
On Finding the Largest Minimum Distance of Locally
Recoverable Codes: A Graph Theory Approach

Majid Khabbaziana, Muriel Médardb

aUniversity of Alberta, Alberta, Canada
bMIT, Massachusetts, USA

Abstract

The [n, k, r]-Locally recoverable codes (LRC) studied in this work are a well-
studied family of [n, k] linear codes for which the value of each symbol can
be recovered by a linear combination of at most r other symbols. In this
paper, we study the LMD problem, which is to find the largest possible
minimum distance of [n, k, r]-LRCs, denoted by D(n, k, r). LMD can be
approximated within an additive term of one—it is known that D(n, k, r) is
equal to either d∗ or d∗ − 1, where d∗ = n − k −

⌈
k
r

⌉
+ 2. Moreover, for a

range of parameters, it is known precisely whether the distance D(n, k, r) is
d∗ or d∗−1. However, the problem is still open despite a significant effort. In
this work, we convert LMD to an equivalent simply-stated problem in graph
theory. Using this conversion, we show that an instance of LMD is at least as
hard as computing the size of a maximal graph of high girth, a hard problem
in extremal graph theory. This is an evidence that LMD—although can be
approximated within an additive term of one—is hard to solve in general. As
a positive result, thanks to the conversion and the exiting results in extremal
graph theory, we solve LMD for a range of code parameters that has not
been solved before.
Keywords: locally recoverable codes, minimum distance, distributed
storage

1. Introduction

In distributed storage systems, maintaining data availability and redun-
dancy is critical. When a storage node fails, it is essential to quickly recon-
struct the lost data block. An effective strategy involves employing erasure

Preprint submitted to Elsevier October 22, 2024

codes with low locality, allowing each block to be reconstructed by accessing
only a few other nodes.

Locally recoverable codes (LRCs) have received significant attention be-
cause of their application in distributed storage systems. The important
characteristic of LRCs that distinguishes them from other codes is their small
repair locality, a term introduced in [1, 2, 3]. An LRC with (all-symbol) re-
pair locality r is a code for which the value of every symbol of the codeword
can be recovered from values of a set of r other symbols. As a result, when a
storage node fails in distributed storage systems that uses LRC with locality
r, only r other storage nodes need to be accessed to repair the failed node.
Smaller values of r result in lower I/O complexity and bandwidth overhead to
recover a single storage node failure, the dominant failure scenario. Reducing
r, however, may come at the cost of a lower minimum distance.

Minimum distance is an important parameter of LRCs—a minimum dis-
tance of d guarantees recovery of up to d−1 storage node failures, and is one
of the main factors in determining the distributed storage reliability. There-
fore, given the code parameters n, k, and r, it is desired to find an LRC that
has the largest possible minimum distance. Motivated by this, in this work
we study the LMD problem defined below.

LMD: For integers n > k ≥ r ≥ 1, let D(n, k, r) denote the largest
possible minimum distance among all linear [n, k, r]-LRCs. Then, LMD is
defined as the problem of finding the exact value of D(n, k, r). Note that in
this definition, there is no restriction on the order of the finite field used for
code construction.

The following relationship between the minimum distance d of an LRC,
and its locality r was first derived by Gopalan et al. [1]:

d ≤ d∗ (1)

where d∗ = n − k −
⌈
k
r

⌉
+ 2. We call an LRC optimal if it meets the

bound (1) with equality. Many works have studied the design of an optimal
LRC [4, 5, 6, 7, 8, 9].

It has been shown that for any code parameters n, k, and r, there exists
an [n, k, r]-LRC with minimum distance of at least d∗ − 1 [10]. This result
together with the bound (1) imply that LMD can be approximated within
an additive term of one. In addition, LMD has been solved in the literature
for some ranges of code parameters n, k and r. Before covering these related
results, let us define parameters k1, k2, n1, and n2. These parameters are
used throughout the paper.

2

k1 =
⌈
k
r

⌉
, k2 = k1 · r − k,

n1 =
⌈

n
r+1

⌉
, n2 = n1 · (r + 1)− n

(2)

1.1. Existing Results on Computing D(n, k, r)

For nearly all admissible parameters n, k and r, Kolosov et al. [11] find
the largest possible minimum distance of LRCs with disjoint repair groups1.
Their result, however, does not apply to the general class of LRCs, where
repair groups can overlap. Note that LMD does not restrict LRCs to have
disjoint repair groups. In addition, LMD does not put any restriction on the
size of finite field. Therefore, we exclude bounds that depend on the size of
alphabet. For instance, we exclude the bound in [12] as it depends on the
size of alphabet, and is stronger than (1) if the size of alphabet is smaller
than n. In the following, we enumerate only the existing results/bounds that
can be used to compute D(n, k, r).

1. D(n, k, r) = d∗ if r = k. This is because MDS codes achieve (1) with
equality.

2. D(n, k, r) = d∗ if (r + 1)|n [13, 14].

3. D(n, k, r) = d∗ if (n mod r + 1) > (k mod r) > 0 [13].

4. D(n, k, r) = d∗ − 1 if r < k, r|k and (r + 1) ∤ n [1, 15].

5. D(n, k, r) = d∗ − 1 if n2 ≥ k2 + 1 and k1 ≥ 2k2 + 2 [15]2.

6. D(n, k, r) ≤ n + 1 − (k + l), where l is derived from a parameter em,
which is defined recursively [16].

7. D(n, k, r) is known when n2 < n1 [17].

8. D(n, k, r) is known when k2 < k1 − 1 [18].

1LRCs and repair groups are formally defined in Section 2.
2The conditions used in [15] are converted into equivalent conditions on k1, k2, n1, and

n2

3

1.2. Our Contribution
Our first contribution is Theorem 1. This theorem reduces LMD to an

equivalent simply-stated problem in graph theory3. We obtain this reduction
via a connection between repairable codes and their Tanner graphs. Using
Theorem 1, in our next contribution, we prove that a special instance of
LMD is at least as hard as a long-standing open problem in extremal graph
theory (Theorem 14, Corollary 15). Furthermore, we solve LMD for three
new cases (Theorems 10, 11, and 18). In addition, to showcase the power of
Theorem 1, in Appendix Appendix A, we demonstrate how to easily derive
the existing results covered in Section 1.1, and somewhat extend them.

Theorem 1. Let n1, n2, k1, and k2 be the parameters defined in (2).
Then, D(n, k, r) = d∗ if and only if there is a multigraph of order4 n1 and
size n2 that does not have any subgraph of order k1 and size greater than k2.
Moreover, any such multigraph can be used for a non-explicit construction of
optimal [n, k, r]-LRCs over a finite field of size of at least (d∗ − 1)

(
n

d∗−1

)
+ 1.

Remainder of this paper Section 2 covers the main definitions and
basic tools needed in the rest of the paper. In Section 3, we present our main
results including the proof of Theorem 1. We conclude the paper and present
possible future work in Section 4.

2. Connecting LMD to Graph Theory

In this section, we will gradually establish the connection between LMD
and graph theory. To achieve this, we will introduce novel tools and concepts,
including pruned graphs and their minimum distance. The basic results de-
rived here will be utilized in the next section to prove Theorem 1, demonstrate
the hardness of LMD, and extend existing results on solving LMD. We start
by formally defining LRCs.

Locally Recoverable Code (LRC code) Let C ⊂ Fn
q be a code of

length n and cardinality qk. We say that C has locality r if for every i ∈

3All the graphs considered in this paper are loopless.
4Recall that the order of a graph is the cardinality of its vertex set, and the size of a

graph is the cardinality of its edge set.

4

{1, 2, . . . , n} there is a set Ii ⊂ {1, 2, . . . , n}\{i}, |Ii| ≤ r, such that for every
two codewords X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn)

(∀j ∈ Ii : xj = yj) =⇒ (xi = yi) .

Informally, this implies that the ith symbol of any codeword is uniquely
determined by by its symbols at coordinates associated with Ii. The sets
Ii ∪ {i}, 1 ≤ i ≤ n, are called repair groups. In this work, we restrict ourself
to linear LRC codes, and refer to them as [n, k, r]-LRC, where r denotes the
locality of the code.

