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Abstract7

We introduce the Condorcet attack, a new threat to fair transaction ordering. Specifically, the attack8

undermines batch-order-fairness, the strongest notion of transaction fair ordering proposed to date.9

The batch-order-fairness guarantees that a transaction tx is ordered before tx′ if a majority of nodes10

in the system receive tx before tx′; the only exception (due to an impossibility result) is when tx11

and tx′ fall into a so-called “Condorcet cycle”. When this happens, tx and tx′ along with other12

transactions within the cycle are placed in a batch, and any unfairness inside a batch is ignored.13

In the Condorcet attack, an adversary attempts to undermine the system’s fairness by imposing14

Condorcet cycles to the system. In this work, we show that the adversary can indeed impose15

a Condorcet cycle by submitting as few as two otherwise legitimate transactions to the system.16

Remarkably, the adversary (e.g., a malicious client) can achieve this even when all the nodes in17

the system behave honestly. A notable feature of the attack is that it is capable of “trapping”18

transactions that do not naturally fall inside a cycle, i.e. those that are transmitted at significantly19

different times (with respect to the network latency). To mitigate the attack, we propose three20

methods based on three different complementary approaches. We show the effectiveness of the21

proposed mitigation methods through simulations, and explain their limitations.22
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1 Introduction26

The first blockchain application, Bitcoin, emerged in the midst of the financial crisis of 2008,27

caused in part by the excessive trust placed in centralized institutions. Blockchain technology28

changed this. In blockchain, there is no central authority or intermediary controlling the entire29

system. Instead, transactions are validated and included through a consensus mechanism30

among the participating parties. Decentralization also promotes transparency and reduces31

the possibility of fraud or corruption since all transactions are publicly recorded and visible32

to all participants on the network.33

Despite the decentralized nature of blockchain systems, the ordering of transactions is34

carried out in a centralized manner; the miner/validator who creates a block determines the35

ordering of transactions within the block. This gives too much power to a single entity as36

the success and profitability of a transaction can be determined by the order in which the37

transaction appears in a block [6, 1, 8, 9, 16]. For instance, when a Non-Fungible Token38

(NFT) is dropped in a given block, transactions positioned earlier in the block have a higher39

chance of acquiring the NFT compared to those placed later.40

To address this issue, several existing works [12, 20, 11, 4, 10, 13] proposed decentralized41

methods for handling transaction ordering, where instead of a single node, a committee42

of nodes collectively decide on the ordering of received transactions. At the core of these43

methods, each node in the system reports a list of transactions in the order the node has44
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received them. The system then generates and agrees on a “fair” ordering by taking the45

reported orderings into account.46

Finding a fair ordering is not trivial. For instance, suppose that for any two transactions47

tx1 and tx2, we require tx1 to be placed before tx2 if a large majority of nodes in the system48

claim to have received tx1 before tx2. Despite being a primitive requirement, no method49

can provide a guarantee due to an impossibility result rooted in social choice theory [2]. As50

an example, consider a system consisting of three nodes, where each node has received three51

transactions: tx1, tx2, and tx3. Suppose the nodes report the ordering as [tx1, tx2, tx3],52

[tx2, tx3, tx1], and [tx3, tx1, tx2]. In this case, tx1 is reported to be before tx2 by two53

nodes (i.e. the majority), tx2 is reported to be before tx3 by two nodes, and tx3 is reported54

to be before tx1 by two nodes. This essentially creates a cycle, referred to as Condorcet55

cycle [5], which prevents any final ordering from respecting the views of the majority on how56

transactions should be ordered.57

The existing fair ordering methods adopt a relaxed approach to ordering transactions58

inside a Condorcet cycle. For instance, Cachin et al. in Quick-Fairness [4] do not mention59

any ordering mechanism for such transactions, and Kelkar et al. in Aequitas [12] suggest a60

simple alphabetical ordering. This relaxed approach is, perhaps, due to two reasons: 1) it is61

not possible to guarantee fair ordering of transactions inside a cycle; 2) Condorcet cycles62

occur infrequently in practice, and when they do occur, they usually involve transactions that63

are received around the same time by the nodes in the system. Nevertheless, in this work,64

we show that Condorcet cycles deserve more attention as they can be created “artificially”65

by adversaries through what we refer to as the Condorcet attack. An interesting feature of66

the Condorcet attack proposed in this work is that it can be conducted by a client outside67

the system. In particular, the attack can be effectively executed even when all the nodes in68

the system are honest!69

As will be explained later, in the Condorcet attack, an adversarial client sends a small70

number of transactions to different nodes in the system. The adversary chooses the timing and71

order of these transactions to create a Condorcet cycle that traps many honest transactions72

in it (a Condorcet cycle with only the adversary’s transactions in it is all but harmless to the73

system.). This cycle has to be broken by the leader in a leader-based method in order to74

establish a total ordering. Even if the leader is honest, the act of breaking the cycle could75

change the order of honest transactions, which would have otherwise been appropriately76

ordered1.77

Defending against the Condorcet attack is not straightforward. It is partly because it is78

challenging to differentiate between honest transactions and otherwise valid transactions that79

are submitted with the intention of creating a cycle. It becomes notably more challenging80

to safeguard the system when, in addition to the adversarial client outside the system, the81

leader and possibly a fraction of the nodes in the system are adversarial. Nevertheless,82

in this work, we propose three mitigation techniques based on three different approaches.83

The proposed techniques complement each other and can work together harmoniously to84

maximize resistance against the attack.85

In summary, we make the following contributions. We introduce a framework for a new86

type of attack (Condorcet attack) against fair transaction ordering. We show that the attack87

can be highly successful in trapping honest transactions in a cycle. To mitigate the attack,88

we propose three techniques based on three different complimentary approaches, and show89

1 Kelkar et al. [11] consider it a success for an adversary if the adversary places two transactions into the
same cycle when they should not have been.
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the effectiveness of the technique through simulations.90

2 Related Work91

The classical approach to mandating fair transaction ordering is through secure causal92

ordering, a method introduced by Birman and Reiter in 1994 [17], and later improved by93

