records.

Proposition 1. For every ID, hashcash, and proof-of-breach,

there is at least one node in the system that has incentive to

store and share the record.

Proof. A server has full incentive to store and share its own ID

and hashcash with others. With regards to a proof-of-breach,

there is at least one node with a strong incentive to store

and distribute the record: the victim of the contract breach.

In addition, servers have incentives to store a proof-of-breach

against the defaulting server. It is because the market share

of the defaulting server becomes available to all others when

the defaulting server is out of the market. Note that every

server in this market essentially competes with every other

server, because all servers offer their service to the same pool

of clients.

B. Interactions

The proposed reputation system supports two types of inter-

component interactions: client-server interactions and client-

storage interactions. Client-server interactions are to transfer

reputation information including server ID, hashcash and

server preimages (i.e., preimages that can invalidate existing

proof-of-breaches). They are also to communicate terms of

services and fees and to transfer contracts. Client-storage

interactions, on the other hand, are to store and retrieve proof-

of-breaches from the distributed storage system.

C. Protocol

Consider a market with a set of servers that provide a service

for profit. Each server has an ID and a hashcash to represent

its reputation. In this market, a client who wishes to receive

the service goes through the following steps.

1) Screening: The client collects reputation information (in-

cluding server IDs and hashcash) from the servers. In ad-

dition, it retrieves proof-of-breaches from the distributed

storage system and verifies them. Valid proof-of-breaches

can be cached at the client side. The client discards

servers with a valid proof-of-breach against them. The

servers that are not discarded are referred to as candidate

servers.

2) Negotiation: The client negotiates the terms of service

and fees with the candidate servers through private com-

munications. Alternatively, instead of actively engaging

with each client, servers may offer fixed service plans

that are ready to be signed.

3) Selection: Considering the servers’ reputations and their

service fees, a client selects a subset of the candidate

servers to contract with. If the client selects more than

one server, it will contract with each candidate server

separately. We assume that the client receives no damage

if at least one of the selected servers fulfills the terms of

the contract. For example, in a watchtower market, if at

least one watchtower respects its contract and monitors

the blockchain, the payment channel is fully protected.

If all the selected servers deny the fulfillment of the

contract, however, the client can create a proof-of-breach

against every single selected server.

In this work, we do not impose any specific method for

selecting the candidate servers. In fact, it may not be

possible to enforce a fixed selection method, as clients

may have other reasons (external to the system) to select a

particular server. Nevertheless, we suggest the following

properties to be considered in designing any selection

method.

a) Reputation-aware: if the algorithm selects a server

with reputation r and service fee f , then it must also

select any server with reputation r′ > r and service

fee f ′ ≤ f ;

b) Fee-aware: if the algorithm selects a server with repu-

tation r and service fee f , then it must also select any

server with service fee f ′ < f , and reputation r′ ≥ r.

c) Damage-aware: for every selected server s, the con-

tract’s value for the client, val(c), must be less than
cost(s)

k
, where k ≥ 1 is a security parameter defined in

Section IV.

The first two properties stimulate competition, and en-

courage servers to increase their reputation and reduce

their service fees. Note that both reputation and service

fee are considered by a client in selecting servers. The

third property encourages servers to behave, and is a

defence mechanism against bribery, as will be explained

in Section V.

4) Purchase: To purchase a contract, the client first obtains

a signed copy of the contract from the server and verifies

the contract. Then, the client purchases the contract by,

for example, atomically exchanging the server’s preimage

for cryptocurrency. Recall that a signed contract is con-

sidered valid only when it is presented with this preimage.

5) Punishment: If the client ever discovers a breach in

the contract, it creates a proof-of-breach and stores it

in the distributed storage system. Optionally, the client

can negotiate terms of settlements with the defaulting

server. The contract supports the atomic exchange of

the client’s preimage (which invalidates the proof-of-

breach) for cryptocurrency. In our model, a proof-of-

breach against a server will reduce the server’s reputation

to zero, unless the server provides the corresponding

client’s preimage indicating that the contract has been

terminated as a result of, for example, a settlement.

The main challenge in enabling the proposed reputation

system is to enable publicly verifiable proof-of breaches. We

believe that many markets that provide blockchain services

can be (re)designed to provide this feature. In this work, we

present one such service: blockchain monitoring.

IV. ADVERSARIAL MODEL

An adversary can join the market with an arbitrary number

of IDs. Moreover, a client cannot determine if a set of IDs

belong to the same entity. We assume that there are at least

two independent service providers (servers) in the market2.