Tanner Graphs An [n, k] linear code can be represented by a parity-
check matrix H. For example, consider a simple [7, 4] Hamming code with
the following parity-check matrix:

H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1

 . (3)

A vector V = (v1, v2, . . . , v7) is a codeword if and only if the dot product
of V with any row of H is zero. The matrix H reveals which subsets of the
symbols in the codeword are linearly dependent. For instance, the condition
for the first row implies:

v1 + v3 + v5 + v7 = 0,

demonstrating the linear dependence among v1, v3, v5, and v7.
These dependencies can be visualized using a Tanner graph, a bipartite

graph consisting of variable nodes and check nodes. An [n, k] Tanner graph
includes n variable nodes (vi, i ∈ {1, . . . , n}), depicted as circles, and n − k
check nodes (cj, j ∈ {1, . . . , n − k}), depicted as squares. Each check node
corresponds to a row of H, and it connects to those variable nodes whose
indices are involved in the associated linear dependence.

Figure 1 illustrates the Tanner graph for the described Hamming code.
Here, check node c1 connects to variable nodes v1, v3, v5, and v7, correspond-
ing to the linear dependencies specified by the first row of H. The check
nodes c2 and c3 represent the dependencies specified by the second and third
rows of H, respectively.

Figure 2 illustrates the structure of a Tanner graph for a general [n, k]
linear code. Each variable node vi is connected to the check node cj if and

5

Figure 1: The Tanner graph of the code given by the parity-check matrix H in (3).

only if the entry H[i, j] ̸= 0 in the parity-check matrix H(n−k)×n. The entry
H[i, j] refers to the element located at the intersection of row i and column j
of H. In other words, the set of variable nodes incident to a check node are
linearly dependent.

Figure 2: An [n, k]-Tanner graph with n variable nodes and n− k check nodes.

Definition 1 ([n, k, r]-Tanner Graph). An [n, k, r]-Tanner graph is an [n, k]-
Tanner graph in which every variable node is incident to at least one check
node of degree at most r + 1.

Definition 2 ([n, k, r]-Full Tanner Graph). An [n, k, r]-full Tanner graph
is an [n, k, r]-Tanner graph in which the degree of each check node is either
r + 1 or n.

Definition 3 (Local and Global Check Nodes). In an [n, k, r]-full Tan-
ner graph, a check node is called local check node if its degree is r + 1;
otherwise it is called global check node.

6

By the above definitions, each variable node in a [n, k, r]-full Tanner graph
is adjacent to at least one local check node. Therefore, the number of local
check nodes of a [n, k, r]-full Tanner is at least

⌈
n

r+1

⌉
= n1.

Minimum Distance The minimum distance of a code is the minimum
Hamming distance between any two distinct codewords. In the following,
we extend the definition of minimum distance to Tanner graphs. We then
explain the connection between the minimum distances of an LRC and its
corresponding Tanner graph.

Definition 4 (Tanner Graph’s Minimum Distance). The minimum dis-
tance of an [n, k]-Tanner graph is defined as the largest integer d ∈ [2, n−k+1]
for which we have the following condition: for any integer η ∈ [n − k − d +
2, n − k], every set of η check nodes are adjacent to at least η + k variable
nodes. This is a (reverse engineered) condition to support the Hall’s theorem.

Note that the above definition applies to [n, k, r]-Tanner graphs and
[n, k, r]-full Tanner graphs, because they are all [n, k]-Tanner graphs.

Proposition 2. There exists an [n, k, r]-LRC with minimum distance d∗

over any finite field of size at least (d∗ − 1)
(

n
d∗−1

)
+ 1 iff there is an [n, k, r]-

Tanner graph with minimum distance d∗.

Proof. Appndix Appendix B. □

An [n, k, r]-Tanner graph can be easily converted to a [n, k, r]-full Tanner
graph by adding edges to the check nodes: if the degree of a check nodes is
strictly less than r + 1, add enough edges to it to make its degree equal to
r + 1; on the other hand, if the degree of a node is strictly more than r + 1,
add enough edges to make its degree equal to n. By Definition 4, adding
edges does not reduce the minimum distance of a Tanner graph5. Therefore,
we get the following result using Proposition 2.

Corollary 3. There is an [n, k, r]-LRC with minimum distance d∗ iff there
is an [n, k, r]-full Tanner graph with minimum distance d∗.

5Adding edges may increase the minimum distance of a Tanner graph.

7

Because of Corollary 3, to solve LMD we can focus only on full Tanner
graphs. This somewhat simplifies the problem because full Tanner graphs
have only two types of check nodes: local and global.

Recall that the condition in Definition 4 requires every set of η check nodes
to be adjacent to at least η+k variable nodes. This condition holds if the set
of check nodes includes a global check node, because a global check node, by
definition, is connected to all the variable nodes. Therefore, to solve LMD
we can restrict ourselves to the subgraphs of full Tanner graphs, obtained
by removing global check nodes. These subgraphs can be further pruned by
removing all the variable nodes of degree one, since the contribution of these
nodes in satisfying the condition of Definition 4 can be readily formulated.
We call the resulting graphs pruned graphs.

Pruned Graphs We start by formally defining a pruned graph. The
following definition is based on the fact that a pruned graph is constructed
from a full Tanner graph by first removing all its global check nodes, and
then all the variable nodes of degree one. We refer to this process as the F2P
conversion.

Definition 5 ([n, k, r]-Pruned Graph). An [n, k, r]-pruned graph is a sub-
graph of an [n, k, r]-full Tanner graph with the following properties:

1. it has m, 0 ≤ m ≤ n, variable nodes;

2. it has h, n1 ≤ h ≤ n− k check nodes;

3. the degree of each check node is at most r + 1;

4. the degree of each variable node is at least two;

5. the number of its edges is equal to h(r + 1)− (n−m).

By the above definition, a pruned graph may not have any variable nodes.
In addition, the degree of a check node in a pruned graph can be zero.
Therefore, we do not use the term Tanner for these graphs.

Note that the minimum distance defined for Tanner graphs (Definition 4)
does not apply to pruned graphs. Before defining the minimum distance of
pruned graphs, let us explain how to convert an [n, k, r]-pruned graph to an
[n, k, r]-full Tanner graph.

P2F Conversion: Converting a Pruned Graph to a Full Tanner
Graph

8

1. add n−m variable nodes, v1, v2, . . . vn−m, of degree zero to the pruned
graph; this increases the number of variable nodes to n.

2. perform the following n−m steps: In Step i, 1 ≤ i ≤ n−m, connect vi
to any check node whose degree up to that step is less than r + 1. As
will be discussed later, the order of selected check nodes with degree
less than r + 1 does not matter.
Note that in every step there is at least one check node with degree
less than r + 1, because the number of edges of the pruned graph is
h(r+1)−(n−m), and the number of variable nodes added is n−m. At
the end of the last step, each of the added variable nodes is connected
to one check node, and the degree of every check node is exactly r+1.

3. add (n − k) − h global check nodes, and connect each added global
check node to all the variable nodes (including the new ones).

Definition 6 (Pruned Graph’s Minimum Distance). The minimum dis-
tance of a pruned graph is defined to be equal to the minimum distance of a
full Tanner graph obtained from it through the above P2F conversion.

Remark 1. In each step of the second part of the P2F conversion (item 2),
a check node with degree less than r+1 is selected. Note that this check node
selection is arbitrary, i.e. any check node with degree less than r + 1 can be
selected. Therefore, if a full Tanner graph is converted to a pruned graph and
then converted back to a full Tanner graph, the result may be different from
the original full Tanner graph. Nevertheless, we will prove (Proposition 5)
that all the full Tanner graphs that can be obtained from a fixed pruned graph
have the same minimum distance. Hence, the minimum distance of pruned
graphs (Definition 6) is well-defined.

3. Main Results

3.1. Proving Theorem 1
Minimum distance of pruned graphs We start by proving that the

minimum distance of pruned graphs is well-defined (Proposition 5).