Cachin et al. in 2001 [3]. This method uses encryption to conceal the content of transactions94

during the ordering process, and allows decryption of transactions only after the order of95

transactions is finalized. This prevents an adversary from observing the content of transactions96

during the ordering process, thereby effectively eliminating attacks such as the sandwich97

attack [16] that rely on inspecting transaction contents. However, the method is unable to98

prevent “blind front-running attacks” where, for instance, the adversary’s sole objective is to99

order her transaction first (to, for example, get priority in purchasing a token). In addition,100

the method cannot prevent attacks based on transactions’ metadata, as metadata (such as101

the source of a transaction) is not encrypted.102

The second approach to mandating fair transaction ordering involves a first-come, first-103

served strategy. This approach is complementary to the first approach and has been the104

focus of several recent studies. The existing methods that follow this strategy can be105

broadly classified into two categories: timestamp-based methods and batch-based methods.106

Timestamp-based methods are computationally inexpensive but require synchronized clocks.107

Batch-based methods, on the other hand, offer stronger fairness than timestamp-based108

methods, but can tolerate fewer adversarial nodes.109

Timestamp-based Methods. An example of a timestamp-based protocol is Pompe [20]110

due to Zhang et al. Pompe introduces a notion of fairness called the ordering linearizability.111

This notion stipulates that if the highest timestamp of a transaction tx is less than the112

lowest timestamp of a transaction tx′ among honest nodes, then tx must be ordered before113

tx′ in the final order of transactions. Although it can enforce ordering linearizability, Pompe114

suffers from censorship issues, as noted in [11].115

Kursawe’s Wendy protocol [13] is another timestamp-based protocol that defines a notion116

of fairness called timed-relative-fairness. This notion requires that if all honest nodes received117

a transaction tx before time τ , and transaction tx′ after τ , then tx must be ordered before118

tx′.119

Batch-based Methods. Aequitas [12] by Kelkar et al. is a batch-based method120

proposed for fair transaction ordering. Aequitas enforces a fairness notion known as the121

γ-batch-order-fairness. The notion requires that if two transactions tx and tx′ are received by122

all nodes in a system with n nodes, and γn nodes received tx before tx′, then all honest nodes123

must output tx no later than tx′. Aequitas suffers from high communication complexity of124

O(n3), and can guarantee only a weak notion of liveness, one of the two pillars of consensus125

security.126

The second batch-based method is Quick-Fairness [4] proposed by Cachin et al. This127

method enforces a fairness notion called the κ-differential order-fairness. This notion128

mandates that if the number of nodes that have received transaction tx before tx′ exceeds129

κ + 2f for some κ ≥ 0, then tx should be ordered no later than tx′, where f is the maximum130

number of adversarial nodes in the system. Kelkar et al. [11] show that this notion of131

fairness is indeed a re-parameterized version of the γ-batch-order-fairness notion. They132

also demonstrate that the Quick-Fairness protocol satisfies fairness only when all nodes are133

honest.134

Kelkar et al. addressed the shortcomings of Aequitas in their protocol called Themis [11].135

AFT 2023
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Themis satisfies the γ-batch-order-fairness notion, and solves the liveness problem of Aequitas.136

Moreover, SNARK-Themis variant offers a communication complexity of O(n) and standard137

Themis offers a communication complexity of O(n2) instead of O(n3) offered by Aequitas. In138

addition, it satisfies a more generalized notion of fairness than the one used in Quick-Fairness139

and a stronger notion of fairness than those used in the existing time-based methods. For140

these reasons, in our work, we focus on Themis and Aequitas as the state-of-the-art fair141

transaction ordering methods.142

3 Model143

System. We consider a permissioned system with a committee of n nodes. The nodes144

receive transactions directly from clients, and submit the list of their received transactions145

together with the order in which the transactions were received to a special node called the146

leader. The leader collects the lists of transactions from the nodes, and proposes a final147

ordering using a pre-decided fair-ordering protocol. The leader in the system is not fixed,148

and can change through a pre-determined protocol.149

Fair Ordering. We adopt the batch-order-fairness from [12, 11], the strongest notion of fair150

ordering proposed to date. For a parameter 1
2 < γ ≤ 1, the batch-order-fairness specifies151

that if a fraction γ of nodes receive a transaction tx before receiving another transaction152

tx′, then tx must be placed in the order before tx′, with exceptions allowed only if tx153

and tx′ are within the same Condorcet cycle (Condorcet cycles are defined in Section 4).154

Transactions within a cycle are placed in a batch, and are ordered by a method that we refer155

to as batch-ordering scheme. The existing fair ordering protocols either do not specify a156

batch-ordering scheme or propose a simple one (e.g., an alphabetical-based scheme [12]).157

Network. The network utilizes public key infrastructure and secure digital signatures for158

communications. As in [12], we consider two networks: the (standard) internal network159

(for communication amongst nodes in the system) and the external network (for clients to160

transmit their transactions to the system).161

We assume that the network operates under partial synchrony [7], meaning that there162

is a network delay ∆ (not known to the nodes) that limits the amount of time it takes for163

messages to be delivered between nodes.164

Adversary. We consider an adversary who has control over f ≥ 0 out of n nodes, and also165

possesses at least one client capable of submitting transactions to the system. The adversary166

can deviate arbitrarily from the protocol. The adversary does not have control over the167

external network, but may have full control over the internal network, hence can delay and168

reorder messages up to the bound ∆.169

4 Preliminaries170

Graph Terminology. We use G = (V, E) to denote a graph with the set of vertices V171

and the set of edges E. In this work, each vertex represents a transaction, therefore, we use172

the terms vertices and transactions interchangeably. Unless otherwise specified, we use an173

unweighted and directed graph. In the case of a weighted graph, the weight or cost associated174

with the edge (u, v) ∈ E is represented by w(u, v).175

A tournament graph is a directed graph where every pair of distinct vertices is connected176

by a directed edge in either of two possible directions. A Strongly Connected Component177

(SCC) in a graph is a maximal subgraph in which there is a path from every vertex to every178
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other vertex. A condensation graph is obtained from the original graph by combining its179

SCCs into a single vertex. A Directed Acyclic Graph (DAG) is a directed graph that contains180

no cycles, meaning it is possible to move from one vertex to another along the directed edges,181

but it is not possible to return to the original vertex by following a sequence of directed182

edges. A topological sort is an ordering of the vertices in a DAG such that for every directed183

edge (u, v), vertex u appears before vertex v. In other words, if there is a directed edge from184

vertex u to vertex v, then u must appear before v in the topological sort. A Hamiltonian185

Path is a path in a graph that passes through every vertex exactly once. A Hamiltonian186

