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Abstract. The Fair Data Exchange (FDE) protocol (CCS’24) achieves
atomic, pay-per-file exchange with a constant on-chain footprint, but
existing implementations do not scale: proof verification, for instance,
can take hours even for files of only tens of megabytes.
In this work, we present two FDE implementations: VECK+

EL and VECK⋆
EL.

VECK+
EL reduces client-side verification to O(λ)—independent of file size—

where λ is the security parameter. Concretely, VECK+
EL brings verification

time to ≈ 1 s on a commodity desktop for any file size.
VECK+

EL also significantly reduces proof generation time by limiting ex-
pensive range proofs to a Θ(λ)-sized subset of the file. This improvement
is especially beneficial for large files, even though proof generation and
encryption are already precomputable and highly parallelizable on the
server: for a 32MiB file, for instance, proof generation time drops from
≈ 6,295 s to ≈ 4.8 s (≈ 1,300× speed-up).
As in the existing ElGamal implementation, however, VECK+

EL retains
exponential ElGamal over the full file. Consequently, the client must per-
form ElGamal decryption and download ciphertexts that are ≳ 10× the
plaintext size. We address both drawbacks in the second implementation,
VECK⋆

EL: we replace bulk ElGamal encryption with a fast, hash-derived
mask and confine public-key work to a Θ(λ) sample tied together with
a file-size-independent zk-SNARK, adding < 0.1 s to verification in our
prototype. Importantly, this also reduces the communication overhead
from ≳ 10× to < 50%. Together, these changes yield plaintext-scale per-
formance.
Finally, we bridge Bitcoin’s secp256k1 and BLS12-381 with a file-size-
independent zk-SNARK to run FDE fully off-chain over the Lightning
Network, reducing fees from ≈ $10 to <$0.01 and payment latency to a
few seconds.

1 Introduction

Digital commerce increasingly revolves around the one-shot sale of large digital
assets—scientific data sets, proprietary machine-learning weights, high-resolution
media, even genomic archives—between parties with no prior trust relation-
ship. Ensuring that the buyer actually receives the promised file while the seller
simultaneously receives payment is therefore a foundation stone of the data-
driven economy. Traditional escrow or licensing services resolve this tension by
inserting costly legal or institutional intermediaries; blockchain-based atomic
fair-exchange protocols aim to provide the same fairness guarantee with only a
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smart contract as referee. Achieving that goal without inflating on-chain fees or
forcing the parties through many interactive rounds, however, remains challeng-
ing once file sizes grow into the multi-megabyte range.

Prominent blockchain-based fair exchange protocols—FairSwap [1],
FileBounty [3], and FairDownload [2]—follow a dispute-driven model in which
misbehavior is resolved through explicit on-chain arbitration. FairSwap requires
both parties to remain online during a complaint window, with buyers provid-
ing Merkle proofs of misbehavior. FileBounty supports dispute resolution at any
point using zk-SNARKs, but assumes partial downloads have proportional util-
ity. FairDownload uses off-chain exchange of signed chunks and resolves disputes
via O(log k) Merkle proofs.

The FDE protocol [6] eliminates dispute timers and achieves constant-size on-
chain communication. The seller posts a KZG polynomial commitment [4] to the
data together with a constant-size Verifiable Encryption of Committed Knowl-
edge (VECK) proof showing that the ciphertexts sent to the buyer correctly
encrypt the committed evaluations. The buyer verifies this proof, escrows the
payment on-chain, and later decrypts using a key posted by the seller—without
any dispute phase.

A main target application is Ethereum’s ProtoDanksharding data-availability
layer. After blob data expires from the L1 chain, archival nodes may continue
storing it while the chain retains only a short KZG commitment [6]. A user who
later wishes to recover the blob runs an FDE instance with such a node: the node
uses VECK to prove that its encrypted file is consistent with the commitment,
the user escrows payment on-chain, and the node is paid only upon revealing
the decryption key, yielding a trust-minimized market for historical blob data.

A primary obstacle to practical FDE deployment is computational overhead.
In the implementation of [6], verifying the ElGamal-based VECK proof for a
128KiB file (i.e., 4096 BLS12-381 field elements) takes about 34.15 s. On our
hardware, the same verification completes in roughly 8.84 s. Over the range of
file sizes we tested, verification time grows essentially linearly in the number of
elements; under this scaling, verification would take on the order of 2.5 hours
for a 128MiB file and about 20 hours for a 1GiB file.

Communication overhead further compounds the challenge: the ElGamal-
based FDE implementation expands transmitted data by about 10× relative to
plaintext, which is prohibitive for large-file transfers [6].

Our contributions. We make FDE practical for large files by proposing
two implementations:

(1) Verification in O(λ). Our first implementation reduces client-side verifi-
cation to O(λ), independent of file size, bringing verification down to about one
second on commodity hardware. It also substantially lowers prover work, but
it retains exponential ElGamal encryption: encryption time is unchanged and
bandwidth remains about 10×. The upside is that proof generation is server-side,
precomputable, and parallelizable across cores.

(2) Near-plaintext exchange. Our second implementation replaces expensive
ElGamal encryption/decryption with a lightweight hash-derived mask, using
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public-key operations only on a Θ(λ) sample tied together with a file-size-
independent zk-SNARK. This not only makes encryption/decryption extremely
fast, but also eliminates the bandwidth bloat from ElGamal. The cost is a fixed,
file-size-independent overhead of about 0.1 s in verifier time and about 10 s in
prover time (on 8 cores) due to the zk-SNARK.

Beyond the above, we resolve the secp256k1↔BLS12-381 mismatch with a
compact, file-size-independent zk-SNARK that bridges Bitcoin adaptor signa-
tures to our proofs. This enables fully off-chain execution over the Lightning
Network, cutting fees from ∼ $10 to < $0.01 and latency from tens of minutes
to ≈ 1 s.

2 Background

2.1 Notation and Definitions

Let λ ∈ N denote the security parameter. A non-negative function σ(λ) is said
to be negligible if, for every polynomial p(λ), there exists a sufficiently large λ0

such that for all λ ≥ λ0: σ(λ) ≤ 1
p(λ) .

For a random variable x, we write x ←R X to indicate that x is drawn
uniformly at random from the set X. Throughout this paper, we denote by Fp

the finite field of prime order p. We let Fp[X] represent the set of all univariate
polynomials with coefficients in Fp.

We work with elliptic-curve groups G1, G2, and a target group GT , each
of prime order p, and a bilinear pairing e : G1 × G2 → GT with the usual
properties. We instantiate these groups on the pairing-friendly curves BLS12-381
and BLS12-377; the corresponding subgroup orders are ≈ 255-bit and 253-bit
primes, respectively. Both target the ≈ 128-bit security level.

For a set S and a function ϕ(X) ∈ Fp[X], ϕS(X) denotes the minimal-degree
polynomial in Fp[X] satisfying ϕS(i) = ϕ(i) for all i ∈ S. Additionally, define

VS(X) :=
∏
i∈S

(X − i).