9

For a node u in a simple graph G, let NG(u) denote the set of nodes
adjacent to u, and EG(u) denote the set of edges incident to u. For a set of
nodes A, we define

NG(A) = ∪u∈ANG(u),

and
EG(A) = ∪u∈AEG(u).

Lemma 4. Let P be a pruned graph, and T be a corresponding [n, k, r]-full
Tanner graph i.e., a full Tanner graph constructed from P using the P2F
conversion. Let S be a subset of check nodes of T . Then, we have

|NT (S)| =

{
n if S includes a global check node;
|NP(S)|+ ((r + 1)|S| − |EP(S)|) otherwise,

where |S| denotes the cardinality of S.

Proof. If there is a global check node in S, then |NT (S)| is equal to n,
because in a full Tanner graph each global check node is connected to all the
n variable nodes. Therefore, from now assume that all the check nodes in S
are local. We have

|ET (S)| = (r + 1)|S| (4)

because the degree of each check node in S is exactly r + 1. Let us call a
variable node v singular (with respect to S) if

1. v is adjacent to exactly one local check node in T ;

2. the local check node that v is incident to is in S.

By the definition of pruned graph, each variable node that is in NT (S) but not
in NP(S) must be a singular variable node. It is because among edges incident
to a local check node in S, exactly those that are incident to a singular
variable node are removed in the F2P conversion. Therefore, |NT (S)| −
|NP(S)| is equal to the number of singular variable nodes in T . The number
of singular variable nodes, on the other hand, is equal to |ET |−|EP |, because
each singular variable node is incident to exactly one edge (which is in ET (S)
but not in EP(S)). Thus,

|NT (S)| − |NP(S) = |ET (S)| − |EP(S)|,

10

hence

|NT (S)| = |NP(S)|+ |ET (S)| − |EP(S)|
= |NP(S)|+ ((r + 1)|S| − |EP(S)|),

where the second equality is by (4).
□

Proposition 5. All the full Tanner graphs that can be constructed from a
fixed pruned graph using the P2F conversion have identical minimum dis-
tances.

Proof. Let T1 and T2 be two full Tanner graphs constructed from an [n, k, r]-
pruned graph P . By Lemma 4, we have |NT1(S)| = |NT2(S)| for any subset
of check nodes S. Thus, by Definition 4, the minimum distances of T1 and
T2 are identical. □

Refining Pruned Graphs Our objective here is to reduce the number
of check nodes of an [n, k, r]-pruned graph to exactly n1, and the degree of
all variable nodes to exactly two. The challenge is to preserve the minimum
distance of the pruned graph throughout the conversion. We start with
reducing the number of check nodes.

Lemma 6. Any [n, k, r]-pruned graph P1 with minimum distance d, and
h1 > n1 check nodes can be converted into a [n, k, r]-pruned graph P2 with
minimum distance at least d and h2 = h1 − 1 check nodes.

Proof. Let m1 be the number of variable nodes in P1. We convert P1 into
P2 through the following process.

Check node reduction process:

Step 1: An arbitrary check node is selected and is removed from P1.
Let l be the degree of the removed check node.

Step 2: An arbitrary variable node with degree at least two is selected
and one of its edges is removed. This operation is done r+1− l times6.

6A variable node may be selected multiple times. Also, note that r + 1− l ≥ 0 because
l ≤ r + 1.

11

This is possible because the total number of edges of P1 after Step 1 is

h1(r + 1)− (n−m1)− l

≥ (n1 + 1)(r + 1)− (n−m1)− l

= n2 + (r + 1− l) +m1

≥ (r + 1− l) +m1.

Step 3: All variable nodes of degree one are removed.

Suppose the number of remaining variable nodes is m2. The total number of
edges removed is then

l + (r + 1− l) + (m1 −m2) = r + 1 + (m1 −m2).

Thus the total number of remaining edges is

(h1(r + 1)− (n−m1))− ((r + 1) + (m1 −m2))

= (h1 − 1)(r + 1)− (n−m2)

= h2(r + 1)− (n−m2),

which is equal to the number of edges of an [n, k, r]-pruned graph with h2 =
h1 − 1 check nodes, and m2 variable nodes. Note that the degree of each
variable node in the constructed pruned graph P2 is at least two, and the
degree of each check node is at most r+1. Therefore, the constructed graph
P2 is indeed an [n, k, r]-pruned graph.

Now, let us compare the minimum distances of the two pruned graphs P1

and P2. Let T1, T2 be two [n, k, r]-full Tanner graphs corresponding to P1

and P2, respectively. Next, we show that

|NT2(S)| ≥ |NT1(S)|,

for every set S of check nodes in the full Tanner graph. By Definition 4, this
implies that the minimum distance of T2 is not smaller than that of T1.

Let S be an arbitrary set of check nodes of T2. If S includes any global
check node of T2, then |NT2(S)| = n which yields the above inequality, be-
cause |NT1(S)| is at most equal to n. Thus, assume that S is a subset of local
check nodes of T2 (i.e., S is a subset of check nodes of P2). We have

|EP1(S)| − |EP2(S)| ≥ |NP1(S)| − |NP2(S)|,

12

because the reduction in size of NP1(S) as the result of edge removal in the
check node reduction process is at most equal to the number of edges removed
from EP1(S). Equivalently,

|NP2(S)| − |EP2(S)| ≥ |NP1(S)| − |EP1(S)|.

Hence, by Lemma 4, we get

|NT2(S)| = |NP2(S)|+ (|S|(r + 1)− |EP2(S)|)
= (|NP2(S)| − |EP2(S)|) + |S|(r + 1)

≥ (|NP1(S)| − |EP1(S)|) + |S|(r + 1)

= |NP1(S)|+ (|S|(r + 1)− |EP1(S)|)
= |NT1(S)|.

□

Next, we reduce the degree of all variable nodes to two, while keeping the
number of check nodes at n1.

Proposition 7. Any [n, k, r]-pruned graph with minimum distance d can be
converted to a [n, k, r]-pruned graph with minimum distance at least d in
which the degree of every variable node is exactly two, the number of check
nodes is exactly n1, and the number of variable nodes is n2.

Proof. By repeatedly applying Lemma 6, we first convert the given [n, k, r]-
pruned graph into one with n1 check nodes. Let us represent the new pruned
graph by P1. By the definition of pruned graphs, the number of edges of P1

is
n1(r + 1)− (n−m1) = n2 +m1,

where m1 is the number of its variable nodes. Since the degree of each
variable node is at least two, we get that the number of edges of P1 is at
least 2m1, thus

2m1 ≤ n2 +m1,

hence m1 ≤ n2. Therefore, m1 ≤ r and m1 < n, because n2 ≤ r, and n2 < n,
respectively. Since the total number of variable nodes, m1, is at most equal
to r, we get that the degree of each check node in P1 is strictly less than
r + 1.

13

Let v be a variable node which has the maximum degree among all vari-
able nodes in P1. If the degree of v is two, we are done, because this implies
that the degree of all variable nodes in P1 is two. Therefore, assume that
the degree of v is more than two. Let c1 and c2 be two check nodes adjacent
to v. From P1, we construct P2 as follows: First, we add a variable node v′

(of degree zero) to P1. Note that, after this addition, the number of variable
nodes does not exceed n because m1 < n. We connect the variable node
v′ to both check nodes c1, and c2, and remove the edge between v and c2.
This edge removal reduces the degree of the variable node v by one. The
degree of v, however, remains at least two, as v’s degree, before removal, was
more than two. Also, the degrees of c1 and c2 will not exceed r + 1, because
the degree of each node was strictly less than r + 1. By the definition of
pruned graphs, the constructed graph P2 is an [n, k, r]-pruned graph with
m2 = m1 + 1 variable nodes, n1 check nodes, and

n1(r + 1)− (n−m1) + 2− 1 = n1(r + 1)− (n− (m1 + 1))

= n1(r + 1)− (n−m2)

edges. Next, we show that the minimum distance of P2 is not less than
that of P1. This will conclude the proof, as by using the above process, the
maximum degree can be always decremented if it is more than two; repeating
this will yield an [n, k, r]-pruned graph in which all variable nodes have degree
two.