Cycle is a cycle in a graph that passes through every vertex exactly once.187

Themis. Themis is the latest ordering method which achieves batch-order-fairness in the188

presence of an adversary who controls up to f < (2γ−1)n
4 nodes out of n nodes. Themis189

categorized received transactions into three different categories.190

Solid Transactions: A transaction is solid if it has been received by at least n − 2f191

nodes. A solid transaction is one that has been received by enough honest nodes that the192

leader can unambiguously include it in the current proposal while respecting the fairness193

guarantees.194

Blank Transactions: A transaction is blank if it has not been received by at least195

n(1 − γ) + f + 1 nodes. A blank transaction has not been received by enough nodes196

yet, hence excluding it from the current proposal will not violate fairness with respect to197

transactions that are included.198

Shaded Transactions: A shaded transaction is a transaction that is neither solid nor199

blank. A shaded transactions is received by enough nodes to be included to preserve200

fairness, but not enough nodes to finalize its position in the current proposal.201

Themis is a leader-based method and works in three phases, as described below.202

Phase 1 (Fair Propose): The Fair Propose phase is the first phase of the algorithm, where203

each node proposes a set of transactions and their local orderings to the leader. The204

leader then uses the local orderings of n − f nodes to build a dependency graph. In205

the dependency graph, an edge from a vertex v1 to v2 indicates that the transaction v1206

should be placed before the transaction v2. From the dependency graph, the leader then207

computes the condensation graph and its topological sorting to output a fair ordering.208

Phase 2 (Fair Update): The Fair Update phase is the second phase of the algorithm,209

where the leader node updates the ordering for previous proposals. This is necessary210

since this is part of the deferred ordering technique, and new transactions may depend211

on previously proposed transactions, and these dependencies need to be accounted for in212

the ordering. The Fair Update algorithm takes the local transaction orderings of n− f213

nodes for previously proposed shaded transactions as input and outputs the updated214

dependencies.215

Phase 3 (Fair Finalize): The Fair Finalize phase is the third and final phase of the216

algorithm, where a sequence of proposals is finalized into a final ordering. The Fair217

Finalize algorithm updates the graphs for each proposal and computes the condensation218

graphs and their topological sorting. It then retrieves the final transaction ordering for219

each proposal based on the Hamiltonian cycles of the vertices in the sorted condensation220

graphs.221

Condorcet Cycles. As mentioned above, Themis constructs a dependency graph, a222

directed graph where each vertex represents a transaction, and an edge from a vertex v1 to223

v2 indicates that the transaction corresponding to v1 should be placed before the transaction224
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corresponding to v2. We refer to any cycle in this dependency graph as a Condorcet cycle.225

We note that cycles can occur in a dependency graph because of the Condorcet paradox [11].226

5 Condorcet Attack227

In this section, we present the framework of the Condorcet attack. The attack aims at228

trapping honest transactions (i.e., transactions submitted by honest clients) inside a Condorcet229

cycle. If there is no effective batch-ordering scheme in place (e.g., if the batch-ordering230

scheme is alphabetical-based as suggested in [12]), this can change the ordering of the honest231

transactions even when all the nodes in the system are honest.232

An adversary can take different strategies to impose a Condorcet cycle. For instance,233

suppose that the adversary controls f nodes, including the leader, in the system. The234

adversary then controls f local orderings, and can manipulate these orderings in a way to235

create a cycle. In the simulation section, we show that this strategy can not only create a236

cycle but also chain the cycles to involve more honest transactions. Nevertheless, the length237

of these cycles is typically small and the chain usually breaks rather quickly. As a result,238

this strategy is not effective in trapping distant transactions2 (e.g., two transactions whose239

times of submission are separated by a multiple of the average network latency).240

Another strategy, which is the one we take in this work, is to create a Condorcet cycle by241

injecting (valid) transactions into the system following a pre-described pattern. This can be242

done by an adversarial client outside the system, and can be effective even when all the nodes243

in the system are honest. The attack will be more effective in creating cycles and bypassing244

potential countermeasures if the adversary controls a fraction of nodes in the system (see245

Example 5).246

The immediate damage of imposing a Condorcet cycle, as mentioned earlier, is that it247

can change the true ordering of honest transactions. In addition to this, the attack may be248

used to conduct other malicious activities; for instance, the adversary can create a cycle and249

then with the help of an adversarial leader can try to place its own transaction in desired250

positions in the final ordering.251

▶ Example 1. Let P = {P1, P2, P3} be a partition of nodes, where P1, P2 and P3 are three252

parts with almost equal size. In this simple example, the adversary C uses/injects two253

transactions A, B (i.e., S = {A, B}). In the initialization phase, C sends the transaction A and254

then B to all the nodes in part P1, and sends the transaction B to all the nodes in part P2 (it255

sends no transactions to the nodes in part P3). Then, after the pause period, C sends A to256

all the nodes in part P2, and transaction A and B, in that order, to all the nodes in part P3.257

Suppose that during the pause phase, the nodes receive three honest transactions tx1, tx2,258

and tx3 all the in that order. The local ordering of transactions at each node will be then:259

P1 : [A, B, tx1, tx2, tx3]
P2 : [B, tx1, tx2, tx3, A]
P3 : [tx1, tx2, tx3, A, B]

260

Note that without the adversarial client C disturbing the system (i.e., without transactions A261

and B), the system would have had an easy job of ordering the honest transactions as all262

the nodes in the system have received the honest transactions in the same order, i.e. [tx1,263

tx2, tx3]. Because of the adversary’s transactions A, B, and C, however, we have a cycle now264

2 The analysis of why this occurs is left for future work.
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as illustrated in Figure 1. In this figure, an edge from a transaction tx to a transaction tx′
265

indicates that the majority of the nodes have received tx before tx′.266

tx2

tx1 tx3

B A

Figure 1 A Condorcet cycle created using two transactions A and B

Attack Framework. In this section, we provide a general construction that encompasses267

the different variants of the Condorcet attack. Let C be a client controlled by the adversary,268

and S be a set of arbitrary but valid transactions created by C. Let P be a partition of the269

nodes in the system. In its general form, the Condorcet attack is executed in three phases:270

Phase 1 (Initialization): In this phase, the client C sends a number of transactions from271

the set S to each node in the system. The set of transactions sent to a node can be272

different from that sent to another node. More specifically, the client C assigns a subset273

Si of S (possibly an empty subset) to each part Pi in the partition P . It then determines274

an ordering for each subset Si, and sends the transactions in Si to all the nodes in part275