2.2 KZG Polynomial Commitments

The KZG polynomial commitment scheme [4] provides a cryptographic method
for succinctly committing to polynomials and efficiently generating evaluation
proofs. It leverages pairing-based cryptography to achieve constant-size commit-
ments and evaluation proofs, independently of the polynomial degree. Formally,
KZG consists of the following algorithms:

– Setup(1λ, n) → crs: generates G: elliptic-curve groups G1, G2, GT of prime
order p ≥ 22λ, with generators g1 ∈ G1, g2 ∈ G2, gT ∈ GT , and a bilinear
pairing map e : G1×G2 → GT . Samples a uniformly random secret τ ←R Fp

and publish
crs =

(
G, {gτ

i

1 }ni=1, {gτ
i

2 }ni=1

)
.
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– Commit(crs, ϕ) → C: Given the crs and the coefficients of ϕ(X) ∈ Fp[X],
output the commitment C = g

ϕ(τ)
1 .

– Open(crs, ϕ, i)→ π: Given public parameters crs, polynomial ϕ(X) ∈ Fp[X],
and an evaluation point i, the prover outputs the opening proof:

π = g
ϕ(τ)−ϕ(i)

τ−i

1 ∈ G1.

– Verify(crs, Cϕ, i, ϕ(i), π)→ 0/1: To verify an opening, the verifier checks the
pairing equation:

e(Cϕ/g
ϕ(i)
1 , g2)

?
= e(πi, g

τ−i
2 ),

and outputs 1 if it holds, otherwise 0.
– batchOpen(crs, ϕ, S) → π: Given public parameters crs, polynomial ϕ(X),

and multiple distinct evaluation points S, the prover computes the evalua-
tions {ϕ(i)}i∈S and produces a single aggregated proof: π = g

q(τ)
1 , where

q(X) =
ϕ(X)− ϕS(X)

VS(X)
.

– batchVerify(crs, Cϕ, S, {ϕ(i)}i∈S , π)→ 0/1: The verifier efficiently checks the
aggregated proof π by verifying the following pairing equation:

e
(
Cϕ/g

ϕS(τ)
1 , g2

)
?
= e

(
π, g

VS(τ)
2

)
.

The verifier outputs 1 if this equation holds and 0 otherwise.

2.3 FDE Protocol

FDE is a blockchain-based protocol which enables a storage server and a client
to atomically exchange data for payment. Atomicity guarantees that the server
receives payment if and only if the client obtains the promised data. The FDE
protocol leverages the KZG polynomial commitment scheme, chosen due to its
constant-size commitments and efficient batchable opening proofs, making it
particularly suitable for scenarios where clients may retrieve subsets of data. Ad-
ditionally, KZG commitments are already widely adopted in blockchain ecosys-
tems, notably in Ethereum’s Danksharding for data availability, making FDE
naturally compatible with existing infrastructure.

In the FDE protocol, data is represented as evaluations of a polynomial ϕ(·) of
degree ℓ ≤ n, that is as {ϕ(i)}ℓi=0. The server first publishes a public verification
key vk to a blockchain smart contract, alongside specific transaction details such
as the agreed price and the client’s blockchain address (step 1). Off-chain, the
server then sends the encrypted evaluations {cti}ℓi=0 of each data point {ϕ(i)}ℓi=0

to the client. These ciphertexts are accompanied by a cryptographic proof show-
ing that each ciphertext cti correctly encrypts the corresponding polynomial
evaluation ϕ(i) committed to by a KZG polynomial commitment Cϕ, under
a secret decryption key sk that matches the previously submitted verification
key vk (step 2).
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Upon receiving and verifying these ciphertexts and associated proofs, the
client locks the agreed-upon funds in the blockchain smart contract (step 3).
The server subsequently can claim these funds only by revealing the correct
decryption key sk that corresponds to the public verification key vk (step 4). After
the server publishes the decryption key, the client retrieves it from the blockchain
(step 5), allowing immediate decryption of the ciphertexts and recovery of the
original committed data (step 6). If the server fails to reveal the secret key
within a specified timeout, the client recovers the funds locked in the contract,
thus preserving atomicity.

FDE satisfies three critical properties: correctness (honest parties always suc-
ceed), client-fairness (the server obtains payment only if the client receives the
data), and server-fairness (the client learns nothing about the data unless the
server is paid).

2.4 Verifiable Encryption under Committed Key (VECK)

At the heart of the FDE protocol lies a novel cryptographic primitive called
VECK. At a high level, VECK enables a prover (in our context, the server) to
demonstrate that a set of ciphertexts indeed encrypts evaluations of a polynomial
at specific points, using an encryption key consistent with a publicly commit-
ted verification key. Concretely, VECK allows efficient verification of ciphertext
correctness against a polynomial commitment without revealing the underlying
plaintext evaluations or the encryption key itself. This construction ensures that
the verifier (client) learns no additional information beyond the correctness of
ciphertexts until the prover reveals the corresponding decryption key.

Formal description. Let (Setup,Commit) be a non-interactive binding com-
mitment scheme, where Setup(1λ, n)→ crs generates a public common reference
string, and Commit(crs, w ∈ W ) → Cw generates a commitment to w. A non-
interactive VECK scheme for a class of functions F = {F : W → V } is defined
as follows [6]:

– VECK.Gen(crs) → pp: A PPT algorithm that, given the crs, outputs pa-
rameters pp and defines relevant spaces. The parameters pp are implicitly
provided to subsequent algorithms.

– VECK.Enc(F,Cw,w) → (vk, sk, ct, π): A PPT algorithm run by the server
that takes (F,Cw,w) and outputs a verification key vk, a decryption key sk
and the encryptions ct of F (w), as well as a proof π.

– VECK.Verct(F,Cw, vk, ct, π) → {0, 1}: A deterministic polynomial-time algo-
rithm executed by the client that returns either accept or reject.

– VECK.Verkey(vk, sk) → {0, 1}: A deterministic polynomial-time algorithm
executed by the blockchain or a trusted third party to verify the validity
of the secret key.

– VECK.Dec(sk, ct) → v/⊥: A deterministic polynomial-time algorithm exe-
cuted by the client that outputs a value in V or a failure symbol ⊥.

Security notions. Following Tas et al. [6], we say that a VECK scheme is
secure if it satisfies correctness, soundness, and (computational) zero-knowledge
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as defined there (Definition 3.1). Informally, correctness requires that honestly
generated ciphertexts and proofs always verify and decrypt to F (w); sound-
ness rules out any PPT adversary that can produce accepting ciphertexts whose
decryption is inconsistent with the committed data; and computational zero-
knowledge guarantees that the ciphertext, verification key, and proof reveal no
additional information about w beyond F (w). In Theorems 1 and 3 we show
that our concrete constructions VECK+

EL and VECK⋆
EL satisfy these notions, and

hence are secure VECK instantiations in the sense of Tas et al. [6].

2.5 Reed–Solomon Codes: High-Level Intuition

We briefly recall the coding-theoretic intuition underlying our constructions and
refer to Appendix A for a more formal treatment.

Let ϕ(X) ∈ Fp[X] be a polynomial of degree at most ℓ encoding the file.
A basic fact is that ϕ is uniquely determined by its evaluations at any ℓ + 1
distinct points: given {ϕ(i)}i∈T for a set T of size |T | = ℓ+1, one can efficiently
interpolate ϕ.