An adversary can launch a denial of service attack by

populating a storing node with server IDs and/or proof-of-

breaches. It may also bribe a storing node to delete its proof-

of-breach from its storage. An adversary can bribe a server

to breach a contract. However, we assume that at each point

in time, a server has standing bribes on at most k different

2In an open market, if the market is profitable for a single provider, it
makes sense for another service provider to join the market.

contracts, where k ≥ 1 is a system security parameter. In

addition, we assume that the total amount of bribe offered to

a server to breach a contract c is not more than the value of c

for its client (otherwise, the bribe can be used to buy off the

client directly!). Moreover, we assume that a server s does not

accept any of its standing bribes, if the total amount of bribe

offered to s (over all the contracts s is handling) is less than

cost(s), as defined in Definition 1.

For a single contract, a client may select and pay multiple

servers. We assume that the client does not receive any damage

if at least one of these servers fulfills the terms of the contract.

For example, in the case of the watchtower market, the client

receives no damage if at least one of the paid watchtowers

monitors the blockchain and follows the terms of the contract

(e.g., submit the justice transaction in case of cheating). In

selecting servers, we assume that a client has a good estimate

of the reputation cost function. Finally, we assume that the

client can create a proof-of-breach against all paid servers if

there is a term in the contract that is not fulfilled by any of

the paid servers.

V. SECURITY ANALYSIS

Sybil attack. In the Sybil attack, an adversary attempts to

subvert the reputation system by creating multiple IDs. In our

reputation system, an adversary cannot impact the reputation

of servers by merely creating many IDs. It is because, unlike

other reputation systems such as recommendation systems, in

our system, the reputation of a server is not effected by other

nodes. In fact, there are only two things that can impact one’s

reputation: proof-of-work and proof-of-breach.

DoS attack. An adversary may create multiple IDs and/or

fake contracts to use up the storage of storing nodes. For in-

stance, suppose that there are nodes in the system that provide

clients with server IDs, hashcash, and their IP addresses. An

adversary may try to overwhelm these nodes by flooding them

with server IDs. At some point, a node does not have enough

storage room to accept new IDs or has to replace old IDs with

new ones coming.

A simple counter-measure against this type of denial-of-

service attacks is to use servers’ reputations to prioritize

records. For example, a proof-of-breach against a highly-

reputable server has a higher priority than a proof-of-breach

against a normal server. With such prioritising, a storing node

accepts and stores a new record if either the node has enough

room or the priority of the new record is higher than the

priority of the lowest-priority record in the storage. In the

latter case, the lowest-priority record is replaced with the new

record.

By the following proposition and considering today’s com-

putational power, storage capacity, and electricity cost it is

impractical for an adversary to flush out the records of all

honest servers from a storage node.

Proposition 2. An adversary requires on average M · 2rmax

hash computations to flush out the records of all honest servers

from a storage node, where M is the number of records the

node can store, and rmax denotes the maximum reputation of

any honest server.

Proof. For an adversary to flush out the records of all honest

servers from the storage, it needs to create M records, each

with reputation of at least rmax. To create a reputation of at

least rmax, the adversary needs to compute on average 2rmax

hashes. Therefore, in total, the adversary needs to compute at

least M · 2rmax hashes, on overage.

For example, assuming that rmax > 36, and3 the storage

node can store 240 records, the adversary must compute at least

276 hashes in order to remove/replace all the honest servers’

records. Using an ASIC hardware (with the speed of 10 tera

hashes per second), this takes about 170 years!

Proposition 3. A defaulting server has no incentive to flush

a proof-of-breach against itself out of a storing node by

generating a new ID and many artificially-generated proof-

of-breaches against the new ID.

Proof. Suppose that the new artificially generated proof-of-

breaches pushes out the valid proof-of-breach out of a storage

node. Since the storage node prioritizes records according to

the reputation of the corresponding server ID, the reputation

of the new ID must be at least equal to the reputation of the

defaulting server. There is no incentive then for the defaulting

server to try to push out the proof-of-breach rather than starting

fresh with the new ID.

A storage node needs to verify records such as proof-

of-breaches. Such verification needs little but non-negligible

resources such as computation and memory. An attacker can

overwhelm a storage node by sending many fake proof-of-

breaches to the node. A storage node can mitigate this type of

DoS attacks by simply requiring a small proof-of-work along

with a submitted record. This mitigation is, in fact, the original

application of the hashcash, which is to mitigate such DoS

attacks.