Pi with the determined order.276

Phase 2 (Pause): In the second phase, the attacker waits for a specific amount of time,277

referred to as the pause time, for the honest transactions to be received by the nodes.278

The adversary can trap more transactions within a cycle as the pause time increases.279

However, the pause time should be limited to a single consensus round in the system as280

the attack should not extend across multiple consensus rounds.281

Phase 3 (Finalization): The third and final phase is the finalization phase, where the282

attacker completes the Condorcet cycle by sending a new set of transactions to each283

part in the partition. More specifically, the client C assigns a subset S ′
i of S (typically a284

different subset than Si, used in the initialization phase) to each part Pi in the partition285

P . It then determines an ordering for each subset S ′
i, and sends the transactions in S ′

i to286

all the nodes in part Pi with the determined order.287

▶ Remark 2. In practice, nodes in the system may receive some honest transactions during288

the initialization and/or finalization phases. These transactions may or may not get trapped289

in the Condorcet cycle. Based on our simulation results, however, the vast majority of honest290

solid transactions during the pause time fall into the Condorcet cycle.291

▶ Remark 3. A potential issue that can impact the success of the Condorcet attack is that292

the external network may deliver the transactions injected by the adversary out of order.293

For instance, in Example 1, the transactions A and B may be received out of order by the294

nodes in part P1, in which case a cycle does not occur. If the network is prone to packet295

reordering, then to improve its success, the adversary can execute multiple Condorcet attacks296

concurrently through what we refer to as cloning.297

Cloning. Packet reordering can happen in a network because of various factors such as298

network congestion, routing algorithms, and the physical distance between the source and299
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the destination. To conduct a successful Condorcet attack, it is important that nodes receive300

the injected packets in the order they were transmitted; a deviation from the intended order301

may result in the failure of the attack.302

To increase the success probability of the attack in the presence of network reordering, the303

adversary can send cloned transactions to the nodes: Instead of sending a single transaction304

A, the adversary sends multiple clones of the transaction. For instance, in Example 1, the305

adversary can send A1 and A2 instead of A, and sends B1 and B2 instead of B. Essentially, the306

adversary interleaves the execution of two Condorcet attacks (for better results, the adversary307

can interleave several instances of the attack). Then, if the network does not change the order308

of the transactions, the nodes in parts P1, P2, and P3 will receive transactions as follows:309

P1 : [A1, A2, B1, B2, tx1, tx2, tx3]
P2 : [B1, B2, tx1, tx2, tx3, A1, A2]
P3 : [tx1, tx2, tx3, A1, A2, B1, B2]

310

In Section 7.3, we show that cloning can significantly increase the success rate of the Condorcet311

attack in the presence of network reordering.312

Impact on Current Solutions. The current fair transaction ordering protocols either do313

not offer a batch-ordering scheme (e.g. [4]) or offer a primitive one (e.g. [12]). For instance,314

the proposed batch-ordering scheme in Aequitas [12] is alphabetical ordering. Therefore, if315

an adversary creates a Condorcet cycle, as in Example 1, the honest transactions will be316

ordered alphabetically rather than by the time of their arrival.317

Themis [11], proposes a more thoughtful batch-ordering scheme. In this scheme, a318

Hamiltonian cycle is built and then used to order transactions in the cycle. The latest319

version of Themis at the time of writing this work suggests to break the weakest link in320

the Hamiltonian cycle in order to convert it into a Hamiltonian path. We use this version321

of Themis in our work. In the best-case scenario, the order of honest transactions in the322

Hamiltonian cycle is preserved. Even in this case, the final ordering of these transactions323

can change because the Hamiltonian cycle has to be converted into a path by breaking the324

cycle at one point. It is at this point where honest transactions can be divided into two325

groups. The ordering of the honest transactions within each group remains correct, but the326

ordering of any two transactions from different groups will be incorrect. Therefore, similar327

to [4] and [12], Themis is vulnerable to the Condorcet attack even if all the nodes (including328

the leader) in the system are honest.329

To combat the Condorcet attack, a natural approach is to use a strong batch-ordering330

scheme. For instance, in Example 1, we can observe that all the nodes report tx1 before tx2,331

and all the nodes report tx2 before tx3, whereas only two third of the nodes report A before332

B. In this example, the weakest link is between adversarial transactions, and breaking it (as333

suggested by Themis) does not change the true ordering of the honest transactions. This334

solution works for the scenario described in Example 1. However, this solution may not work335

in other settings, for example when the adversary controls a faction of nodes in the system336

(see Example 5).337

6 Mitigation338

Despite its simplicity, it is not straightforward to completely defeat the Condorcet attack. In339

the following, we present three mitigation techniques based on three different approaches to340

hinder an adversary from successfully executing the attack. We elaborate on the strength of341

each technique and confirm it through simulations later in Section 7. We also explain the342
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limitation of each technique, i.e. under what settings/assumptions the technique may not be343

effective.344

An interesting feature of the proposed mitigation methods is that they do not conflict345

with each other, thus in practice, they can be applied together for the maximum defense346

against the attack. Another interesting feature of the proposed mitigation methods is that347

they can be easily applied to Themis, which is currently the strongest fair-ordering solution348

in the literature. We elaborate on this when we cover each proposed mitigation.349

6.1 Ranked Pairs Batch-ordering350

The approach we take in our first proposed mitigation is to use a strong batch-ordering351

scheme to order transactions within a batch. Formally, a batch-ordering scheme is a method352

that takes as input a strongly connected (possibly weighted) directed graph G = (V, E),353

and returns an ordering of the vertices V . The strongly connected graph represents the354

transactions that are in a batch/cycle.355

The candidate for our batch-ordering scheme is ranked pairs, an electoral system developed356

by Nicolaus Tideman in 1987 [19]. Ranked pairs satisfies many natural and well-studied357

axiomatic properties in social choice theory3 and is resistant to certain manipulations358

including adding, deleting and changing a fraction of orderings reported by nodes [15]. In359

ranked pairs, the ordering is essentially achieved by choosing a maximal subset E′ of E in360

the inputted graph G = (V, E) with high weights such that G′ = (V, E′) is a DAG. The DAG361

is then used to establish an ordering of the vertices V .362

More specifically, our ranked pairs batch-ordering scheme takes as input a weighted363

directed graph G = (V, E). Let E1 = E. In step i, i ≥ 1, the algorithm selects an edge364