Let T1 and T2 be two [n, k, r]-full Tanner graphs corresponding to P1 and
P2, respectively. To prove the above claim, by Definition 4, it is sufficient to
show that for every set S of check nodes we have

|NT2(S)| ≥ |NT1(S)|. (5)

If S includes any global check node of T2, then |NT2(S)| = n, hence the
inequality. Therefore, assume that S is a subset of local check nodes of
T2. If S does not contain any of the check nodes c1 and c2, we will have
|NT2(S)| = |NT1(S)|. This is by Lemma 4 and the fact that, except check
nodes c1 and c2, every other check node of P2 is identical to its original one
in P1 . Using Lemma 4, the inequality (5) can be verified for the remaining
cases where S includes one or both check nodes c1 and c2: If S contains c1 but
not c2 or if it contains both c1 and c2, then we have |EP2(S)| = |EP1(S)|+ 1
and |NP2(S)| = |NP1(S)|+1 hence by Lemma 4, we get |NT2(S)| = |NT1(S)|.
If S includes c2 but not c1, then we have two cases based on whether or

14

not v is in NP1(S\{c2}). If v /∈ NP1(S\{c2}), then |NP2(S)| = |NP1(S)|,
and |EP2(S)| = |EP1(S)|, hence |NT2(S)| = |NT1(S)|. If v ∈ NP1(S\{c2}),
however, we will have |NP2| = |NP1| + 1 and |EP2(S)| = |EP1(S)|, thus
|NT2(S)| = |NT1(S)|+ 1, hence the inequality (5).

Let P be the constructed pruned graph. The number of edges of P is
equal to 2m, where m denotes the number of variable nodes of P . This is
because the degree of each variable node is exactly two. Alternatively, by
the definition of pruned graphs, the number of edges of P is

n1(r + 1)− (n−m).

Thus, we must have

n1(r + 1)− (n−m) = 2m,

hence
m = n1(r + 1)− n = n2.

□

We are ready now to prove Theorem 1.
Proof. [Theorem 1] So far, we have shown the following:

1. There is [n, k, r]-LRC with minimum distance d∗, iff there is an [n, k, r]-
full Tanner graph with minimum distance d∗ (Proposition 5).

2. There is an [n, k, r]-full Tanner graph with minimum distance d∗ iff
there is an [n, k, r]-pruned graph with minimum distance d∗ (Defini-
tion 6 and Proposition 5).

3. There is an [n, k, r]-pruned graph with minimum distance d∗ iff there
is an [n, k, r]-pruned graph P with minimum distance d∗ in which the
degree of every variable node is exactly two, the number of check nodes
is n1, and the number of variable nodes is n2 (Proposition 7).

Suppose D(n, k, r) = d∗. Therefore, there exists an [n, k, r]-pruned graph P
with minimum distance d∗ in which the degree of every variable node is two,
the number of check nodes is n1, and the number of variable nodes in n2.
Let G = (V,E) be a multigraph, where the vertex set V is the set of check
nodes of P , and (u, v) ∈ E iff there is variable node in P that is connected

15

to both check nodes u and v. Since the degree of each variable node in P is
exactly two, the size of G will be equal to the number of variable nodes in
P , i.e. |E| = n2. Also, |V | = n1, because V is the set of check nodes of P .
For every subset S of check nodes of P , we have

|NP(S)| = |EP(S)| − |G[S]|,

where |G[S]| denotes the size of the subgraph induced in G by S. Therefore,
by Lemma 4, we get

|NT (S)| = |NP(S)|+ ((r + 1)|S| − |EP(S)|)
= (r + 1)|S| − |G[S]|,

(6)

where T is an [n, k, r]-full Tanner graph obtained from P using the P2F
conversion method. Since the minimum distance of T is d∗, by Definition 4,
for every set S of n− k− d∗ +2 = ⌈k

r
⌉ = k1 local check nodes of T , we must

have
|NT (S)| ≥ k + |S| = k + k1. (7)

By (6), the above inequality is equivalent to

|G[S]| ≤ (r + 1)|S| − k1 − k

= (r + 1)k1 − k1 − k

= rk1 − k

= k2.

Note that by (6), |NT (S)| increases with the size of the set S. It is because
the degree of each node in G (hence in G[S]) is strictly less than r+1, since
the size of G (which is equal to n2) is strictly less than r + 1. Therefore, if
(7) holds for every set S of size k1, we will have

|NT (S)| ≥ k + |S|

for every set S of size at least k1. Therefore, a necessary and sufficient
condition for T to have a minimum distance of d∗ is that |G[S]| ≤ k2, for
every set S, |S| = k1.

Conversely, if such a multigraph G exists, then we can construct a pruned
graph, and consequently a full Tanner graph with minimum distance d∗. The
full Tanner graph, determines the zero elements of the optimal code’s parity

16

check matrix H. If the non-zero elements of H are selected uniformly at
random from a finite field of order nd∗ , we get that the minimum distance of
the corresponding code is d∗ with high probability (i.e, with probability at
least 1− 1

n
).7 Similar to the proof of Proposition 2, this can be easily derived

from the Schwartz-Zippel theorem and the union bound. □

3.2. LMD and Extremal Graph Theory
For a family of so called prohibited graphs F , let ex(n,F) denote the max-

imum number of edges that an n-vertex graph can have without containing
a subgraph from F . We use the notation eX(n,F) when multiple/parallel
edges are permitted.

Let Fk1,k2 denote the family of all multigraphs of order k1 and size strictly
greater than k2. The following corollary is a direct result of Theorem 1.

Corollary 8. D(n, k, r) = d∗ iff n2 ≤ eX(n1,Fk1,k2).

We have
eX(n1,Fk1,k2) ≥ ex(n1,Fk1,k2),

because simple graphs are subset of multigraphs. Thus, we also get the
following corollary from Theorem 1.

Corollary 9. D(n, k, r) = d∗ if n2 ≤ ex(n1,Fk1,k2).

Corollaries 8 and 9 allow us to approach LMD using existing results in
extremal graph theory. For example, when k1 = 3 and k2 = 2, we get that
D(n, k, r) = d∗ iff n2 ≤

⌊
n2
1

4

⌋
. This is derived using the Mantel’s theorem on

triangle-free maximal graphs [19].

Theorem 10. Suppose k1 = 3 and k2 = 2. In this case, the dimension of
the code satisfies k = 3r − 2.
Then, D(n, k, r) = d∗ iff n2 ≤

⌊
n2
1

4

⌋
.

7In general, this probability can be set to at least (1 − ϵ) by setting the order of the
finite field to be at least nd∗−1

ϵ .

17

Proof. A simple graph is F3,2-free iff it is triangle-free. By Mantel’s theorem,
the maximum size of a triangle-free simple graph on n1 vertices is

⌊
n2
1

4

⌋
. In

other words, ex(n1,F3,2) =
⌊
n2
1

4

⌋
. Therefore, by Corollary 9, we get that

D(n, k, r) = d∗ if n2 ≤
⌊
n2
1

4

⌋
. By Mantel’s theorem, we know that n1-vertex

simple graphs of size greater than
⌊
n2
1

4

⌋
are not triangle-free, hence are not

F3,2-free. This is also the case for multigraphs: n1-vertex multigraphs of size
greater than

⌊
n2
1

4

⌋
are not F3,2-free.

Let G be a maximal F3,2-free multigraph on n1 vertices. By induction on
n1, we prove that the size of G is at most

⌊
n2
1

4

⌋
. The assertion clearly holds

for n1 = 3 and n1 = 4. Suppose G has multiple edges between two distinct
vertices u and v. The maximum number of parallel edges between u and v
is two, as otherwise G will not be F -free. Also, any vertex w /∈ {u, v} is not
connected to either u or v, as otherwise the graph induced by {u, v, w} will
have a size of at least 3. Therefore, by induction hypothesis, the maximum
size of G will be

2 +

⌊
(n1 − 2)2

4

⌋
<

⌊
n2
1

4

⌋
,

for n1 ≥ 5. □

The following theorem can be similarly derived from Corollary 9, and
Turán’s theorem in extremal graph theory [19]. A Turán graph T (n, k) is a
complete multipartite graph on n vertices, and k partitions with the size of
partitions being as equal as possible. By Turán’s theorem, the Turán graph
has the maximum possible number of edges among all (k + 1)-clique-free
graphs with n vertices [19].