Fake resolved proof-of-breaches. A server may create

valid proof-of-breaches against itself, and then resolve them

to create a market image of settling all disputes with clients.

This method, however, does not impact the server’s reputation

because terminated/resolved contracts neither increase nor

decrease the server’s reputation.

Bribery. A defaulting server may attempt to bribe the

storing nodes to delete a proof-of-breach. Bribing, however,

cannot guarantee that a digital document is purged. In fact,

the victim of a contract breach would always keep its proof-

of-breach and can re-distribute it at any time. The main

hope of a defaulting server who is willing to remain in the

market is to settle with the client (by purchasing the client’s

preimage, which invalidates the contract) or start over with a

new reputation.

Another type of bribery is when an adversary offers a bribe

to a server to breach a contract. For instance, a payment

3Even a personal computer, which is highly inefficient in mining, can
generate an ID with reputation of at least 36 in few hours.

channel party may bribe a watchtower to stop monitoring the

channel for its counter-party. This type of bribery is a serious

threat against any digital market. Note that since a server

provides services to many clients, it may receive multiple

bribes from multiple adversaries. Nevertheless, Proposition 4

shows that every contract in the market is “bribe-safe”, as

defined below.

Definition 2. (Bribe-safe) A contract is bribe-safe if the cost

of every server responsible to execute the contract is more

than the total amount of bribes offered to the server.

Note that the condition in the above definition is somewhat

strong, because a contract is still safe even when a single paid

server (as opposed to all) fulfills its contractual obligation.

Proposition 4. Under the assumptions described in the adver-

sarial model, every contract in the proposed system is bribe-

safe if the selection methods used by the clients are damage-

aware.

Proof. Let s be any server in the market, and C be the set

of contracts for which the server has a standing bribe offer.

Let brb(c) denote the total amount of bribe offered to breach

a contract c, val(c) denote the maximum value of c for the

client, and cost(s) denote the cost of server s as defined in

Definition 1. By the selection method’s third property, we have

∀c ∈ C : val(c) <
cost(s)

k
.

In addition, by our adversarial model assumptions, we have

∀c ∈ C : brb(c) < val(c),

and

|C| ≤ k,

where |C| denotes the cardinality of C. Therefore, we get

B ≤
∑

c∈C

brb(c) <
∑

c∈C

val(c)

≤
∑

c∈C

cost(s)

k
=
|C|

k
cost(s) ≤ cost(s),

where B is the total amount of bribe offered to s. Thus,

the total amount of bribe offered to s is less than cost(s).
Therefore, by our adversarial model’s assumption, the server

does not accept a bribe to breach any contract c ∈ C.

VI. A REPUTATION-BASED MARKET OF WATCHTOWERS

Our reputation system can be used in various digital markets

which offer blockchain services. In this section, we show

one example where we apply our system in a market of

watchtowers that provides blockchain monitoring service to

payment channel holders who decide to go offline.

Consider a market of watchtower servers, where each server

has an ID (public key), and a reputation as defined in Sec-

tion III-A. The market utilizes a distributed storage system,

which stores the server’s records, including ID, hashcash, IP

address, proof-of-breaches, and preimages. Recall that servers

Alice Watchtower

Transaction ID prefixes

Encoded justice transactions

The range of blocks

Client's hash image

Watchtower Contract

Watchtower Contract

Market ID:

Server ID:

Server's hashcash:

Server's hash value:

Server's signature

Figure 2. A sample of watchtower contract.

and victims of contract breaches participate in this distributed

storage system, and for each record, there is at least one node

that has a strong incentive to store the record and distribute it.

Screening. Consider a payment channel between Alice and

Bob and suppose that Alice is interested to pay one or more

watchtowers to monitor the blockchain on her behalf while

she is offline. First, in a screening process, Alice contacts

the storage system, collects all servers’ records, and evaluates

servers. A server’s evaluation includes a single computation

of the hash function to calculate the server’s reputation, and

verification of proof-of-breaches against the server if there is

any. Verification of a proof-of-breach is expected to be harder

than a single computation of the hash function. However,

a client needs to verify a proof-of-breach at most once,

as it can cache the result for later use. The watchtowers

that successfully pass Alice’s evaluation are referred to as

candidate watchtowers.