(u, v) ∈ Ei with the highest weight4. It then sets the order u ≺ v, unless this violates the365

transitivity of the orders decided in previous steps. Finally, it sets Ei+1 ← Ei\{(vi, vj)}, and366

terminates if Ei+1 = ∅.367

We note that the idea in the above batch-ordering scheme is to establish an ordering368

using the strongest edges in G. This will be an effective defense against the Condorcet attack369

if the ordering of the honest transactions has “strong support” in the system. In a special370

case where all the nodes are honest, and all support/report the same ordering of honest371

transactions, the Condorcet attack can be fully prevented as stated in the following theorem.372

▶ Proposition 4. Suppose that the Condorcet attack succeeds in creating a Condorcet cycle.373

Let tx1, tx2, . . . , txm be the set of honest transactions in the Condorcet cycle. Suppose that374

all the nodes in the system are honest and report txi before txj for every 1 ≤ i < j ≤ m.375

Then the proposed ranked pairs batch-ordering scheme returns the true ordering of the honest376

transaction, that is it orders txi before txj for every 1 ≤ i < j ≤ m.377

Proof. Let G = (V, E) be the graph with V representing the transactions in the Condorcet378

cycle, and the weight of each edge (u, v) ∈ E, represented as w(u, v), be equal to the number379

of nodes that reported u before v. Let u1, u2, . . . , um be the vertices in V that represent the380

honest transactions. Let Ef ⊆ E be the set of all edges with the full support of the nodes,381

3 besides Schulze, ranked pairs is the only existing electoral system that satisfies anonymity, Condorcet
criterion, resolvability, Pareto optimality, reversal symmetry, monotonicity, and independence of
clones [18].

4 When there are multiple edges with the highest weight, one can be chosen according to a fixed tie-breaking
method.
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that is382

Ef = {e ∈ E|w(e) = n},383

where n is the number of nods in the system. Since all the nodes in the system have the384

same view on the ordering of the honest transactions, we get that (ui, uj) ∈ Ef for every385

1 ≤ i < j ≤ m. We note that the sub-graph G′ = (V, Ef ) of G is cycle free, as otherwise386

there will be a cycle in the ordering of individual nodes. The ranked pairs batch-ordering387

algorithm first chooses all the edges in Ef before proceeding with other edges in E. When388

the algorithm covers all the edges in Ef the true ordering of the honest transactions will be389

set, and cannot be changed by the remaining steps of the algorithm. ◀390

Limitation. Proposition 4 considers an ideal scenario where 1) all the nodes are honest,391

and 2) they all report the honest transaction in the same order. If one of the above two392

conditions does not hold, however, the Condorcet attack may be able to create a cycle (see393

the following example).394

▶ Example 5. Consider a system with n = 5 nodes. Let tx1, tx2, tx3 be three honest395

transactions. An adversarial client C can create a Condorcet cycle of the form396

N1 : [A1, A2, A3, A4, tx1, tx2, tx3]
N2 : [A2, A3, A4, tx1, tx2, tx3, A1]
N3 : [A3, A4, tx1, tx2, tx3, A1, A2]
N4 : [A4, tx1, tx2, tx3, A1, A2, A3]
N5 : [tx3, tx2, tx1, A1, A2, A3, A4]

397

where A1, A2, A3, A4 are the transactions submitted by C. Note that all the nodes, except398

Node 5, report the order [tx1, tx2, tx3], while node 5 reports [tx3, tx2, tx1] (Node 5 is either399

controlled by the adversary or is an honest node who has simply received the transactions400

in this order). If we run the proposed ranked pairs batch-ordering scheme on this cycle,401

the returned order of honest transactions may be incorrect. It is because the edge between402

any pair of transactions has a weight of 4 in the dependency graph. As a result, an edge403

between two honest transactions such as tx1 and tx2 may be eliminated in the ranked pairs404

method, which would result in tx2 and tx3 to be ordered before tx1. As for Themis, if we405

use the proposed method by Yannis Manoussakis [14] (as suggested by Themis), we get the406

Hamiltonian cycle (A1, A2, A3, A4, tx1, tx2, tx3). All the edges in this cycle have the identical407

weight of four, hence there is no distinct weakest edge. Therefore, Themis may remove any408

of the edges in the cycle. If the removed edge is between two honest transactions, the final409

ordering of honest transactions would be incorrect. We remark that both the ranked pairs410

batch-ordering scheme and Themis would order honest transactions correctly if Node 5 order411

honest transactions as [tx1, tx2, tx3]. This example, therefore, shows that the adversary412

has more power in modifying the order of honest transactions if (in addition to injecting413

transactions) it controls a number of nodes in the system (e.g. Node 5 in this example).414

▶ Remark 6. To use the proposed ranked pairs batch-ordering scheme in Themis, we can415

simply replace the Hamiltonian-based batch-ordering scheme of Themis with the ranked pairs416

batch-ordering scheme in the FairFinalize algorithm. We remark that the weight information417

of the dependency graph is available within the FairFinalize algorithm, thus this replacement418

is possible.419
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6.2 Post-decryption Resolution420

In secure causal ordering, as mentioned earlier, transactions are ordered while they are421

encrypted, and get decrypted only once a total ordering is committed [17, 3]. This prevents422

an adversary from observing the contents of transactions while they are being ordered, hence423

eliminating those front-running attacks (e.g. the sandwich attack [16]) that must examine424

the content of transactions.425

To mitigate the Condorcet attack, we propose to maintain the above strategy, except we426

leave the ordering of transactions inside a Condorcet cycle to after they are decrypted. Note427

that after the decryption of these transactions, an adversary cannot impose a change to the428

ordering as 1) there is already a consensus on the set of transactions that must be included,429

thus the adversary cannot add or remove any transaction to the set; 2) the ordering of the430

transactions is performed locally at each node using a pre-determined algorithm. In other431

words, it is too late for the adversary to manipulate the ordering of transactions, although432

the contents of transactions are disclosed.433

Once the transactions within a cycle are decrypted, their contents are disclosed, enabling434

them to be partitioned into independent groups (i.e., transactions inside different groups are435

independent of each other). Each group can then be ordered independent of the others. By436

implementing this measure, the adversary is unable to manipulate the ordering of honest437

transactions if the adversary’s transactions are independent of honest transactions. This438

is because the adversary’s transactions will not fall within any group that includes honest439

transactions. Note that we still need to order the groups themselves (i.e. which group comes440

first, which comes second, and so on). As transactions across various groups have no effect441

on one another, the groups can be safely ordered using a pre-determined algorithm such as442

ranked pairs as described in Section 6.1.443

▶ Remark 7. In the Themis protocol, we can apply the above post-decryption resolution444

method within the FairFinalize algorithm: If transactions A and B are independent, the edge445

between them in the dependency graph can be safely removed.446

Limitation. The post-decryption resolution prevents the adversary from manipulating447

the order of honest transactions if the adversary’s transactions are independent of the honest448

transactions. In certain scenarios, however, the adversary may be able to create dependencies.449