Reed–Solomon (RS) codes formalize the case where we evaluate ϕ on a larger
domain. Fix m ≥ ℓ and consider the evaluation points [m] = {0, 1, . . . ,m}. The
associated RS codeword is the vector(

ϕ(0), ϕ(1), . . . , ϕ(m)
)
∈ Fm+1

p .

Standard RS decoding algorithms can still efficiently recover ϕ from these m+1
symbols even if up to

t ≤
⌊
(m− ℓ)/2

⌋
entries are arbitrarily corrupted (and we do not know which ones).

In practice, it is cheaper to first detect whether any corruption occurred and
to invoke full RS decoding only when necessary. This detect-then-correct pattern
is exactly what we exploit later in our constructions.

For fixed code parameters (ℓ,m, t) as above, we model RS decoding via two
black-box algorithms. The decoder RS.Dec : Fm+1

p → Fp[X]≤ℓ ∪ {⊥} is any
deterministic RS decoder that, on input a word y, returns the (unique) degree-
≤ ℓ polynomial within Hamming distance at most t of y, if it exists, and ⊥
otherwise. The detector RS.Det : Fm+1

p → {0, 1} is defined by RS.Det(y) :=
1[RS.Dec(y) ̸= ⊥]. In the VECK constructions we simply treat RS.Det and
RS.Dec as such black-box subroutines.

3 High-Level Overview of Our VECK Constructions

Recall from Tas et al. [6] that VECK provides a way for a server to prove that
a ciphertext vector encrypts evaluations of a committed polynomial, under a
decryption key whose verification key has been posted to the blockchain. Their
ElGamal-based VECK instantiation already gives a constant-size proof, but both
the public-key work and the ciphertext size scale linearly with the file length:
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every polynomial evaluation is encrypted under exponential ElGamal and par-
ticipates in the proof. As a result, client-side verification is linear in the number
of data points and the transmitted data is roughly 10× the plaintext size.

Our first construction, VECK+
EL, keeps the same ElGamal-based VECK build-

ing block, but uses Reed–Solomon (RS) coding to cap the verifier’s work at O(λ),
independent of file size. Intuitively, instead of treating the ℓ+1 committed eval-
uations as a flat vector, we first view them as part of a longer RS codeword of
length m ≈ β(ℓ+ 1). The server produces an ElGamal-based VECK ciphertext
for every position of this codeword, and the verifier checks correctness only on
a small, Fiat–Shamir-derived random sample SR ⊆ [m] of size R = Θ(λ). If all
sampled positions are correct, the RS code guarantees (except with negligible
probability in λ) that the entire codeword is consistent with a low-degree poly-
nomial, so the client can decode and safely recover the desired evaluations. Thus
VECK+

EL trades a modest RS redundancy for verification time that is essentially
flat in the file size, while inheriting correctness, soundness, and zero-knowledge
from the underlying ElGamal-based VECK.

Our second construction, VECK⋆
EL, aims to remove the remaining bottlenecks

of ElGamal over the full file: slow public-key decryption and ≈ 10× bandwidth
blow-up. Here the core idea is to encrypt the file symmetrically under a one-
time, hash-derived mask, and use public-key crypto only on a Θ(λ)-sized sample.
Concretely, the server samples a secret key sk, derives a pseudorandom mask
{H(sk, i)}i∈[m], and sends the masked plaintext {cti := ϕ(i) + H(sk, i)} as the
bulk ciphertext. To convince the client that this mask is well formed and tied
to the posted verification key vk = hsk, the server (i) runs the ElGamal-based
VECK of [6] on a random sample SR of positions, and (ii) produces a short
zk-SNARK showing that, on those sampled indices, the masked values and the
ElGamal ciphertexts encrypt the same underlying evaluations under the same
key. The client then only needs to verify the ElGamal-based VECK on |SR| =
Θ(λ) positions plus a single SNARK proof, both of which are independent of
the file length. At the same time, encryption and decryption on the full file
are symmetric-key fast, and the overall ciphertext size is driven by the masked
plaintext itself, leading to near-plaintext communication overhead.

4 Proposed FDE Implementations

Our primary goal is to make FDE efficient and practical for large-scale files. To
achieve this, we propose two alternative implementations of the FDE protocol:
the first leverages RS codes to substantially reduce proof complexity and run-
time, while the second further enhances computational efficiency and minimizes
communication overhead through optimized masking techniques combined with
file-size-independent zk-SNARK proofs.

These implementations rely on two novel ElGamal-based VECK protocols,
denoted as VECK+

EL and VECK⋆
EL. Before detailing these implementations, we

briefly introduce notation and definitions common to both implementations.
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4.1 Common Notation and Definitions

As in [6], we use the KZG polynomial commitment scheme, and define the func-
tion F in VECK as the polynomial evaluation at a given set of points.

Our first proposed construction, VECK+
EL, uses ElGamal-based encryption.

We choose ElGamal primarily because it achieves significantly lower bandwidth
compared to the Paillier-based VECK from [6], despite its relatively higher proof-
time complexity. This trade-off is justified in VECK+

EL, as our design already
reduces proof time, making the bandwidth savings more impactful.

Our second construction, VECK⋆
EL, also employs ElGamal-based encryption,

primarily to maintain consistency between the two implementations. However,
unlike in VECK+

EL, the bandwidth advantage of ElGamal over Paillier is less
critical, as VECK⋆

EL already drastically reduces communication overhead through
optimized masking and zk-SNARK integration. Thus, in the context of VECK⋆

EL,
one might prefer Paillier encryption to leverage its slightly better computational
efficiency, as reported in [6].

Let VECKEl denote the Elgamal-based VECK protocol proposed in [6]. Since
our VECK implementations have similarities with VECKEl, instead of construct-
ing them from scratch, we strive to call VECKEl operation whenever possible
to reduce repetition of basic operations already covered in the construction of
VECKEl. Towards this end, we split the operations VECKEl.Enc → (vk, sk, ct, π)
into two sub-operations:

VECKEl.Enc1 → (vk, sk, ct) and VECKEl.Enc2 → (π, ct−).

The first sub-operation returns all outputs except the proof π, while the second
sub-operation returns only the proof along with ct−, an encryption at point −1
employed in VECKEl.Enc to assist with ciphertext verification.

Furthermore, we stipulate that if VECKEl.Dec fails to recover a particular
value (i.e., the plaintext lies outside the brute-force search range), it returns ⊥
for that specific position only, which we interpret as an erasure.

We employ RS detection and decoding as black-box subroutines defined as
follows:

RS.Det(S, {ϕ̃i}i∈S) → {0, 1} and RS.Dec(S′, S, {ϕ̃i}i∈S) → {ϕ(i)}i∈S′∪{⊥},

where S ⊆ Fp is an ordered set of evaluation points, S′ is the target set (typically
a subset of S), and {ϕ̃i}i∈S denotes the ordered sequence of received symbols,
which may potentially be corrupted.

Specifically, RS.Det checks whether the received sequence is a valid RS code-
word, returning 0 if it is valid and 1 otherwise. The decoding algorithm RS.Dec
takes the (potentially corrupted) received sequence and attempts to reconstruct
the polynomial evaluations at the points in the subset S′. If decoding succeeds,
it outputs the corrected evaluations {ϕ(i)}i∈S′ ; otherwise, it returns ⊥.