Negotiation. In this step, Alice communicates the terms of a

contract with the candidate servers, and negotiates for service

fees. At the end of this step, Alice knows how much fee each

candidate watchtower charges for the contract. Fig. 2 shows

a watchtower contract sample, which consists of a market ID,

server ID, server’s hashcash, a set of 16-byte transaction ID

prefixes, a set of encoded justice transactions, the range of

blocks that the watchtower has to monitor, server’s hash image,

client’s hash image, and server’s signature. The client’s and

server’s hash images are hashes of random numbers generated

by, respectively, the client and the server. Note that contract’s

data does not reveal any information about the client.

Selection. Considering the reputations of the candidate

watchtowers and their service fees, Alice selects a set of

watchtowers to contract with. As mentioned earlier, we do

not enforce any specific selection algorithm. We, however,

suggest any selection method to be 1) reputation-aware; 2) fee-

aware, and 3) damage-aware. Algorithm 1 shows one possible

selection method. In this method, Alice first determines the

contract’s maximum value, val(c). This value should be set

to at least the payment channel fund, which is the maximum

amount Alice would lose on the channel if Bob cheats. Then,

among candidate watchtowers whose reputation cost is more

than the threshold T = k · val(c), the algorithm chooses

the one with the minimum fee. If there are multiple such

watchtowers with the minimum fee, one with the maximum

reputation is selected. Thus, if the algorithm selects a server

s with reputation r, and service fee f , then for every server

s′ we have

f ′ ≥ f OR r′ ≤ r,

where f ′ and r′ denote the service fee and reputation of s′,

respectively. This implies that the algorithm is both reputation-

aware and fee-aware. In addition, the algorithm is damage-

aware as the reputation cost of the selected server is at least

k times the contract’s value.

When selection is complete, Alice contacts the selected

servers and provides them with her hash images4. In response,

every server returns a signed contract. Note that a signed

contract is only considered valid when it is presented with the

server’s preimage. To finalize the contract, Alice pays each

server to receive the server’s preimage.

Algorithm 1: A watchtower selection method.

Data: A threshold T , and a set of servers S

Result: s† ∈ S

initialization;

s† ← any member of S with reputation cost of at least

T ;

for every s ∈ S do

if (cost(s) ≥ T)& (fee(s) ≤ fee(s†) then

if (cost(s) > cost(s†) || (fee(s) < fee(s†) then

s† ← s;

end

end

end

Purchase. To purchase the server’s preimage, Alice can

use the Lightning network, or a payment channel with the

watchtower. This may seem paradoxical, as the payment

channel that Alice uses to pay the watchtower has to be

protected by a watchtower, too. To get around this issue, Alice

uses a directional payment channel to pay the watchtower. As

explained in Section II-C, Alice does not need to monitor the

blockchain for a directional payment channel, i.e., a channel

that she uses only to make payments.

To purchase the contract using a directional payment chan-

nel, Alice uses the watchtower’s hash image in her HTLC.

This, as discussed earlier, ensures that the contract and the

service fee are atomically exchanged. As soon as the payment

goes through (i.e., once Alice receives the watchtower’s preim-

age), the contract becomes valid, and Alice can go offline.

Proof-of-breach. Since the Bitcoin blockchain is public,

anyone can check if, for example, the ctx transaction has

been published. Therefore, anyone can verify whether a given

contract has been breached. In particular, a contract together

with the server’s preimage serve as a proof-of-breach. Given

a contract and a preimage, one can check whether

• the format of the proof-of-breach is valid;

4Different hash images are used for different servers.

• the contract’s signature is verified using the server’s ID;

• the hash image of the given preimage is equal to the

server’s hash image in the contract;

• ctx was published in one of the blocks that the watch-

tower was obliged to monitor;

• jtx is a valid transaction (e.g., it can spend from ctx);

• jtx was not published within the dispute period.

The proof-of-breach is valid if and only if all the above

conditions hold. Supplementary data such as the Merkle proof

of the existence of ctx can be appended to a proof-of-breach

to assist light clients (e.g., app-based mobile clients) with

the verification process5. This reduces the verification process

to a few signature verification (e.g., checking the server’s

signature), a few hash computations (e.g., to verify a Merkle

proof), and some simple format checking (e.g., checking the

format of the contract).

Settlement. The victim of a contract breach may settle with

the defaulting server. This can be done readily by atomically

exchanging the client’s preimage for cryptocurrency.

VII. RELATED WORK

A. Reputation systems

Different reputation systems use different methods to cal-

culate reputation. We classify these methods into fact-based,

and review-based methods. Fact-based methods calculate the

reputation of a party by solely taking the activities of the

party as input. Review-based methods, however, calculate the

reputation of a party using reviews the party receives from

other parties.