For instance, consider a situation where a popular NFT is dropping in a block currently450

being formed. Given the high demand, many transactions are transmitted with the intention451

of acquiring this NFT. Recognizing this, the adversary can execute the Condorcet attack452

by using transactions that fall within the same dependency group as those attempting to453

acquire the NFT.454

Another limitation of the post-decryption resolution is the computational burden it places455

on the system to identify dependencies between transactions.456

6.3 Broadcast457

In the Condorcet attack, the adversary follows a well-structured three-phase strategy: in458

the first phase, the adversary sends a set of transactions, then pauses in the second phase,459

and then finishes the attack by sending another round of transactions in the third phase.460

The idea behind our third mitigation technique is to disturb/break the above pattern by461

broadcasting transactions inside the system as soon as they arrive at an honest node. Because462

of the broadcast, the adversary’s transactions that were submitted in the first phase will463

propagate in the system, which can nullify the adversary’s target in the third phase since the464
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transactions that the adversary transmits in the third phase have already been received by465

the nodes (thus their order has already been decided by the nodes).466

In Section 7.5, we observe that this strategy proves highly effective in mitigating the467

suggested Condorcet attack. However, it is important to note that this strategy does incur468

increased communication overhead as a drawback. For instance, in Themis, nodes transmit469

transactions only to the leader as opposed to broadcasting in the network by themselves.470

Therefore, when applied to Themis, the above strategy will increase Themis’s communication471

overhead (although it does not increase Themis’s quadratic communication complexity).472

Limitation. The main limitation of the above broadcast-based mitigation technique is473

that it will be ineffective if the adversary has strong control over the internal network. For474

instance, in Themis and Aequitas, it is assumed that the adversary controls all message475

delivery in the internal network, and can delay messages up to a bound ∆. If ∆ is large476

enough (e.g., if it is larger than the duration of the Condorcet attack) then the adversary477

can circumvent the proposed mitigation by delaying all the broadcast transactions so they478

are delivered only after the attack is complete.479

7 Simulation480

To assess the impact of the Condorcet attack, as well as the effectiveness of the proposed481

mitigation methods, we conduct a series of experiments through simulations. In this section,482

we present the results of these experiments.483

Environments. Our simulation encompasses four environments. The first environment484

captures the honest setting, where all the nodes and clients are honest, thereby eliminating485

the possibility of a Condorcet attack. Even in this environment, Condorcet cycles can occur.486

Therefore, we are interested to know if our proposed ranked pairs batch-order scheme can487

more effectively order transactions within a cycle than the Hamiltonian-cycle-based scheme488

used in Themis.489

In the second environment, all the nodes in the system are honest, but there is an external490

adversary, who conducts the Condorcet attack from outside the system. In this environment,491

we are interested to evaluate the success rate and impact of the Condorcet attack (i.e., how492

many honest transactions the adversary can trap within a cycle).493

In the third environment, we introduce packet reordering to the external network. We494

evaluate the impact of this on the success rate of the Condorcet attack. We also observe how495

the cloning method can help the adversary to improve its success rate.496

The last environment that we consider is similar to the second environment, except this497

time we guard the system using the proposed mitigation methods. In this environment, we498

measure the impact of the Condorcet attack in order to examine the strength of the proposed499

mitigation methods.500

Clients. We use a sending process to submit all the clients’ transactions to the system.501

The sending process transmits transactions in sequence at discrete times ti, i ≥ 0. At each502

time instance, the process sends (n copies of) the transaction of a given client to all the n503

nodes in the system. Each copy of the transaction will arrive at its destination node with a504

random delay drawn independently from a distribution named NetworkDist. We refer to505

this distribution as the network latency. We use another distribution, GenerationDist, to506

determine the delay between two consecutive time instances (i.e. ti+1 − ti follows the507

GenerationDist distribution). Similar to [11], we set both GenerationDist and508

NetworkDist to exponential distributions with means of one and r, respectively. We refer to509
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(a) The chance of a Condorcet cycle (b) Number of transactions in cycles

Figure 2 Condorcet cycles in the honest environment

r as external network ratio. One can think of r as the expected number of clients who510

transmit transactions within a time frame equal to the average network latency.511

Themis Variant. In our simulations, we use the practical Themis variant with the512

communication complexity of O(n2), instead of the the SNARK-Themis variant. In our513

simulations, all transactions are eventually received by each node in a single round. Therefore,514

the choice of γ does not have any impact on the simulation results (hence, we simply set515

γ = 1). We used the latest version of Themis, which breaks the Hamiltonian cycle by516

removing the weakest link. The weakest link is the link that has the least weight or support517

in the Hamiltonian cycle. To construct a Hamiltonian cycle, we used the proposed method518

by Yannis Manoussakis [14] as suggested by Themis.519

7.1 Honest Environment520

Honest Environment Setting. In this environment, all the nodes and clients are honest,521

and consequently, there is no Condorcet attack. Nevertheless, as shown in Figure 2, Condorcet522

cycles can occur particularly when the external network ratio is greater than one.523

To obtain the results plotted in Figure 2, we varied the external network ratio from 0.01524

to 1000. For each given network ratio, and each network size of n = 21 and n = 101, we525

conducted 100 simulation runs. In each run, the sending process transmitted 100 transactions526