4.2 FDE via VECK+
EL

Recall that a polynomial ϕ(X) ∈ Fp[X] of degree at most ℓ is uniquely de-
termined by any m+1 ≥ ℓ+1 distinct evaluations, and that RS decoding still
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recovers ϕ even if up to
⌊
(m−ℓ)/2

⌋
of these evaluations are arbitrarily corrupted

at unknown positions. We exploit this redundancy by checking only a capped
number R of pseudorandomly chosen positions. If m is chosen sufficiently larger
than ℓ, then, except with probability at most ϵ, this limited check guarantees
that the number of corrupt evaluations is within the RS decoding radius, thus
ϕ (and hence the underlying file) remains recoverable.

The following lemma quantifies this trade-off by giving, for a sample size R
and target failure probability ϵ = 2−λ, a corresponding lower bound βmin(λ,R)
on the redundancy factor β (and hence on m = ⌈β(ℓ+1)⌉).
Lemma 1 (Redundancy vs. sample size). Let k := ℓ+1 and m = ⌈βk⌉ for
some β > 1. Let C ⊆ [m] be any set of corrupted positions with |C| > t :=⌊
(m− k)/2

⌋
. Let SR ⊆ [m] be a uniformly random subset of size R. Then

Pr
[
SR ∩ C = ∅

]
≤

(
β + 1

2β

)R

.

In particular, to ensure Pr
[
SR ∩ C = ∅

]
≤ 2−λ it suffices to choose

R ≥

 λ

log2

(
2β
β+1

)
 ⇐⇒ β ≥ βmin(λ,R) :=

2λ/R

2− 2λ/R
.

Proof. Let δ := |C|/m. Since |C| > t = ⌊(m− k)/2⌋, we have

δ ≥ t+ 1

m
≥ m− k + 1

2m
≥ β − 1

2β
(using m = ⌈βk⌉).

For sampling, observe that SR is obtained by choosing R indices without replace-
ment from the m positions, of which |C| = δm are corrupted. Thus the number of
corrupted indices in SR follows a hypergeometric distribution Hypergeom(N =
m,K = |C|, n = R), and in particular

Pr[SR ∩ C = ∅] = Pr[X = 0] =

(
m−|C|

R

)(
m
R

) ≤ (1− δ)R,

where the inequality uses
∏R−1

j=0
m−|C|−j

m−j ≤
(m−|C|

m

)R
= (1− δ)R. Plugging δ ≥

(β−1)/(2β) gives Pr[SR∩C = ∅] ≤
(
(β+1)/(2β)

)R. To make this at most 2−λ, it
suffices that

(
(β+1)/(2β)

)R ≤ 2−λ, which rearranges to R ≥ λ/ log2
(
2β/(β+1)

)
.

Equivalently, for a given (λ,R), β ≥ βmin(λ,R) := 2λ/R/
(
2− 2λ/R

)
.

Example 1. By Lemma 1, the minimal redundancy factor that suffices for a given
security parameter λ and sample budget R is

βmin(λ,R) =
2λ/R

2− 2λ/R
.

Note that βmin(λ,R) is strictly decreasing in R.
For λ = 128 and assuming ℓ+1 > R, plugging in R ∈ {512, 1024} gives βmin(128, 512) ≈
1.467 (overhead 46.7%) and βmin(128, 1024) ≈ 1.199 (overhead 19.9%).
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We introduce a sample budget R ∈ N and set the verifier’s sample size to

|SR| = min(ℓ+1, R).

We then choose the RS redundancy (equivalently, pick β > 1 and set m =
⌈β(ℓ+1)⌉) so that a uniform sample of size |SR| intersects any corruption set
larger than the RS correction radius except with probability at most 2−λ. By
Lemma 1, it suffices to ensure

R ≥

 λ

log2

(
2β
β+1

)
 ⇐⇒ β ≥ βmin(λ,R) :=

2λ/R

2− 2λ/R
.

(For a finite β, this requires R > λ.) Operationally:
– If ℓ+1 ≤ R: take β = 1 and m = ℓ+1 (no RS extension) and verify all ℓ+1

positions.
– If ℓ+1 > R: fix |SR| = R, choose any β ≥ βmin(λ,R), and set m = ⌈β(ℓ+1)⌉.

This caps the verifier’s cost by R while letting redundancy β be chosen to meet
a target soundness 2−λ.

Protocol outline. Given m as above, the server computes exponential ElGamal
encryptions of the m RS-extended evaluations and sends all m ciphertexts to
the client. For correctness, it proves only a Fiat-Shamir-derived subset SR ⊆ [m]
of size |SR| = min(ℓ+1, R), linking those sampled ciphertexts to the original
KZG commitment. The client verifies these |SR| checks (cost O(|SR|) ≤ O(R))
and, after payment, decrypts all m symbols. A lightweight RS syndrome test
detects any corruption; only if needed, RS decoding recovers the original ℓ+1
evaluations. Except with probability at most 2−λ, any deviation that exceeds the
RS correction radius is caught by the sample, so client verification is independent
of the file size.

In what follows we present VECK+
EL for the full-retrieval setting, where the

client requests the entire dataset (i.e., S = [ℓ]). The subset-retrieval case S ⊂
[ℓ]—which employs the same RS-based technique—is deferred to Appendix B.

When the sample budget satisfies R ≥ ℓ+1, VECK+
EL collapses to the ElGamal-

based VECKEL of Tas et al.—no RS redundancy is needed (β=1, m=ℓ+1) and
all ℓ+1 positions are verified—so we focus on the non-trivial regime R < ℓ+1.

Fiat–Shamir subset derivation. Given a hash function H modeled as a random
oracle, we define

SR ← DeriveSubsetH(C, vk, ct,m,R)

as a deterministic procedure that derives an R-element subset SR ⊆ [m] from
the transcript (C, vk, ct). For concreteness, one may implement DeriveSubsetH
as follows. For j = 1, 2, . . . query

σj := H(C, vk, ct,m,R, j) ∈ {0, 1}λ
′

and interpret σj as a candidate index in [m] using standard rejection sampling
(discarding values outside [m] and duplicates) until R distinct indices have been
collected; their set is output as SR.
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VECK+
EL: case S = [ℓ] (client requests the entire data set).

– VECK+
EL.GEN(crs) → pp: On input crs =

(
G, {gτ i

1 }ni=0, {gτ
i

2 }ni=0

)
, sample

h ←R G1 and hi ←R G1 for all i ∈ [m] ∪ {−1}, where m = ⌈β(ℓ + 1)⌉.
The values of m and β are derived from the sample budget R via Lemma 1.

– VECK+
EL.Enc(F[ℓ], Cϕ, ϕ(X))→ (vk, sk, ct, π).

1. Compute
(
vk, sk, ct

)
:= VECKEl.Enc1

(
F[m], Cϕ, ϕ(X)

)
.

2. Derive a Fiat-Shamir challenge subset SR ⊆ [m] of size |SR| = R deter-
ministically from the transcript, e.g.,

SR ← DeriveSubsetH
(
Cϕ, vk, ct, m, R

)
.