Fact-based methods. These methods evaluate the perfor-

mance of a party using a predefined function that takes the

party’s activities as input [12]–[15], [16]–[18]. Therefore, in

fact-based methods, the reputation of a party is only a function

of its activities. For example, in [12] the reputation of a party

is increased or decreased based on the value of transactions on

which the party was honest or dishonest, respectively. Another

example is CrowdBC [13], a reputation system with two types

of parties: requester and worker. A requester is a party that

offers a task, while a worker is a party that performs tasks to

improve its reputation. In CrowdBC, a requester and a worker

negotiate and generate a smart contract. This contract has

an evaluation-function that evaluates the performance of the

worker. CrowdBC uses the output of this evaluation-function

as well as the average reputation of all other workers to

calculate the reputation of the worker.

Review-based methods. In this class, reputation of a party

depends on the reviews and scores it receives from other

parties [19]–[21]. For example, in online shopping stores such

as eBay and Amazon, buyers can review and rate sellers

and items. These rates together represent the reputation of

sellers and items. Another example is Kudos [21], which is an

educational reputation currency in a blockchain that records

5To show that jtx does not exist, the Merkle proof of the existence of
a transaction (other than jtx) that spends from ctx can be provided. This
proves that jtx does not exist because at most one transaction can spend the
output of ctx.

intellectual efforts, and related reputation rewards. Academic

people and institutions that award certificates or verify in-

novations are parties of Kudos. When a person completes a

certificate, their institution sends them some amount of Kudos

based on their review. In this system, the amount of Kudos a

party has represents the reputation of the party.

B. Proof of work

Dwork and Naor [3] introduced the concept of proof-of-

work in 1992. Motivated to combat junk emails, they proposed

to require users to compute a moderately hard function of

their messages and some additional information in order to

send their messages. They called these functions pricing

functions, and introduced several of them in their work. In

1997, Back [1] proposed Hashcash proof-of-work system to

deter email spams, and denial-of-service attacks. The Hashcah

system is used today as part of consensus protocols in many

blockchains, including Bitcoin [22].

In addition to combating denial-of-service attacks (e.g., [2]),

proof-of-work has been used to mitigate Sybil attacks [1],

[3], [23]–[25], protect peer-to-peer resource sharing [26], and

reward well-behaving users [27]. For instance, in [27], the

authors proposed a micropayment method to reward Tor relay

operators. In the Tor network, selfish clients may utilize

the shared bandwidth of Tor relays without contributing any

resources to the system in return. To mitigate such selfishness,

Tor clients must submit proof-of-work shares, which Tor relays

can resubmit to a cryptocurrency mining pool instead of

paying cash directly. By analyzing the cryptocurrencies market

prices, the authors showed that their method can compensate

for a significant part of the Tor relay operator’s expenses.

C. Payment channels and watchtower

Payment channels were first introduced by Satoshi

Nakamoto [28]. These channels first emerged as unidirec-

tional for one-way payments [29], then transitioned into bidi-

rectional channels to support two-way payments. The two

common bidirectional payment channels are the Lightning

Network [5] and the Raiden Network [30] which operate on

Bitcoin and Ethereum blockchain [31], respectively. There are

several implementations of the Lightning network, including

C-lightning [32], Eclair [33], and LND [34].

To secure payment channels, users must frequently be online

and watch the blockchain to protect their funds. It is because

one party may publish an old commitment transaction while

the other party is offline. Dryja [9] suggested that users

who decide to go offline for an extended period of time

delegate the task of watching the blockchain to third parties.

Hertig [4] called these third parties watchtowers. Designing a

secure, efficient, and decentralized watchtower protocol is a

challenging task.

McCorry et al. proposed Pisa [6], a protocol that employs

third parties called custodian to protect Sprites channels [7].

In Pisa, users pay their custodians every time they make a

transaction on the channel. On the other hand, custodians lock

a collateral fund, which they lose if they misbehave. Avarikioti

et al. proposed the DCWC protocol [8], in which full nodes

can act as a watchtower for multiple channels. Unlike Pisa,

in DCWC, a watchtower gets paid only when it catches a

fraud. In another research work, Avarikioti et al. presented

BRICK [35], a protocol that detects and prevents fraud before

it appears on the blockchain. To this end, BRICK employs a

committee of third parties called Wardens. Wardens confirm

the validity of each state channel and make sure that only the

correct state is published in the blockchain when a dispute

occurs. The authors in [36] proposed Outpost, a lightweight

structure for watchtower that encodes justice transactions

within commitment transactions rather than storing them in the

watchtower. This construction saves an order of magnitude in

storage over existing watchtower designs. Finally, Avarikioti

et al. extended the Lightning network and introduced Cerberus

Channels [37]. They motivated watchtowers to work honestly

by rewarding them for any update on Cerberus Channels and

forcing them to pay a penalty for any fraud.