(at 100-time instances drawn from the GenerationDist distribution). Once every node527

received all the transmitted transactions, we proceeded to generate the dependency graph528

using the Themis algorithm. By examining the graph (i.e. extracting strongly connected529

components) we then identified all the Condorcet cycles.530

Cycle Length. An interesting observation from Figure 2 is that when the external531

network ratio is less than about one, Condorcet cycles rarely occur. As the external network532

ratio becomes larger than one, however, Condorcet cycles start to appear. For high values of533

the external network ratio, as depicted in Figure 2, Condorcet cycles not only occur frequently534

but also include many of the transmitted transactions. Overall, this observation suggests a535

critical threshold at which the system’s behavior, with respect to creating Condorcet cycles,536

significantly changes.537

Condorcet Cycles Categories. We refer to Condorcet cycles that are not created by538

an adversary as natural Condorcet cycles. Conversely, we call a Condorcet cycle adversarial539

if it is created by an adversary. In Section 6.1, we proposed a ranked pairs batch-ordering540
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scheme to handle the ordering of transactions within an adversarial Condorcet cycle. Later541

in this section, we demonstrate that the proposed scheme indeed alleviates the severity of542

the Condorcet attack.543

Ranked Pairs Performance. Here, we show (Figure 3) that the proposed ranked pairs544

batch-ordering scheme is also a good candidate for ordering transactions within a natural545

Condorcet cycle. Consequently, even in an honest environment, we can improve fairness in546

ordering transactions by replacing the existing batch-ordering schemes (i.e., the alphabetical547

scheme, and the Hamiltonian-based scheme of Themis) with the proposed ranked pairs548

batch-ordering scheme.549

Batch Ordering-Schemes Performance Comparison. In Figure 3, the external550

network ratio (the x-axis) ranges from 1 to 1000; this is the range in which Condorcet551

cycles naturally occur. The y-axis shows the fraction of transaction pairs that are ordered552

correctly according to their transmission time. Each data point in Figure 3 is the average553

of values obtained over 100 simulation runs. The data presented in this figure demonstrate554

the superiority of the proposed ranked pairs batch-ordering scheme for two network sizes of555

n = 21 and n = 101.556

(a) The number of nodes is n = 21 (b) The number of nodes is n = 101

Figure 3 Fraction of correctly ordered transactions in the honest environment

7.2 Adversarial Environment557

Adversarial Environment Setting. In the existing adversarial environments in the558

literature, there is often at least one (typically up to f = θ(n)) adversarial node in the system.559

In our adversarial environment, in contrast, all the nodes in the system can be honest. There560

is, however, an adversarial client in our environment who orchestrates the Condorcet attack561

from outside the system.562

In this section, we evaluate the performance of the Condorcet attack in this environment.563

In particular, we measure the success rate of the attack in the number of honest transactions564

it can trap within a cycle. The measurement is carried out for external network ratios r less565

than one, as natural Condorcet cycles are rare in this regime, particularly when r ≪ 1. This566

allows us to assess the strength of the attack in creating cycles in a setting where Condorcet567

cycles do not naturally happen.568

In our simulation, we simply use two adversarial transactions to create the Condorcet cycle569

as described in Example 1. We set the pause time of the Condorcet attack to τ ∈ {10, 50}570

times the mean of the GenerationDist distribution. This means that, on average, τ honest571



M. A. Vafadar and M. Khabbazian 15:15

transactions are transmitted to the system during the pause time.572

In parallel to the transmissions of honest transactions, the two adversarial transactions573

are transmitted to create a Condorcet cycle. Once all transactions are received by the nodes,574

we calculate two separate dependency graphs: one considering the adversarial transactions,575

and one ignoring them. By comparing these two dependency graphs, we then assess the576

impact of the attack on the final ordering.577

Condorcet Attack Performance. Figures 4 and 5 show the average number of the578

honest transactions that the attack can trap within cycles over two different settings: τ = 10579

and τ = 50. As shown, for a wide range of external network ratios, the attack can trap580

nearly all the honest transactions that are transmitted during the pause time (about 9581

honest transactions in the setting τ = 10, and nearly 49 honest transactions in the setting582

τ = 50). This demonstrates the strength of the attack, considering that, on average τ honest583

transactions are submitted to the system during the pause time (and the attack traps nearly584

all of them).585

(a) τ = 10, n = 21 (b) τ = 10, n = 101

Figure 4 Number of honest transactions trapped in Condorcet cycles for τ = 10.

(a) τ = 50, n = 21 (b) τ = 50, n = 101

Figure 5 Number of honest transactions trapped in Condorcet cycles for τ = 50.
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7.3 Network Reordering586

In the Condorcet attack, the adversary sends a sequence of transactions in a particular order587

to create a cycle. The external network may, however, change the order of transactions588

transmitted, which can, in turn, reduce the attack’s success rate. To evaluate this, we589

performed simulations over a network which changes the order of two consecutively590

transmitted transactions with probability 0 ≤ p ≤ 0.5. For each value of p, we performed591

1000 runs of simulations. The success rate of the attack was set to the fraction of runs in592

which the attack successfully trapped the honest transactions in a Condorcet cycle.593

Using the above setting, we conducted two instances of the Condorcet attack. The first594

instance uses two adversarial transactions A and B as in Example 1, and takes the following595

pattern:596

P1 : A, B, Pause
P2 : B, Pause, A
P3 : Pause, A, B

597

As illustrated in Figure 6, this instance is sensitive to network reordering (the success598

rate of the attack drops quickly with p). As shown in the figure, the attack’s success rate599

increases when we use the second instance of cloning described below.600

In our second instance (denote as tx = 4 in Figure 6), the adversary partitions nodes601

into four parts P1, P2, P3 and P4, and uses four transactions (A, B, C and D) instead of two,602

in the following pattern:603

P1 : A, B, Pause , C, D
P2 : B, C, Pause , D, A
P3 : C, D, Pause , A, B
P4 : D, A, Pause , B, C

604

This instance of the Condorcet attack is more robust against network reordering as605

demonstrated in Figure 6. As in the first instance, the success rate of the instance can be606

boosted using the cloning method. In particular, note that the second instance together with607

a single clone is almost fully resistant to network transaction reordering.608

(a) The number of nodes is n = 21 (b) The number of nodes is n = 101

Figure 6 Impact of network reordering on the success of the Condorcet attack.
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7.4 A Non-Injective Condorcet Attack609

Injecting transactions into the system is a key component of the proposed Condorcet attack.610

Without this component, an adversary has limited power in creating cycles even when the611

adversary controls the leader and a faction of all the nodes in the system.612

To illustrate the above point, we conducted simulations over two networks with sizes:613

n = 21 and n = 101. In our simulation, the adversary controls the maximum fraction of614

nodes, including the leader, allowed by Themis (a quarter of nodes minus one). All these615

nodes report the order of their received transactions in reverse, in a strategy to create616

Condorcet cycles5. The external network ratio is varied from 0.01 to 100 to capture a wide617

range of network conditions. The total number of transmitted transactions is set to 100.618