Theorem 11. Suppose k2 =
(
k1
2

)
− 1. Then, D(n, k, r) = d∗ if n2 ≤ tk1(n1),

where tk1(n1) denotes the size of Turán’s graph on n1 vertices, and k1 − 1
partitions.

3.3. Hardness of LMD
LMD is approximable within an additive term of one—the largest mini-

mum distance is either d∗ or d∗ − 1. However, as will be discussed shortly,

18

it appears that LMD is hard to solve in general8. In the remaining of this
section, we prove that solving LMD is at least as hard as computing the size
of a maximal graph of high girth, a challenging problem in extremal graph
theory. We start by proving a few lemmas.

Lemma 12. We have

eX(n,Fk,k−1) = ex(n,Fk,k−1),

where n ≥ k ≥ 1.

Proof.
We have eX(n,Fk,k−1) ≥ ex(n,Fk,k−1), because simple graphs are subset
of multigraphs. Therefore, we only need to show that eX(n,Fk,k−1) ≤
ex(n,Fk,k−1). To this end, we show that any Fk,k−1-free multigraph of order
n and size m can be converted to a simple Fk,k−1-free graph of order n and
size at least m.

Let G be a Fk,k−1-free multigraph of order n and size m. Suppose G
is connected, and assume that G has two vertices u and v connected with
multiple edges. Then, any connected subgraph of G of order k will have
at least k edges if the subgraph includes u and v. Therefore, a connected
Fk,k−1-free graph cannot have parallel edges.

Now suppose that G has c > 1 connected components denoted Gi =
(Vi, Ei), i ∈ [c]. Any connected component of order at least k must be
a simple graph; otherwise, by the above argument, it will not be Fk,k−1-
free (hence G will not be Fk,k−1-free). Therefore, if G does not have any
connected component of order less than k, we are done.

Without loss of generality, suppose Gi = (Vi, Ei), i ∈ [c1], where c1 ∈ [c],
is the number of connected components of G that have less than k vertices.
We show that

c1∑
i=1

|Ei| ≤
c1∑
i=1

|Vi|. (8)

The above inequality clearly holds if

∀i ∈ [c1] |Ei| < |Vi|.

8This may remind the reader of the few NP-hard problems (e.g., edge coloring [20],
and 3-colorability of planar graphs [21]) that are approximable within an additive term of
one, but are hard to solve.

19

If not, we must have |Ei| ≥ |Vi| for some connected components Gj, j ∈ [c1].
Without loss of generality, suppose |Ei| ≥ |Vi| for i ∈ [c2], where c2 ∈ [c1].
Also, assume that |Ei| − |Vi| ≥ |Ej| − |Vj| for every i < j, where i, j ∈ [c2].
Note that for the remaining connected components Gi, c2 < i ≤ c1, we must
have |Ei| = |Vi| − 1.

Let us extract a k-vertex subgraph of G in k steps as follows. In the first
step, we select an arbitrary vertex from G1. In every consecutive step, we
find a vertex that is connected to at least one of the vertices that we have
selected so far, and add that vertex to the set of selected vertices. If none
exist, we move on to the next connected component G2 and then G3 and so
on. We continue the above process until we select k vertices.

Let H denote the subgraph induced by the selected k vertices. Suppose
that Gt, t ∈ [c1+1] is the last connected graph from which a vertex has been
selected. The size of H will be at least

t−1∑
i=1

|Ei|+

(
k −

t−1∑
i=1

|Vi|

)
− 1

= k +

(
t−1∑
i=1

|Ei| −
t−1∑
i=1

|Vi|

)
− 1

(9)

If (8) does not hold, then the term
(∑t−1

i=1 |Ei| −
∑t−1

i=1 |Vi|
)

in (9) will be at
least equal to one. This means that the size of H will be at least k, which is
not possible since G is Fk,k−1-free. Thus (8) must hold. In the special case,
where k ≤

∑c1
i=1 |Vi| (i.e., t ≤ c1), we must have

c1∑
i=1

|Ei| <
c1∑
i=1

|Vi|, (10)

as otherwise the size of H will be at least k.
Let us now construct a n-vertex Fk,k−1-free simple graph of size at least

m from G. To do so, we replace the connected components Gi, i ∈ [c1] with a
path graph of order

∑c1
i=1 |Vi|. We then connect the path graph (by an edge)

to one of the remaining connected components of G if there are any. The
new graph G′ is a n-vertex Fk,k−1-free simple graph. Also, by (8) and (10),
the order of G′ is not less than that of G.

□

20

Let Ck denote the cycle of length k, and define

Ck = {C3, C4, ..., Ck}.

Lemma 13. We have

ex(n,Fk,k−1) = ex(n,Ck),

where n ≥ k ≥ 3.

Proof. If a simple graph is Ck-free, it is Fk,k−1-free, too9. If not, it has
a k-vertex subgraph of size at least k. Such a subgraph must have a cycle
of length at most k, which contradicts the fact that the graph is Ck-free.
Therefore, we have

ex(n,Fk,k−1) ≥ ex(n,Ck). (11)

Let G = (V,E) be an arbitrary n-vertex Fk,k−1-free simple graph. Any
connected component of G of order at least k must be Ck-free. It is be-
cause, otherwise, any connected k-vertex subgraph of that component which
includes the cycle will be of size at least k. If G does not have any connected
component of order less than k, we are done, because by the above argument,
each connected component of G is Ck-free, hence G is Ck-free.

Let G1 = (V1, E1), G2 = (V2, E2), . . . , Gc = (Vc, Ec) be the c ≥ 1 con-
nected components of G that have order less than k. Similar to the proof of
Lemma 12 (Inequality 8), we get

c∑
i=1

|Ei| ≤
c∑

i=1

|Vi|.

Therefore
|E| ≤ ex(n− n′,Ck) + n′, (12)

where n′ =
∑c

i=1 |Vi|. For any integer n′, 0 ≤ n′ ≤ n, we have

ex(n− n′,Ck) + n′ ≤ ex(n,Ck). (13)

9The converse is not true; there are Fk,k−1-free simple graphs that are not Ck-free.
For instance, a triangle and k − 3 ≥ 1 isolated vertices is Fk,k−1-free but not Ck-free

21

It is because we can make a n-vertex Ck-free graph by connecting (using an
edge) a n′-vertex path graph to a (n − n′)-vertex Ck-free graph. From (12)
and (13), we get

|E| ≤ ex(n,Ck). (14)

Since G = (V,E) is an arbitrary n-vertex Fk,k−1-free simple graph, by (14),
we get

ex(n,Fk,k−1) ≤ ex(n,Ck).

Combining this with the inequality (11) we arrive at the desired result:

ex(n,Fk,k−1) = ex(n,Ck).

□

Theorem 14. Let k2 = k1 − 1, and k1 ≥ 3. Then, D(n, k, r) = d∗ iff
n2 ≤ ex(n1,Ck1).

Proof. By Corollary 8, D(n, k, r) = d∗ iff n2 ≤ eX(n1,Fk1,k1−1). By Lemma 12,
we have eX(n1,Fk1,k1−1) = ex(n1,Fk1,k1−1). Also, Lemma 13 states that
ex(n1,Fk1,k1−1) = ex(n1,Ck1), when k1 ≥ 3. Therefore, when k1 ≥ 3,
D(n, k, r) = d∗ iff n2 ≤ ex(n1,Ck1). □

The following corollary is an immediate result of Theorem 14.

Corollary 15. Solving LMD is at least as hard as computing ex(n,Ck).

Proof. Using binary search, one can compute ex(n,Ck) by calling the LMD
solution O(log n) times. □

Computing ex(n,Ck) is a challenging open problem in extremal graph
theory. In fact, we do not even know the asymptotic behaviour of ex(n,Ck)
for almost any value of k. In particular, the following conjecture of Erdös and
Simonovits is still one of the main open problems in extremal graph theory.