VIII. CONCLUSION

In this paper, we proposed a proof-of-work based reputation

system to incentivize well-behaviour and stimulate competi-

tion in online marketplaces. An advantage of our system is

that it does not rely on any blockchain or smart contracts

to, for example, punish misbehaviour. Instead, it stores a

proof of misbehaviour as a record in a distributed storage,

which is only required to store each record in at least one

node. This is an easy requirement to achieve since for each

record, there is at least one party who is strongly motivated to

store and (re)distribute it. Finally, to showcase our reputation

system, we designed an open market of watchtowers. Our

reputation system motivates watchtowers not only to behave

according to their obligation but also compete with each other

by progressively improving their reputation and by reducing

their service fees.

Future research. Our proposed system is flexible, and

can be customized to achieve a specific need. For instance,

the system does not impose any specific selection method.

One can, therefore, design a customized selection method to

achieve a certain objective in the market.

Another possible future research is to relax the system

reliance on the security parameter k. One approach is to

ask clients to publish a digest of their ongoing committed

contracts. This way, a new client can, for example, avoid

a server whose total commitment value is greater than its

reputation cost. Fortunately, clients have incentive to ask

servers to sign such digests. They also have incentive to

provide these digests to other servers. It is because a client

does not want its server to over-commit as it increases the

risk of a successful bribery. Also, a server has an incentive to

record the digests of other servers, as these digests can show a

potential customer that other servers have already committed

to many contracts (another means to attract a customer).

REFERENCES

[1] A. Back, “A partial hash collision based postage scheme,” Retrieved

December, vol. 29, p. 2018, 1997.

[2] D. Mankins, R. Krishnan, C. Boyd, J. Zao, and M. Frentz, “Mitigating
distributed denial of service attacks with dynamic resource pricing,”
in 17th Annual Computer Security Applications Conference (ACSAC
December 2001). IEEE Computer Society, 2001, pp. 411–421.
[Online]. Available: https://doi.org/10.1109/ACSAC.2001.991558

[3] C. Dwork and M. Naor, “Pricing via Processing or Combatting Junk
Mail,” in 12th Annual International Cryptology Conference 1992,
E. F. Brickell, Ed., vol. 740. Springer, 1992, pp. 139–147. [Online].
Available: https://doi.org/10.1007/3-540-48071-4 10

[4] A. Hertig, “Bitcoin Lightning Fraud? Laolu
Is Building a ‘Watchtower’ to Fight It,”
https://www.coindesk.com/laolu-building-watchtower-fight-bitcoin-lightning-fraud,
Last Accessed: 2018-02-22.

[5] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” 2016.

[6] P. McCorry, S. Bakshi, I. Bentov, S. Meiklejohn, and A. Miller,
“Pisa: Arbitration Outsourcing for State Channels,” in Proceedings

of the 1st ACM Conference on Advances in Financial

Technologies, AFT. ACM, 2019, pp. 16–30. [Online]. Available:
https://doi.org/10.1145/3318041.3355461

[7] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry,
“Sprites and State Channels: Payment Networks that Go Faster
Than Lightning,” in Financial Cryptography and Data Security -

23rd International Conference, FC, I. Goldberg and T. Moore,
Eds., vol. 11598. Springer, 2019, pp. 508–526. [Online]. Available:
https://doi.org/10.1007/978-3-030-32101-7 30

[8] G. Avarikioti, F. Laufenberg, J. Sliwinski, Y. Wang, and R. Watten-
hofer, “Towards Secure and Efficient Payment Channels,” arXiv preprint
arXiv:1811.12740, 2018.