To evaluate the impact of the above strategy in creating cycles, we created two dependency619

graphs. The first graph represents the scenario where the adversarial nodes reverse their620

orderings, whereas the second graph represents the scenario where the adversarial nodes621

report the true ordering. Figure 7 shows the results of our simulation.622

Non-Injective Condorcet Attack Performance. As shown in Figure 7, the623

adversary’s attempts to create cycles are largely unsuccessful in the region where the624

external network ratio is less than one. We note that in this region, the average temporal625

gap between two different transaction transmissions is more than the average network626

latency. In particular, when r ≪ 1 (i.e., when transactions are transmitted far apart in time627

with respect to the network latency), honest nodes in the system have a clear view of the628

true ordering of transactions. In this region, the adversary is all but powerless in creating629

cycles6, as evident in Figure 7. In contrast, in the same region, an external adversary can630

create a cycle using the proposed Condorcet attack, even when all the nodes in the system631

are honest.632

(a) The number of nodes is n = 21 (b) The number of nodes is n = 101

Figure 7 The non-injective attack has limited power in creating cycles.

5 We note that this may not be an optimum strategy to create Condorcet cycles. Nevertheless, we believe
that an optimum strategy (which may be computationally intractable) may not be significantly more
successful than the adopted strategy. We leave the validation of this claim for future work.

6 When r > 1 (i.e., in the region where Condorcet cycles naturally emerge) the adversary achieves some
degree of success in creating larger cycles than naturally occur.
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7.5 Mitigation633

In this section, we evaluate the performance of our mitigation methods in preventing or634

minimizing the impact of the Condorcet attack.635

Ranked-pairs-based Mitigation Method. To evaluate the effectiveness of this636

mitigation, we conducted a simulation over two network sizes of n = 21 and n = 101. We637

set the pause time of the attack to 10 times the mean of GenerationDist, and set the total638

number of honest transactions to 20. We varied the external network ratio r from 0.001 to639

1. Recall that in this range of external network ratio (i.e., r < 1), Condorcet cycles do not640

emerge naturally; rather they are created by the Condorcet attack. To evaluate the true641

impact of our ranked-pars mitigation method, therefore, we focused on this region.642

Ranked Pairs Mitigation Performance. Figure 8 compares the performance of our643

proposed ranked-pairs-based mitigation method to the Hamiltonian-based method used in644

Themis, and the simple alphabetical method. The results show that the proposed ranked-pairs645

method achieves a low error rate, indicating that it can effectively order honest transactions646

correctly even when they fall in a Condorcet cycle. In contrast, the Themis algorithm’s error647

rate increases as the network ratio increases, and reaches as high as about 25%. The error648

rate in the case of alphabetical ordering is 50%. Note that a random ordering method can,649

on average, correctly orders 50% of all the pairs of transactions. In this sense, the worst-case650

transaction ordering error is 50%, which is the case for the alphabetical method (this method651

is essentially a random ordering method).652

(a) The number of nodes is n = 21 (b) The number of nodes is n = 101

Figure 8 The performance of the proposed ranked pairs-based mitigation method

The Broadcast-based Mitigation Method. To evaluate the effectiveness of the653

broadcast-based mitigation method, we conducted simulations using two network sizes: n = 21654

and n = 101. We introduced a new exponential distribution called InternalNetworkDist,655

which captures the random delays experienced by messages within the internal network.656

Specifically, we sample from InternalNetworkDist to determine the delay between sending657

a transaction from one node to another node. This is in contrast to NetworkDist, which is658

used to determine the random delays between a client and a node in the external network.659

In our simulation, we set the mean of InternalNetworkDist to r′. We refer to r′ as the660

internal network ratio. In our simulations, we set τ to 10 times the mean of GenerationDist661

(i.e. τ = 10 · r), and set the total number of honest transactions to 20. We fixed the external662

network ratio to r = 0.1, to ensure that no natural Condorcet cycles were created, and varied663

the internal network ratio r′ from 0.01 to 1000.664
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Broadcast Environment Categories. We analyzed the number of honest transactions665

trapped in a Condorcet cycle under three different settings. In the first setting, referred666

to as the “honest setting”, nodes did not broadcast and the adversary did not conduct a667

Condorcet attack. In the second setting, nodes still did not broadcast, but the adversary668

attempted a Condorcet attack. Finally, in the last setting, the adversary launched an attack669

while the nodes employed the broadcasting method to mitigate it.670

Broadcast Mitigation Performance. Figure 9 shows the result of our simulations671

in the above three settings. The results demonstrate that the proposed broadcast-based672

mitigation is highly effective in preventing the adversary from creating a Condorcet cycle673

and trapping honest transactions. This can be attributed to two key factors: Firstly, the674

mitigation strategy disrupts the completion of the pause phase, thereby preventing honest675

transactions from being trapped in a Condorcet cycle. When the internal network ratio676

r′ is smaller than the pause time, almost no transactions are trapped. Interestingly, even677

when r′ exceeds the pause time, the adversary cannot achieve the same level of performance.678

It is because the broadcast of transactions with the internal network can still somewhat679

disturb the ordering of adversarial transactions. This reduces the success rate of the attack680

as the specific ordering of adversarial transactions is crucial for creating a Condorcet cycle.681

If, on the other hand, the adversary has enough control over the internal network to delay682

transactions as much as the pause time, it can circumvent the proposed broadcast-based683

mitigation as the adversary can enforce the ordering of its transactions within the internal684

network by delaying all the messages.685

(a) The number of nodes is n = 21 (b) The number of nodes is n = 101

Figure 9 The performance of the proposed broadcast mitigation method
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8 Conclusion686

Condorcet cycles can occur naturally. While these natural cycles may not significantly disrupt687

fairness in the system since transactions falling within these cycles are typically received688

around the same time, the artificial creation of Condorcet cycles can lead to significant689

unfairness in the system. In this paper, we showed that even with all nodes in the system690

behaving honestly, it is relatively simple to generate such artificial cycles. Furthermore, we691

demonstrated that these created cycles possess significant power, as they can trap transactions692

submitted at widely different times that would not naturally fall within a cycle.693

To address this attack, we proposed three mitigation methods using different approaches.694

These methods complement one another and can be employed collectively to fortify the695

defensive measures against the attack. Through simulations, we showcased that despite their696

described limitations, the proposed mitigation methods can substantially reduce the adverse697

impact of the Condorcet attack.698
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