Conjecture 1. (Erdös and Simonovits [22]) For all k ≥ 2, ex(n,C2k) =

θ(n1+ 1
k).

22

3.4. LMD and Graph Theory
In the previous sections, we discussed the connection between LMD and

extremal graph theory. This connection, as showed, can be used to solve LMD
for more special cases, or recognize cases that are hard to solve. Theorem 1
also allows us to use tools from the general field of graph theory to tackle
LMD. As an example, let us solve another special instance of LMD, where
n1−k1 = 1.10 To this end, we use some basic results from graph realization11.

A sequence d = ⟨d1, ..., dn⟩ of non-negative integers is called graphic if
it is the degree sequence of some multigraph G. Such a multigraph G is
called a realization of sequence d. Degree sequences of simple graphs are
well-understood—they can be efficiently recognized [23] and realized [24]. A
general realizability test for multigraphs follows.

Lemma 16. (Harary [25]) The sequence d = ⟨d1, ..., dn⟩, where d1 = max(d),
is graphic iff

∑n
i=1 di is even and d1 ≤

∑n
i=2 di.

We call a multigraph almost regular if the degrees of its vertices differ by at
most one. The following corollary is a direct result of Lemma 16.

Corollary 17. For any integers n ≥ 2 and m ≥ 0 there exists an almost-
regular multigraph of order n and size m.

Proof. Let t = (2m mod n). The following degree sequence satisfies the
conditions of Lemma 16, hence is realizable.

⟨d1 =
⌈
2m

n

⌉
, . . . , dt =

⌈
2m

n

⌉
, dt+1 =

⌊
2m

n

⌋
. . . dn =

⌊
2m

n

⌋
⟩

Note that
∑n

i=1 di = 2m. Therefore, a realization of the above degree se-
quence is an almost-regular multigraph of order n and size m.

□

Theorem 18. Suppose n1 − k1 = 1. Then, D(n, k, r) = d∗ iff

n2 −
⌊
2n2

n1

⌋
≤ k2.

10The case n1 − k1 = 1 holds for typical range of practical LRCs, as well as LRCs with
almost optimal rate; for [n, k, r]-LRCs we have k

n ≤ r
r+1 [1].

11Similar approach/tools can be used to extend this result to n1 − k1 ≤ 3.

23

Proof. Suppose D(n, k, r) = d∗. Then, by Corollary 8, there is a Fk1,k2-free
multigraph G of order n1 and size n2. Since G has n2 edges, it must have
a vertex v of degree at most

⌊
2n2

n1

⌋
. Removing v from G we get a k1-vertex

subgraph of G of size at least n2 −
⌊
2n2

n1

⌋
. Since G is Fk1,k2-free, we must

have
n2 −

⌊
2n2

n1

⌋
≤ k2. (15)

Now, suppose (15) holds. Let G be an almost-regular multigraph of or-
der n1 and size n2. By Corollary 17, such multigraph G exists. Let H be a
k1-vertex subgraph of G obtained by removing a vertex v from G. Since G is
an almost-regular graph, the degree of v is at least equal to

⌊
2n2

n1

⌋
, thus the

size of H is at most n2−
⌊
2n2

n1

⌋
which by (15) is bounded by k2. This implies

that G is Fk1,k2-free. □

There is an infinite range of code parameters for which the existing results
in the literature cannot solve LMD but Theorem 18 does. This range includes
the case where

n2 > k2 ≥ k1 ≥ 3, k2 ≥ n2 −
⌊
2n2

n1

⌋
, and n1 = k1 + 1.

Theorem 18 addresses several gaps in the landscape of known code pa-
rameters. For instance, while the literature addresses LMD for [16, 8, 4]-
LRC and [16, 11, 4]-LRC, Theorem 18 bridges the gap by also solving LMD
for [16, 9, 4]-LRC and [16, 10, 4]-LRC. Similarly, although solutions exist for
[19, 10, 5]-LRC and [19, 14, 5]-LRC, Theorem 18 further expands coverage to
include [19, 11, 5]-LRC, [19, 12, 5]-LRC, and [19, 13, 5]-LRC.

4. Conclusion and Future Research

We studied the problem of finding the largest possible minimum distance
of LRCs, a problem referred to as LMD. We converted LMD to an equivalent
simply stated graph theory problem. Using this result, we showed how to
easily derive and extend the existing results in the literature. In addition,
we established a connection between an instance of LMD and a well-known
open problem in extremal graph theory; an indication that LMD is hard to
be solved, in general.

24

As a future direction, this work can be extended to LRCs with multiple
recovering sets such as those considered in [26, 27, 28, 29]. Also, there are
a number of interesting questions that remain unanswered. For example,
all the solved instances of LMD in the literature and in this paper have a
corresponding almost-regular multigraph solution. An interesting question
is whether this is the case for every instance of LMD. If so, future research
may focus on such graphs. Another interesting question is whether or not
eX(n1,Fk1,k2) = ex(n1,Fk1,k2) when k2 ≤

(
k1
2

)
. In this work, we proved this

for some special cases, e.g. when k2 ≤ k1 − 1.

Appendix A.

Using Theorem 1, we can easily derive and somewhat extend the existing
results in the literature.

1. Case r = k: In this case, we have k1 = 1 and k2 = 0, because k1 =
⌈
k
r

⌉
,

and k2 = k1 ·r−k. Note that the size of every (k1 = 1)-vertex subgraph
of a multigraph is zero. Therefore, replacing k1 and k2 with one and
zero in Theorem 1, we get D(n, k, r) = d∗. Using Theorem 1, we can
easily extend this result to k1 = 2 as follows:

Corollary 19. Suppose k1 = 2. Then, D(n, k, r) = d∗ iff

n2 ≤
(
n1

2

)
· k2,

Proof. The size of a n1-vertex multigraph that has at most k2 par-
allel edges between any pair of vertices is clearly bounded by

(
n1

2

)
·k2. □

2. Case (r + 1)|n: This case is equivalent to n2 = 0. The size of any
subgraph of a multigraph of size n2 = 0 is zero, hence upper bounded
by k2. Therefore, D(n, k, r) = d∗ by Theorem 1.

3. Case (n mod r + 1) > (k mod r) > 0: This case is equivalent to
k2 > n2 > 0. Clearly, the size of any subgraph of a multigraph of
size n2 is at most n2. Since n2 < k2 in this case, by Theorem 1, we
get D(n, k, r) = d∗. In fact, by Theorem 1, this result still holds if
k2 = n2. Therefore, with this little extension, we get D(n, k, r) = d∗ if
(n mod r + 1) ≥ (k mod r) > 0.

25

4. Case r < k, r|k and (r + 1) ∤ n: This case is equivalent to k1 ≥ 2,
k2 = 0 and n2 ≥ 1, respectively. Since r < k, and k < n, we get
r + 1 < n, thus n1 ≥ 2. Clearly, any (n1 ≥ 2)-vertex multigraph of
size n2 ≥ 1 always has a (k1 ≥ 2)-vertex subgraph of size greater than
k2 = 0. Thus, by Theorem 1 we get that D(n, k, r) ̸= d∗, which implies
D(n, k, r) = d∗ − 1.

5. Case n2 ≥ k2 + 1 and k1 ≥ 2k2 + 2: Let G be any multigraph of size
n2. Pick k2 + 1 edges of G. The result is a subgraph of order at most
2k2+2 ≤ k1, and size grater than k2. Therefore, any multigraph of size
n2 ≥ k2 + 1 has a k1-vertex subgraph of size greater than k2. Thus, by
Theorem 1, we get D(n, k, r) = d∗ − 1.