3. Compute
(
πR, ct−

)
:= VECKEl.Enc2

(
FSR

, Cϕ, ϕ(X)
)
.

4. Output
(
vk, sk, ct, π

)
with π :=

(
πR, ct−

)
.

– VECK+
EL.Verct(F[ℓ],Cϕ, vk, ct, π)→ 0/1

1. Parse π as (πR, ct−).
2. Output VECKEl.Verct(FSR

,Cϕ, vk, {cti}i∈SR
∪ ct−, πR).

– VECK+
EL.Verkey(vk, sk)→ 0/1 : For sk = s ∈ Fp, return 1 iff vk = hs.

– VECK+
EL.Dec(F[m], sk, ct)→ {ϕ(i)}i∈[ℓ].

1. Compute {ϕ̃(i)}i∈[m] := VECK.Dec(F[m], sk, ct).
2. If RS.Det([m], {ϕ̃(i)}i∈[m]) = 0 (no error detected), then output {ϕ̃(i)}i∈[ℓ].

Otherwise, run the decoding algorithm and output

RS.Dec
(
[ℓ], [m], {ϕ̃(i)}i∈[m]

)
.

Theorem 1 (Security of VECK+
EL). Fix a security parameter λ and a sample

budget R with λ < R < ℓ+1. Let

βmin(λ,R) :=
2λ/R

2− 2λ/R

and choose any redundancy β ≥ βmin(λ,R), setting m = ⌈β(ℓ+1)⌉. Let SR ⊆ [m]
be the Fiat-Shamir-derived challenge subset with |SR| = R. In the random-oracle
and algebraic-group models, VECK+

EL satisfies correctness, soundness with negli-
gible failure probability in λ, and computational zero-knowledge; hence VECK+

EL

is a secure VECK.

Proof. See Appendix C

Theorem 2 (Verification cost for full retrieval). Let S = [ℓ], and assume
the verifier derives the Fiat–Shamir challenge by incrementally hashing the ci-
phertext transcript as it is received. Then, the client-side verification VECK+

EL.Verct
runs in O(λ) time, independent of ℓ.
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Proof. In the case S = [ℓ], VECK+
EL.Verct parses the proof and invokes VECKEl.Verct

on a Fiat–Shamir-derived challenge subset SR of size |SR| = Θ(λ), together with
a constant amount of auxiliary data. The verifier VECKEl.Verct performs a num-
ber of checks (linear combinations/MSMs and a constant number of pairings)
that is linear in |SR|, and all remaining work is constant. Therefore the total
running time is O(|SR|) = O(λ).

4.3 FDE via VECK⋆
EL

While VECK+
EL already caps the verifier’s work at a small constant once the file

exceeds the sample budget, it still encrypts the entire file under exponential
ElGamal, leading to a > 10× bandwidth blowup and non-trivial client-side de-
cryption costs. To address these remaining bottlenecks, we introduce a second
instantiation, VECK⋆

EL.
Building on the RS-based approach, VECK⋆

EL adopts a two-layer design.
VECK⋆

EL first encodes with constant-rate RS and masks the entire extended
codeword using a fast, hash-derived stream (symmetric). It then select a pseudo-
random (Fiat–Shamir-derived) Θ(λ) subset of positions and encrypt only those
with exponential ElGamal. A file-size-independent zk-SNARK proves, for the
sampled positions, that the masked values and the ElGamal plaintexts are con-
sistent under the same secret key; outside the SNARK, it runs VECKEl.Verct
to check that the sampled ElGamal ciphertexts are consistent with the origi-
nal KZG commitment. This two-step consistency (as opposed to a single-step
SNARK-based consistency check) minimizes the expensive SNARK work and
improves the overall performance.

As a result, both encryption and decryption are symmetric-key fast, and
the total communication overhead falls below 50% of the plaintext for R≥512,
compared to the ∼ 10× overhead in the original FDE implementations. The
trade-off is the zk-SNARK cost: for R = 512, for example, SNARK proving
takes about 10 s and verification about 0.1 s on a 16-core machine (Figure 2).

VECK⋆
EL: case S = [ℓ] (client requests the entire data set).

– VECK⋆
EL.GEN(crs) → pp: On input crs =

(
G, {gτ i

1 }ni=0, {gτ
i

2 }ni=0

)
1, sample

random group elements with unknown discrete logarithms h ←R G1 and
hi ←R G1 for i ∈ [m] ∪ {−1}, where m := ⌈β(ℓ+ 1)⌉.

– VECK⋆
EL.Enc(F[ℓ],Cϕ, ϕ(X))→ (vk, sk, ct, π).

1. Sample s←R Fp, set sk := s, vk := hs.
2. Compute ct = {cti := ϕ(i) +H(sk, i)}i∈[m].
3. Generate the Fiat-Shamir challenge

SR = DeriveSubsetH
(
Cϕ, vk, ct,m, R

))
, where |SR| = R.

4. Compute (–, –, ct′, πR) := VECKEl.Enc
(
FSR

, Cϕ, ϕ(X)
)

— ignore the
(vk, sk) returned by VECK_El.Enc

1 Here n may be taken as small as R.
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5. Compute a zk-SNARK proof πZ for the relation R:

R =


(
vk, h, {hi}i∈SR

,
{cti}i∈SR

, {ct′i}i∈SR

)
,(

sk, {xi}i∈SR

)
∣∣∣∣∣∣∣
vk = hsk,

∀i ∈ SR : cti = xi +H(sk, i),

∀i ∈ SR : ct′i = h sk
i gxi

1

 .

6. Output (vk, sk, ct, π = (πZ, πR, ct
′))

– VECK⋆
EL.Verct(F[ℓ],Cϕ, vk, ct, π)→ 0/1

1. Parse π as (πZ , πR, ct
′).

2. Compute b1 := VECKEl.Verct(FSR
,Cϕ, vk, ct

′, πR).
3. Compute b2 := Snark.Ver(πZ).
4. Output b1 ∧ b2.

– VECK⋆
EL.Verkey(vk, sk)→ 0/1 : For sk = s ∈ Fp, return 1 iff vk = hs.

– VECK⋆
EL.Dec(F[m], sk, ct)→ {ϕ(i)}i∈[ℓ]

1. Compute the unmasked evaluations {ϕ̃(i) := cti −H(sk, i)}i∈[m].
2. If RS.Det([m], {ϕ̃(i)}i∈[m]) = 0 (no error detected), then output {ϕ̃(i)}i∈[ℓ].

Otherwise, run the decoding algorithm and output

RS.Dec
(
[ℓ], [m], {ϕ̃(i)}i∈[m]

)
.

Theorem 3 (Security of VECK⋆
EL). Fix a security parameter λ and a sample

budget R with λ < R. Choose any redundancy β ≥ βmin(λ,R), set m = ⌈β(ℓ+1)⌉,
and let the Fiat–Shamir challenge subset SR ⊆ [m] satisfy |SR| = R. Then, in
the random-oracle model and the algebraic-group model, VECK⋆

EL satisfies cor-
rectness, soundness with negligible failure probability in λ, and computational
zero-knowledge; hence VECK⋆

EL is a secure VECK.