[9] T. Dryja and S. B. Milano, “Unlinkable outsourced channel
monitoring,” Talk transcript, 2016. [Online]. Available:
https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-monitoring/

[10] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. E.
Kosba, A. Miller, P. Saxena, E. Shi, E. G. Sirer, D. Song, and
R. Wattenhofer, “On Scaling Decentralized Blockchains,” in Financial

Cryptography and Data Security - FC, J. Clark, S. Meiklejohn,
P. Y. A. Ryan, D. S. Wallach, M. Brenner, and K. Rohloff,
Eds., vol. 9604. Springer, 2016, pp. 106–125. [Online]. Available:
https://doi.org/10.1007/978-3-662-53357-4 8

[11] C. Decker and R. Wattenhofer, “A Fast and Scalable Payment
Network with Bitcoin Duplex Micropayment Channels,” in
Stabilization, Safety, and Security of Distributed Systems - 17th

International Symposium, SSS, A. Pelc and A. A. Schwarzmann,
Eds., vol. 9212. Springer, 2015, pp. 3–18. [Online]. Available:
https://doi.org/10.1007/978-3-319-21741-3 1

[12] C. Huang, Z. Wang, H. Chen, Q. Hu, Q. Zhang, W. Wang, and
X. Guan, “RepChain: A Reputation based Secure, Fast and High Incen-
tive Blockchain System via Sharding,” arXiv preprint arXiv:1901.05741,
2019.

[13] M. Li, J. Weng, A. Yang, W. Lu, Y. Zhang, L. Hou, J. Liu, Y. Xiang,
and R. H. Deng, “CrowdBC: A Blockchain-Based Decentralized
Framework for Crowdsourcing,” IEEE Transactions on Parallel and

Distributed Systems, vol. 30, no. 6, pp. 1251–1266, 2019. [Online].
Available: https://doi.org/10.1109/TPDS.2018.2881735

[14] M. Nojoumian, A. Golchubian, L. Njilla, K. Kwiat, and C. Kamhoua,
“Incentivizing blockchain miners to avoid dishonest mining strategies by
a reputation-based paradigm,” in Science and Information Conference.
Springer, 2018, pp. 1118–1134.

[15] M. Orlovsky and A. Sobol, “ERC-1329: Inalienable Reputation Token,”
https://github.com/ethereum/EIPs/issues/1329, accessed: 2020-08-19.

[16] T. Salman, R. Jain, and L. Gupta, “A Reputation Management
Framework for Knowledge-Based and Probabilistic Blockchains,” in
IEEE International Conference on Blockchain. IEEE, 2019, pp. 520–
527. [Online]. Available: https://doi.org/10.1109/Blockchain.2019.00078

[17] J. Yu, D. Kozhaya, J. Decouchant, and P. J. E. Verı́ssimo,
“RepuCoin: Your Reputation Is Your Power,” IEEE Transactions on
Computers, vol. 68, no. 8, pp. 1225–1237, 2019. [Online]. Available:
https://doi.org/10.1109/TC.2019.2900648

[18] Q. Zhuang, Y. Liu, L. Chen, and Z. Ai, “Proof of Reputation: A
Reputation-based Consensus Protocol for Blockchain Based Systems,”

in Proceedings of the International Electronics Communication Confer-

ence, 2019, pp. 131–138.
[19] R. Dennis and G. Owen, “Rep on the block: A next

generation reputation system based on the blockchain,” in 10th

International Conference for Internet Technology and Secured

Transactions, ICITST. IEEE, 2015, pp. 131–138. [Online]. Available:
https://doi.org/10.1109/ICITST.2015.7412073

[20] A. Schaub, R. Bazin, O. Hasan, and L. Brunie, “A Trustless
Privacy-Preserving Reputation System,” in ICT Systems Security
and Privacy Protection - 31st IFIP TC 11 International

Conference, SEC, J. Hoepman and S. Katzenbeisser, Eds.,
vol. 471. Springer, 2016, pp. 398–411. [Online]. Available:
https://doi.org/10.1007/978-3-319-33630-5 27

[21] M. Sharples and J. Domingue, “The Blockchain and Kudos:
A Distributed System for Educational Record, Reputation and
Reward,” in 11th European Conference on Technology Enhanced
Learning, EC-TEL, K. Verbert, M. Sharples, and T. Klobucar,
Eds., vol. 9891. Springer, 2016, pp. 490–496. [Online]. Available:
https://doi.org/10.1007/978-3-319-45153-4 48

[22] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash system,”
Working Paper, 2008.