6. Case D(n, k, r) ≤ n + 1 − (k + l): Since D(n, k, r) ≥ d∗ − 1, the
only advantage of this upper bound—or any other upper bound on
D(n, k, r)—over (1) is when the right side of the inequality becomes
equal to d∗−1; that is exactly when the inequality implies D(n, k, r) =
d∗ − 1. In the above case, this happens iff

tk1 > k2, (A.1)

where
tm−1 = tm −

⌈
2tm
m

⌉
, 2 ≤ m ≤ n1, tn1 = n2, (A.2)

is a recursive equation obtained for the one defined in [16] by sub-
stituting their parameter em with tm = m(r + 1) − em. Let G be any
n1-vertex multigraph of size n2. Let Tn1 = G and Tm−1, 2 ≤ m ≤ n1−1,
be the (m− 1)-vertex graph obtained from Tm by removing its vertex
with the smallest degree. Since the smallest degree of Tm is at most
equal to

⌈
2tm
m

⌉
, by (A.2) we get that the size of Tm−1 is at least tm−1.

Therefore, tm is a lower bound on the size of graph Tm. Thus, the con-
dition (A.1) means that the size of Tk1 (which is a k1-vertex subgraph
of G) is greater than k2. By Theorem 1, we then get D(n, k, r) ̸= d∗,
which implies D(n, k, r) = d∗ − 1.

By the above argument, an improvement over the upper bound of [16]
is obtained by replacing

⌈
2tm
m

⌉
with

⌊
2tm
m

⌋
in (A.2)—note that

⌊
2tm
m

⌋
is

a better upper bound on the smallest degree of Tm.

26

7. Case n2 < n1: Using Theorem 1, we can also solve LMD for this case.
The intuition is as follows: Let us define k-density of a multigraph as
the maximum size of any of its k-vertex subgraphs. To solve LMD, we
need a multigraph with minimum k1-density among all the n1-vertex
multigraphs of size n2. Let us call such a multigraph k1-dense. It is
not hard to show that a forest with almost equally sized trees (i.e. with
trees whose order differ by at most one) is always k1-dense. To extend
the result of [17] a bit further, one can show that a cycle graph is k1-
dense when n2 = n1. This observation extends the result of [17] from
the case n2 < n1 to n2 ≤ n1.

Instead of providing the technical details for the above intuition, we
show how to solve LMD for a similar case, i.e. for the case where
k2 < k1 − 1. The reasons for doing so are I) the case k2 < k1 − 1 is
solved using a similar technique and graphs (forests with almost equally
sized trees); II) unlike the case n2 < n1, which we showed that can be
extended to n2 ≤ n1, the case k2 < k1 − 1 is hard to be extended to
k2 ≤ k1 − 1 as proven earlier.

8. Case k2 < k1 − 1:

Theorem 20. Suppose k2 < k1 − 1. Then, D(n, k, r) = d∗ iff

n2 ≤ n1 −

n1 − k1 + 1⌊
k1

k1−k2−1

⌋
+ k1 − k2 − 1

 .

Proof.

Let Fk1,k2 be the set of all k1-vertex multigraphs of size greater than k2.
We say a graph G is Fk1,k2-free if G does not have a subgraph of order
k1 and size greaters than k2. We first prove a necessary and sufficient
condition for a n1-vertex forest to be Fk1,k2-free, when k2 < k1 − 1.
Then, we show that this condition applies to all multigraphs on n1

vertices.

Let G be a forest on n1 vertices. Let t ≥ 1 be the minimum number
of connected components of G that are needed to collect k1 vertices.
The maximum size of a k1-vertex subgraph of G is then exactly k1 − t.
Therefore, G is Fk1,k2-free, iff k1 − t ≤ k2, or equivalently t ≥ k1 − k2.

27

Note that, by the above argument, only the order of the connected
components of G determines whether or not G is Fk1,k2-free. Thus,
we can safely assume that each connected component of G (which is a
tree) is a path graph.

If the order of two connected components of G differ by at least two, we
can remove one vertex from one end of the larger connected component
(which is a path) and add one vertex and connect it with an edge to
one end of the smaller connected component. If G is Fk1,k2-free, so is
the new forest—the value of t for the new forest is not smaller than
that for G. Therefore, in pursuing a necessary condition for a forest
to be Fk1,k2-free, we can safely assume that G is a forest with almost
equally sized trees, where each tree is a path graph.

Suppose G has c connected components (thus, n2 = n1 − c). Since
the connected components of G are almost equally sized, and the total
number of vertices in any k1 − k2 − 1 connected components of G is
at most k1 − 1, we can have at most A = (k1 − 1) mod (k1 − k2 − 1)

connected components of order
⌈

k1
k1−k2−1

⌉
, and B = c − A connected

components of order
⌊

k1
k1−k2−1

⌋
. Thus,

n1 ≤ A ·
⌈

k1
k1 − k2 − 1

⌉
+B ·

⌊
k1

k1 − k2 − 1

⌋
,

which is simplified to

n1 ≤ (k1 − 1) + (c− (k1 − k2 − 1))

⌊
k1

k1 − k2 − 1

⌋
.

This yields

c ≥

n1 − k1 + 1⌊
k1

k1−k2−1

⌋
+ k1 − k2 − 1,

from which we get

n2 ≤ n1 −

n1 − k1 + 1⌊
k1

k1−k2−1

⌋
+ k1 − k2 − 1

 (A.3)

28

because n2 = n1− c. Note that if (A.3) holds, we can divide n1 vertices
into

c =

n1 − k1 + 1⌊
k1

k1−k2−1

⌋
+ k1 − k2 − 1

groups such that the total sum of vertices in every k1 − k2 − 1 groups
is at most k1 − 1. Therefore, (A.3) is both necessary and sufficient to
have a Fk1,k2-free forest of order n1 and size n2.

Now, let us cover the case where G is Fk1,k2-free but not a forest. We
first convert G into a forest G′ of the same order and size as G. Then,
we prove that G′ is Fk1,k2-free. This will imply the bound (A.3), and
conclude the proof.

Let G1 = (V1, E1), G2 = (V2, E2), . . . , Gc = (Vc, Ec) be the connected
components of G. Suppose that the fist c1 ≥ 1 connected components
of G are not tree, that is |Ei| ≥ |Vi| for every i ∈ [c1]. Since the
remaining components are tree, we have |Ei| = |Vi| − 1 for c1 < i ≤ c.
Let t be the smallest integer for which we have

t∑
i=1

|Ei| =
t∑

i=1

|Vi| − 1.

Since G is Fk1,k2-free, such t must exist. Note that for any integer
h, 1 ≤ h ≤

∑t
i=1 |Vi| − 1, the first t connected components of G (i.e.

G1, G2, . . . , Gt) have a h-vertex subgraph of size at least h− 1.

Let us now change G to a forest G′ by replacing the first t connected
components of G with a path graph of order

∑t
i=1 |Vi| and size

∑t
i=1 |Ei|.

Towards showing a contradiction, assume that G′ has a subgraph H ′

of order k1 and size greater than k2. Suppose h vertices of H ′ are from
the path graph added. We replace these h vertices with h vertices from
the first t connected component of G that induce a subgraph of size
at least h − 1. These new set of h vertices together with the k1 − h
remaining vertices of H ′ induce a k1-subgraph of size greater than k2
in G. This is a contradiction because G is Fk1,k2-free.

□

29

Appendix B. Proof of Proposition 2

Let T be an [n, k, r]-Tanner graph with minimum distance d∗. A Tanner
graph determines the zero elements of code’s parity-check matrix. Let
H(n−k)×n be a parity-check matrix whose zero elements are set by T ,
and the non-zero elements are chosen uniformly at random from GF (q).
Let V be any set of d∗ − 1 variable nodes. By Definition 4 and Hall’s
theorem [30], we get that there is a perfect matching between V and
a set of d∗ − 1 check nodes, denoted C. Let h be the submatrix of H
whose rows and columns correspond to the sets C and V , respectively.
Using the Schwartz-Zippel theorem we get that the determinant of
matrix h is non-zero with probability at least 1− d∗−1

q
. In other words,

the d∗ − 1 failures corresponding to variable nodes V are recoverable
with probability at least 1 − d∗−1

q
. There are in total

(
n

d∗−1

)
possible

d∗ − 1 node failure combinations. By the union bound, the probability
that every d∗ − 1 failures are recoverable is at least

1− d∗ − 1

q

(
n

d∗ − 1

)
,

which is positive if q > (d∗ − 1)
(

n
d∗−1

)
. Therefore, there exists an

[n, k, r]-LRC with minimum distance d∗ over any finite field of size at
least (d∗ − 1)

(
n

d∗−1

)
+ 1.