Proof. See Appendix D

Theorem 4 (Cost of VECK⋆
EL for full retrieval). Let S = [ℓ] and let the Fiat-

Shamir challenge select a sample SR with |SR| = R = Θ(λ). Then in VECK⋆
EL,

the verifier’s time is O(λ)—independent of ℓ.

Proof. Verification performs two checks: (i) VECKEl.Verct on the R sampled po-
sitions, which is linear in |SR|, hence O(λ); and (ii) Snark.Ver(πZ), which is
constant time for succinct SNARKs whose running time is a linear function of
|SR| and is independent of ℓ Therefore, the verifier’s time is O(λ).

Figure 2 reports proving/verification times for R ∈ {256, 512, 1024} on a multi-core
CPU (Intel Core i9-13900KF, 32 GiB RAM). Using 8 cores and R = 512 (corre-
sponding to <50% bandwidth overhead), proving takes about 10 s and verifica-
tion about 0.1 s. Notably, unlike the ElGamal-based baseline, VECK⋆

EL requires no
range proofs for ElGamal plaintexts—the sampled ElGamal ciphertexts are never
decrypted—removing a major prover-side cost. Groth16 proofs over BW6-761 are
constant-size (≈288B), and both verification time and proof size are effectively
independent of the file size (they depend only on R).
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5 FDE via Payment Channels

Tas et al. [6] proposed a Bitcoin-based implementation of FDE that uses adaptor
signatures to tie the VECK decryption key to a payment. However, their concrete
VECK instantiations live on a pairing-friendly curve (e.g., BLS12-381), whereas
Bitcoin signatures and adaptor signatures are standardized on secp256k1. This
curve mismatch means their Bitcoin construction is, at present, only a high-level
template: it cannot be deployed with the primitives available on today’s Bitcoin
network.

In this section we show how to make the VECK-based FDE protocol de-
ployable on Bitcoin today. Our construction runs the payment leg over standard
Lightning Network (LN) hash time-locked contracts (HTLCs) and uses a small
zk-SNARK, in the spirit of Zero-Knowledge Contingent Payments (ZKCP) [5],
to cryptographically tie the BLS12-381 VECK decryption key to the secp256k1
secret used in the HTLC. This both resolves the curve mismatch and makes
the common case entirely off-chain, while preserving the correctness and fairness
guarantees of FDE.

Specifically, the server (prover) generates a zk-SNARK proof πt attesting
knowledge of a secret scalar sk that satisfies the following relation:

R
(
(h, vk, t), sk

)
= [vk = hsk ∧ t = H(sk)],

where h, vk, and t are publicly known parameters. Although generating the zk-
SNARK proof πt introduces computational overhead, this cost is constant with
respect to the data size and can be precomputed.

Our resulting FDE protocol operates in two steps. In step 1, The server
sends to the client the ciphertext and its proof, the value t, and the zk-SNARK
proof πt. In step 2, the client verifies all provided proofs, including πt. Upon
successful verification, the client initiates a payment via LN, using t as the hash
value in the HTLC. Due to the atomicity provided by LN, the server obtains
the payment iff it reveals the secret scalar sk, enabling the client to decrypt the
ciphertext. Crucially, this achieves atomic exchange without incurring additional
costly blockchain transactions.

6 Evaluation

We implemented VECK+
EL by forking the open-source FDE code of Tas et al. [6]2

and replacing their ElGamal-based VECKEl backend with our RS-sampled vari-
ant. We then evaluated both VECK+

EL and VECKEl on a commodity desktop
(Intel Core i9-13900KF, 32 GiB RAM). Figure 1 plots verifier and prover time
as a function of file size. As predicted by Theorem 2, the VECK+

EL verifier curve
flattens once the file size meets the sample budget (i.e., when ℓ + 1 ≥ R); for
R = 512, it stabilizes at roughly 1 s, capping client-side verification at about 1 s

2 Our modified code is available at https://github.com/SecureX-UofA/fde-plus.

https://github.com/SecureX-UofA/fde-plus
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on this machine for any file size. By contrast, both proving and verification for
VECKEl grow essentially linearly with the file size.

Figure 1 also shows the proof-generation time for VECK+
EL. Unlike verification,

proving scales with the file size.3 Even so, it substantially improves over existing
FDE implementations: on our hardware, the ElGamal baseline requires ≈ 6,295 s
to generate a proof for a 32MiB file, whereas with R = 512 our prover completes
in ≈ 4.8 s—an ∼1,300× speedup.

21 24 27 210 213 216 219 222

Data size (#BLS12-381 field element)

101

102

103

104

105

106

Ti
m

e 
(m

s)

Prover (R=256)
Prover (R=512)
Prover (R=1024)
Verifier (R=256)

Verifier (R=512)
Verifier (R=1024)
FDE Prover
FDE Verifier

Fig. 1. Proof verification and generation times in VECK+
EL and VECKEL.

VECK⋆
EL replaces ElGamal over the full file with a fast, hash-derived mask

and confines public-key work to a Θ(λ) sample. As a result, encryption and
decryption are symmetric-key fast and total communication drops to about 1.5×
the plaintext (i.e., <50% overhead) by setting R ≥ 512, down from ≳ 10× all at
the file-size independent cost of proving and verifying πZ (Step 5 of VECK⋆.Enc)

To assess the cost of proving and verifying πZ , we implemented the circuit in
gnark and used Groth16. For performance, we instantiate the statement group
as G1(BLS12-377) and prove over the matching BW6-761 outer curve (a stan-
dard 2-chain), thus elliptic-curve operations are native in the circuit. We use a
SNARK-friendly pseudorandom function (PRF)—MiMC (Minimal Multiplica-
tive Complexity)—for H(sk, i) and enforce range checks 0 ≤ sk, xi < r377. An
implementation that keeps G1 inside the SNARK is left to future work.

Figure 2 reports proving/verification times for R ∈ {256, 512, 1024} on a
multi-core CPU (Intel Core i9-13900KF, 32GiB RAM). Using 8 cores and R =
512 (corresponding to <50% bandwidth overhead), proving takes about 10 s and

3 Although the proof touches only the R sampled indices SR, the prover must in-
terpolate a polynomial of degree at most R+1 and prove its consistency with the
commitment; this consistency step grows linearly with ℓ, not with R.
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verification about 0.1 s. Notably, unlike the ElGamal-based baseline, VECK⋆
EL

requires no range proofs for ElGamal plaintexts—the sampled ElGamal cipher-
texts are never decrypted—removing a major prover-side cost. Groth16 proofs
over BW6-761 are constant-size (≈288B), and both verification time and proof
size are effectively independent of the file size (they depend only on R).
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Prover (R=256)
Prover (R=512)
Prover (R=1024)

Verifier (R=256)
Verifier (R=512)
Verifier (R=1024)

Fig. 2. SNARK proof (πZ) generation and verification times.