[23] M. Baza, M. Nabil, N. Bewermeier, K. Fidan, M. M. A. A. Mahmoud,
and M. M. Abdallah, “Detecting Sybil Attacks using Proofs of Work and
Location in VANETs,” IEEE Transactions on Dependable and Secure

Computing, 2020.
[24] N. Borisov, “Computational Puzzles as Sybil Defenses,” in

Sixth IEEE International Conference on Peer-to-Peer Computing
(P2P), A. Montresor, A. Wierzbicki, and N. Shahmehri, Eds.
IEEE Computer Society, 2006, pp. 171–176. [Online]. Available:
https://doi.org/10.1109/P2P.2006.10

[25] H. Rowaihy, W. Enck, P. D. McDaniel, and T. L. Porta,
“Limiting Sybil Attacks in Structured P2P Networks,” in 26th

IEEE International Conference on Computer Communications

INFOCOM 2007. IEEE, 2007, pp. 2596–2600. [Online]. Available:
https://doi.org/10.1109/INFCOM.2007.328

[26] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer, “Karma: A secure
economic framework for peer-to-peer resource sharing,” in Workshop on

Economics of Peer-to-peer Systems, vol. 35, no. 6, 2003.
[27] A. Biryukov and I. Pustogarov, “Proof-of-Work as Anonymous

Micropayment: Rewarding a Tor Relay,” in 19th International

Conference on Financial Cryptography and Data Security FC 2015,
R. Böhme and T. Okamoto, Eds., vol. 8975. Springer, 2015, pp. 445–
455. [Online]. Available: https://doi.org/10.1007/978-3-662-47854-7 27

[28] M. Hearn, “Anti DoS for tx replacement,” bitcoin-dev mailing list, 2013.
[29] J. Spilman, “Anti DoS for tx replacement,” bitcoin-dev mailing list,

2013.
[30] “Raiden Network,” https://raiden.network/ , 2018, Last Accessed: 2020-

08-19.
[31] G. Wood et al., “Ethereum: A secure decentralised generalised trans-

action ledger,” in Ethereum project yellow paper, vol. 151, 2014, pp.
1–32.

[32] Blockstream, https://github.com/ElementsProject/lightning/ , Last Ac-
cessed: 2020-08-19.

[33] Eclair, https://github.com/ACINQ/eclair , Last Accessed: 2020-08-19.
[34] “Lightning Labs,” https://github.com/lightningnetwork/lnd, Last Ac-

cessed: 2020-08-19.
[35] G. Avarikioti, E. K. Kogias, and R. Wattenhofer, “Brick: Asynchronous

State Channels,” arXiv preprint arXiv:1905.11360, 2019.
[36] M. Khabbazian, T. Nadahalli, and R. Wattenhofer, “Outpost:

A Responsive Lightweight Watchtower,” in Proceedings of the

1st ACM Conference on Advances in Financial Technologies,

AFT 2019. ACM, 2019, pp. 31–40. [Online]. Available:
https://doi.org/10.1145/3318041.3355464

[37] Z. Avarikioti, O. S. T. Litos, and R. Wattenhofer, “Cerberus channels:
Incentivizing watchtowers for bitcoin,” in 24th International Conference

on Financial Cryptography and Data Security, FC, J. Bonneau and
N. Heninger, Eds., vol. 12059. Springer, 2020, pp. 346–366. [Online].
Available: https://doi.org/10.1007/978-3-030-51280-4 19

https://doi.org/10.1109/ACSAC.2001.991558
https://doi.org/10.1007/3-540-48071-4_10
https://www.coindesk.com/laolu-building-watchtower-fight-bitcoin-lightning-fraud
https://doi.org/10.1145/3318041.3355461
https://doi.org/10.1007/978-3-030-32101-7_30
https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-monitoring/
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1109/TPDS.2018.2881735
https://github.com/ethereum/EIPs/issues/1329
https://doi.org/10.1109/Blockchain.2019.00078
https://doi.org/10.1109/TC.2019.2900648
https://doi.org/10.1109/ICITST.2015.7412073
https://doi.org/10.1007/978-3-319-33630-5_27
https://doi.org/10.1007/978-3-319-45153-4_48
https://doi.org/10.1109/P2P.2006.10
https://doi.org/10.1109/INFCOM.2007.328
https://doi.org/10.1007/978-3-662-47854-7_27
https://raiden.network/
https://github.com/ElementsProject/lightning/
https://github.com/ACINQ/eclair
https://github.com/lightningnetwork/lnd
https://doi.org/10.1145/3318041.3355464
https://doi.org/10.1007/978-3-030-51280-4_19

	I Introduction
	II Background
	II-A Hashcash
	II-B Payment channels
	II-C Watchtowers
	II-D The Lightning network

	III The proposed reputation system
	III-A System components
	III-B Interactions
	III-C Protocol

	IV Adversarial model
	V Security Analysis
	VI A reputation-based market of watchtowers
	VII Related work
	VII-A Reputation systems
	VII-B Proof of work
	VII-C Payment channels and watchtower

	VIII Conclusion
	References