Now let us prove the converse. Suppose there is a [n, k, r]-LRC with
minimum distance d∗. Let H(n−k)×n be a parity-check matrix of the
LRC that has the maximum number of rows of Hamming weight at
most r + 1. Let T be the [n, k]-Tanner graph corresponding to H.
Note that every variable node in T must be adjacent to at least one
check node of degree at most r + 1; otherwise, by the construction of
H, we get that the code’s locality is greater than r. Therefore, T is
indeed an [n, k, r]-Tanner graph.

Let η be any integer in the interval [n − k − d∗ + 2, n − k]. We show
that every set of η check nodes are adjacent to at least η + k variable
nodes. Towards showing a contradiction, suppose that there is a set
C of η check nodes that are connected to at most η + k − 1 variable
nodes. There are in total n variable nodes, thus there is a set V of
n − (η + k − 1) variable nodes that are not connected to any of the
check nodes in C. In other words, there is a set V of n − (η + k − 1)

30

variable nodes that are connected to at most n−k−|C| = n−k−η check
nodes. Note that |V | = n−k−η+1 and η ∈ [n−k−d∗+2, n−k], thus
1 ≤ |V | ≤ d∗ − 1. If all the nodes in V fail, there will be not enough
number of equations to recover them, because the number of check
nodes connected to the variable nodes in V is less than the number of
variable nodes in V . This is a contradiction, because any d∗−1 failures
are recoverable as the code’s minimum distance is d∗. Therefore, for any
integer η ∈ [n−k−d∗+2, n−k], every set of η check nodes are adjacent
to at least η + k variable nodes. Consequently, by Definition 4, the
minimum distance of T is at least d∗. This implies that the minimum
distance of T is exactly d∗; otherwise, by the first part of this proof,
there exists an [n, k, r]-LRC with minimum distance greater than d∗,
which is not possible.

Acknowledgement
This work was partially supported by the Natural Sciences and Engineering
Research Council of Canada discovery grant.

31

References

[1] P. Gopalan, C. Huang, H. Simitci, S. Yekhanin, On the locality of code-
word symbols, IEEE Trans. Inf. Theory 58 (11) (2012) 6925–6934.

[2] F. Oggier, A. Datta, Self-repairing homomorphic codes for distributed
storage systems, in: INFOCOM, 2011, pp. 1215–1223.

[3] D. Papailiopoulos, J. Luo, A. Dimakis, C. Huang, J. Li, Simple regen-
erating codes: Network coding for cloud storage, in: INFOCOM, 2012,
pp. 2801–2805.

[4] X. Li, L. Ma, C. Xing, Optimal locally repairable codes via elliptic
curves, IEEE Trans. Inf. Theory 65 (1) (2019) 108–117.

[5] B. Chen, W. Fang, S. Xia, F. Fu, Constructions of optimal (r, δ) locally
repairable codes via constacyclic codes, IEEE Trans. Commun. 67 (8)
(2019) 5253–5263.

[6] L. Jin, Explicit construction of optimal locally recoverable codes of dis-
tance 5 and 6 via binary constant weight codes, IEEE Trans. Inf. Theory
65 (8) (2019) 4658–4663.

[7] J. Hao, S. Xia, K. W. Shum, B. Chen, F. Fu, Y. Yang, Bounds and
constructions of locally repairable codes: Parity-check matrix approach,
IEEE Trans. Inf. Theory 66 (12) (2020) 7465–7474.

[8] L. Jin, L. Ma, C. Xing, Construction of optimal locally repairable codes
via automorphism groups of rational function fields, IEEE Trans. Inf.
Theory 66 (1) (2020) 210–221.

[9] B. Chen, W. Fang, S. Xia, J. Hao, F. Fu, Improved bounds and singleton-
optimal constructions of locally repairable codes with minimum distance
5 and 6, IEEE Trans. Inf. Theory 67 (1) (2021) 217–231.

[10] I. Tamo, A. Barg, A family of optimal locally recoverable codes, IEEE
Trans. Inf. Theory 60 (8) (2014) 4661–4676.

[11] O. Kolosov, A. Barg, I. Tamo, G. Yadgar, Optimal LRC codes for all
lengths n≤q, CoRR abs/1802.00157 (2018).
URL http://arxiv.org/abs/1802.00157

32

http://arxiv.org/abs/1802.00157
http://arxiv.org/abs/1802.00157
http://arxiv.org/abs/1802.00157

[12] V. Cadambe, A. Mazumdar, Bounds on the size of locally recoverable
codes, IEEE Trans. Inf. Theory 61 (11) (2015) 5787–5794.

[13] N. Silberstein, A. Rawat, S. Vishwanath, Error-correcting regenerating
and locally repairable codes via rank-metric codes, IEEE Trans. Inf.
Theory 61 (11) (2015) 5765–5778.

[14] I. Tamo, D. Papailiopoulos, A. Dimakis, Optimal locally repairable
codes and connections to matroid theory, IEEE Trans. Inf. Theory
62 (12) (2016) 6661–6671.

[15] W. Song, S. Dau, C. Yuen, T. Li, Optimal locally repairable linear codes,
IEEE J. Sel. Areas Commun. 32 (5) (2014) 1019–1036.

[16] N. Prakash, V. Lalitha, P. V. Kumar, Codes with locality for two era-
sures, in: IEEE Int. Symp. Inf. Theory (ISIT), 2014, pp. 1962–1966.

[17] A. Wang, Z. Zhang, An integer programming-based bound for locally
repairable codes, IEEE Trans. Inf. Theory 61 (10) (2015) 5280–5294.

[18] T. Westerbäck, R. Freij-Hollanti, T. Ernvall, C. Hollanti, On the com-
binatorics of locally repairable codes via matroid theory, IEEE Trans.
Inf. Theory 62 (10) (2016) 5296–5315.

[19] B. Bollobás, Extremal Graph Theory, Dover, 2004.

[20] I. Holyer, The NP-completeness of edge-coloring, SIAM J. Comput.
10 (4) (1981) 718–720.

[21] M. Garey, D. Johnson, L. Stockmeyer, Some simplified NP-complete
graph problems, Theor. Comput. Sci. 1 (3) (1976) 237–267.

[22] P. Erdös, M. Simonovits, Compactness results in extremal graph theory,
Combinatorica 2 (3) (1982) 275–288.

[23] P. Erdös, T. Gallai, Graphs with prescribed degrees of vertices (in hun-
garian), Matematikai Lapok 11 (1960) 264–274.

[24] S. L. Hakimi, On realizability of a set of integers as degrees of the vertices
of a linear graph, SIAM J. Discrete Math. 10 (3) (1962) 496–506.

[25] F. Harary, Graph theory, Addison-Wesley, 1991.

33

[26] N. Prakash, G. Kamath, V. Lalitha, P. V. Kumar, Optimal linear codes
with a local-error-correction property, in: IEEE Int. Symp. Inf. Theory
(ISIT), 2012, pp. 2776–2780.

[27] A. Wang, Z. Zhang, Repair locality with multiple erasure tolerance,
IEEE Trans. Inf. Theory 60 (11) (2014) 6979–6987.

[28] I. Tamo, A. Barg, A. Frolov, Bounds on the parameters of locally recov-
erable codes, IEEE Trans. Inf. Theory 62 (6) (2016) 3070–3083.

[29] A. Rawat, D. Papailiopoulos, A. Dimakis, S. Vishwanath, Locality and
availability in distributed storage, IEEE Trans. Inf. Theory 62 (8) (2016)
4481–4493.

[30] J. Bondy, U. Murthy, Graph Theory with Applications, Elsevier, 1976.

34

	Introduction
	Existing Results on Computing D(n,k,r)
	Our Contribution

	Connecting LMD to Graph Theory
	Main Results
	Proving Theorem 1
	LMD and Extremal Graph Theory
	Hardness of LMD
	LMD and Graph Theory

	Conclusion and Future Research
	
	Proof of Proposition 2