7 Conclusion

We revisited FDE and showed that prover and verifier time, as well as band-
width overhead, can be drastically reduced. Our first design, VECK+

EL, pairs
KZG commitments with Reed-Solomon sampling to cap client verification at
O(λ) regardless of data length; in our prototype it plateaus at ≈ 1 s once the
sample budget is met, while prover time drops by orders of magnitude (e.g.,
32MiB : 6295 s → 4.8 s). Our second design, VECK⋆

EL, removes the remain-
ing bottlenecks by masking the full file with a hash-derived one-time stream
and confining public-key work to a Θ(λ) sample tied together with a file-size-
independent zk-SNARK. This makes encryption/decryption symmetric-key fast,
reduces communication from ≳ 10× plaintext to < 1.5× (i.e., < 50% overhead),
and adds only < 0.1 s to verification and ≈ 10 s of proof generation on 8-16
cores. Finally, a compact SNARK bridge binds the committed decryption key
to a Lightning HTLC hash, enabling fully off-chain FDE with fees < $0.01 and
seconds-scale latency while preserving FDE’s constant on-chain footprint and
fairness guarantees. Taken together, these results move FDE from promising
blueprint to deployable primitive: verification is essentially constant in λ, band-
width is near-plaintext, and the remaining bottlenecks are network and storage
rather than cryptography—opening a practical path to fair, atomic, pay-per-file
exchange for large datasets at near network speed.
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Appendices

A Background on Reed–Solomon Codes

Let (a0, . . . , aℓ) ∈ Fℓ+1
p be a message encoded by the polynomial ϕ(X) =

∑ℓ
i=0 aiX

i.
Given n ≥ ℓ + 1 pairwise-distinct evaluation points α1, . . . , αn ∈ Fp, the corre-
sponding Reed–Solomon (RS) codeword is c = (ϕ(α1), . . . , ϕ(αn)) ∈ Fn

p . This
yields an (n, ℓ + 1) linear code with rate R = (ℓ + 1)/n and minimum distance
dmin = n− ℓ, capable of correcting up to t = ⌊(dmin − 1)/2⌋ symbol errors.

Fast deterministic detection via the parity check. Let H ∈ F(n−k)×n
p

be the parity-check matrix of the code (k = ℓ + 1). For a received word c =
(c1, . . . , cn), compute the syndrome vector

s = H cT ∈ Fn−k
p .

This requires only a single O(n) streaming pass. If s = 0, the word is a valid
codeword and full decoding can be skipped; otherwise the decoder is invoked.
This detect-then-correct strategy makes the common error-free case inexpensive.

Optionally, one could speed up the detection process by applying the stan-
dard random linear-combination (Freivalds) test to compress the syndrome check
to a single scalar: Fix a random non-zero vector v ∈ Fn−k

p once and pre-compute
w = vTH ∈ Fn

p . Then, in one streaming pass, compute T =
∑n

j=1 wj cj . If T = 0
we accept immediately; otherwise full decoding is performed. A non-codeword
passes this test with probability 1/p (e.g., 2−255 in the 255-bit BLS12-381 field).

B VECK+
EL for Subset Retrieval

Here we present VECK+
EL for the subset-retrieval setting S ⊂ [ℓ]. When the sample

budget satisfies R ≥ |S|, VECK+
EL collapses to the ElGamal-based VECKEl of Tas

et al. (no RS redundancy is needed); we therefore treat the non-trivial regime
R < |S|. The RS redundancy β > 1 and the code length m = ⌈β |S|⌉ are chosen
from the sample budget R and security parameter λ as in Lemma 1, ensuring
that a uniform sample SR hits any corruption set beyond the RS correction
radius except with probability at most 2−λ.

VECK+
EL: case S ⊂ [ℓ] (client requests a subset S). .

– VECK+
EL.GEN(crs) → pp: On input crs =

(
G, {gτ i

1 }ni=0, {gτ
i

2 }ni=0

)
, sample

h←R G1 and hi ←R G1 for all i ∈ [m] ∪ {−1}, where m and β is chosen
from (λ,R) via Lemma 1.

– VECK+
EL.Enc(FS , Cϕ, ϕ(X))→ (vk, sk, ct, π).

1. Sample t←R Fp

2. Set ϕ′
S(X) := ϕS(X) + t VS(X).

3. Compute CS := Commit(crs, ϕ′
S(X)).
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4. Compute (vk, sk, ct) := VECKEl.Enc1
(
F[m], CS , ϕ

′
S(X)

)
.

5. Compute πS := batchOpen
(
crs, ϕ(X)− ϕ′

S(X), S
)
.

6. Derive a Fiat-Shamir challenge subset SR ⊆ [m] of size R:

SR ← DeriveSubsetH
(
CS , vk, ct, m, R

)
.

7. Compute (πR, ct−) := VECKEl.Enc2
(
FSR

, CS , ϕ
′
S(X)

)
.

8. Output
(
vk, sk, ct, π

)
with π := (πS , πR, ct−).

– VECK+
EL.Verct(FS , Cϕ, vk, ct, π)→ 0/1.

1. Parse π as (πS , πR, ct−).
2. Compute b1 := batchVerify

(
crs, Cϕ/CS , S, 0, πS

)
.

3. Compute b2 := VECKEl.Verct
(
FSR

, CS , vk, {cti}i∈SR
∪ ct−, πR

)
.

4. Output b1 ∧ b2.

– VECK+
EL.Verkey(vk, sk)→ 0/1: For sk = s ∈ Fp, return 1 iff vk = hs.

– VECK+
EL.Dec(F[m], sk, ct)→ {ϕ(i)}i∈S .

1. Compute the received word on [m]: {ϕ̃(i)}i∈[m] := VECKEl.Dec
(
F[m], sk, ct

)
.

2. If RS.Det([m], {ϕ̃(i)}i∈[m]) = 0 (no error), output {ϕ̃(i)}i∈S . Otherwise,
decode and output

RS.Dec
(
S, [m], {ϕ̃(i)}i∈[m]

)
.

C Proof sketch of Theorem 1

Let k := ℓ+1, β > 1, m = ⌈βk⌉, and let SR ⊆ [m] be the Fiat-Shamir-derived
challenge subset with |SR| = min(k,R). The proof uses (i) polynomial and evalu-
ation binding of KZG, and (ii) the security (soundness and ZK) of the ElGamal-
based VECKEl verifier on SR, as established in the CCS’24 analysis; we merely
call that verifier on the sampled positions.

Correctness. In an honest execution, the ciphertexts encrypt the RS-extended
evaluations {ϕ(i)}i∈[m] of the committed polynomial ϕ, and the on-sample proof
on SR is accepted by VECKEl.Verct (completeness). After payment, decryption
yields a valid RS codeword; the syndrome test accepts and, if invoked, decoding
recovers the original k evaluations. Thus the client accepts and outputs the
correct values.

Soundness. Let a PPT adversary output (vk, ct, π) with VECK+
EL.Verct = 1. Let

c ∈ Fm
p be the decrypted vector. Let t = ⌊(m−k)/2⌋ be the RS correction radius.

(a) Few corruptions. If c differs from the true codeword in at most t positions,
RS decoding (recognized by a zero syndrome) returns the correct evaluations.

(b) Many corruptions. If c differs from every RS codeword in e > t positions,
then the corrupted-position fraction satisfies

δ = e
m ≥ t+1

m ≥ m−k+1
2m ≥ β−1

2β .
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In the ROM, the Fiat-Shamir subset SR is (to the adversary) indistinguishable
from a uniform subset of size |SR| chosen after ct is fixed. By Lemma 1, the
miss-probability is at most (1 − δ)|SR| ≤

(
β+1
2β

)|SR| ≤ 2−λ for our choice of R.
Conditioned on hitting a corrupted position, acceptance implies a break of either
KZG binding or VECKEl soundness on SR, both assumed secure in ROM/AGM.
Hence any accepting transcript is either correct, or breaks an underlying as-
sumption, or occurs with probability at most 2−λ.

Computational zero-knowledge. Define a simulator Sim on input Cϕ. In Hy-
brid H1, replace off-sample ciphertexts (i /∈ SR) by ElGamal encryptions of
random field elements; by DDH these are indistinguishable from encryptions of
the true values. In Hybrid H2, program the random oracle to obtain the desired
SR and replace the on-sample portion (vk, {cti}i∈SR

, πR) with the output of
the (computational) ZK simulator for VECKEl on SR. The hybrids are compu-
tationally indistinguishable; Hybrid H2 equals the simulator’s output. Therefore
(vk, ct, π) is computationally indistinguishable from real.

D Proof sketch of Theorem 3

Correctness. In an honest execution of VECK⋆
EL.Enc, the prover evaluates the

committed polynomial ϕ on [m] and forms the masked evaluations

cti = ϕ(i) +H(sk, i) for all i ∈ [m],

thus the ciphertext vector ct encodes exactly the RS-extended evaluations of
ϕ hidden under the hash-derived mask. On the Fiat–Shamir challenge subset
SR, the prover additionally runs VECKEl.Enc on the same evaluations and pro-
duces a zk-SNARK πZ certifying that the VECK ciphertexts {ct′i}i∈SR

and
the masked values {cti}i∈SR

are consistent with a single key sk and plaintexts
xi = ϕ(i). By correctness of VECKEl and completeness of the SNARK, the client-
side verification VECK⋆

EL.Verct accepts these honestly generated transcripts. After
payment, VECK⋆

EL.Dec uses the same sk to remove the mask and then applies
RS.Det/RS.Dec; by correctness of the RS code, this recovers the original evalua-
tions {ϕ(i)}i∈[ℓ]. Hence an honest client always accepts and outputs the correct
data, hence VECK⋆

EL satisfies correctness.
Soundness. Let a PPT adversary output (vk, ct, π) with

VECK⋆
EL.Verct(F[ℓ], Cϕ, vk, ct, π) = 1,

and let SR ⊆ [m] be the Fiat–Shamir challenge subset determined by (Cϕ, vk, ct,m,R).
Parse π = (πZ , πR, ct

′), where ct′ are the ElGamal ciphertexts on SR and πR is
the VECK proof.

By knowledge soundness of the zk-SNARK used in step 5 of VECK⋆
EL.Enc

and the fact that Snark.Ver(πZ) = 1, we can extract a secret key sk and values
(xi)i∈SR

such that

vk = hsk, cti = xi +H(sk, i), ct′i = hsk
i gxi

1 for all i ∈ SR.
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Thus (vk, {ct′i}i∈SR
, πR) is an accepting transcript for the ElGamal-based VECKEL

protocol on the sample SR with respect to Cϕ. By the soundness of the ElGamal-
based VECK for KZG commitments [6], we obtain xi = ϕ(i) for all i ∈ SR.
Consequently, the unmasked word c ∈ Fm

p defined by ci := cti−H(sk, i) satisfies
ci = ϕ(i) for every i ∈ SR.

Let k := ℓ + 1 and t := ⌊(m − k)/2⌋ be the RS correction radius, and let
c⋆ ∈ Fm

p be the RS codeword corresponding to the true evaluations {ϕ(i)}i∈[m].
As in Appendix B, we distinguish two cases. (a) Few corruptions. If c differs
from c⋆ in at most t positions, then RS decoding in VECK⋆

EL.Dec (recognized
by a zero syndrome) returns c⋆ and hence the correct evaluations. (b) Many
corruptions. Otherwise c differs from every RS codeword in e > t positions.
Writing δ := e/m, the same calculation as in Lemma 1 yields δ ≥ (β − 1)/(2β),
thus a uniformly random subset SR of size R hits a corrupted index except with
probability at most 2−λ. In the random-oracle model, the Fiat–Shamir subset
derived by DeriveSubsetH(Cϕ, vk, ct,m,R) is (to the adversary) indistinguishable
from such a random subset once ct is fixed, and therefore the miss probability
is still at most 2−λ.

Conditioned on SR hitting a corrupted position, there exists j ∈ SR with
cj ̸= ϕ(j), contradicting the fact that cj = ϕ(j) unless we break either KZG
binding, the soundness of the ElGamal-based VECK from [6], or the soundness of
the zk-SNARK. Hence any accepting transcript in which VECK⋆

EL.Dec outputs an
incorrect value either breaks one of these underlying assumptions or occurs with
probability at most 2−λ. This yields soundness with negligible failure probability
in λ.

Computational zero-knowledge. We show that the view (vk, ct, π) of any
PPT adversary can be efficiently simulated from the commitment Cϕ alone. De-
fine a simulator Sim on input Cϕ as follows. First sample s← Fp and set vk := hs.
Sample a random vector ct = (cti)i∈[m] ← Fm

p and program the random oracle
H so that (i) for all i ∈ [m], the values H(s, i) are independent uniform field el-
ements, and (ii) the Fiat–Shamir procedure DeriveSubsetH(Cϕ, vk, ct,m,R) out-
puts a fixed subset SR ⊆ [m] of size R. Next, invoke the computational zero-
knowledge simulator for the ElGamal-based VECKEl of Tas et al. on the re-
striction FSR

and commitment Cϕ, to obtain (ct′, πR) distributed as in a real
execution on the sampled positions SR [6]. Finally, use the standard simulator
of the zk-SNARK to generate a proof πZ for the public statement

(vk, h, {hi}i∈SR
, {cti}i∈SR

, {ct′i}i∈SR
),

and output (vk, ct, π) with π := (πZ , πR, ct
′).

Consider hybrids between a real execution of VECK⋆
EL and the output of Sim.

In Hybrid H1, we keep the ElGamal and SNARK parts as in the real scheme but
view H(s, ·) as a random function keyed by the secret s. Since s is never revealed
before the decryption phase, the values H(s, i) are uniform and independent from
the adversary’s perspective, thus each masked symbol cti = ϕ(i)+H(s, i) is itself
uniform in Fp; replacing it by an independently uniform cti does not change the
distribution. In Hybrid H2, we replace the real ElGamal transcript (ct′, πR) on
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SR with the output of the simulator for VECKEl; by the computational zero-
knowledge of VECKEl, these hybrids are computationally indistinguishable. In
Hybrid H3, we replace the real zk-SNARK proof with the simulated proof for
the same public inputs; this is indistinguishable by the zero-knowledge of the
SNARK. The final hybrid is exactly the output of Sim(Cϕ), and each transition
incurs only negligible advantage. Hence (vk, ct, π) is computationally indistin-
guishable from Sim(Cϕ), which depends on ϕ only through the commitment Cϕ.
Therefore VECK⋆

EL satisfies computational zero-knowledge.
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