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ABSTRACT 
Our legal question answering system combines legal information 
retrieval and textual entailment, and exploits semantic information 
using a logic-based representation.  We have evaluated our system 
using the data from the competition on legal information 
extraction/entailment (COLIEE)-2017. The competition focuses 
on the legal information processing required to answer yes/no 
questions from Japanese legal bar exams, and it consists of two 
phases: ad hoc legal information retrieval (Phase 1), and textual 
entailment (Phase 2). Phase 1 requires the identification of Japan 
civil law articles relevant to a legal bar exam query. For this 
phase, we have used an information retrieval approach using TF-
IDF combined with a simple language model. Phase 2 requires a 
yes/no decision for previously unseen queries, which we approach 
by comparing the approximate meanings of queries with relevant 
statutes. Our meaning extraction process uses a selection of 
features based on a kind of paraphrase, coupled with a 
condition/conclusion/exception analysis of articles and queries. 
We also extract and exploit negation patterns from the articles. 
We construct a logic-based representation as a semantic analysis 
result, and then classify questions into easy and difficult types by 
analyzing the logic representation. If a question is in our easy 
category, we simply obtain the entailment answer from the logic 
representation; otherwise we use an unsupervised learning method 
to obtain the entailment answer. Experimental evaluation shows 
that our result ranked highest in the Phase 2 amongst all COLIEE-
2017 competitors. 

CCS CONCEPTS 
• Information systems → Information retrieval; Information 
retrieval query processing • Applied computing  → Law, social 
and behavioral sciences; Law 
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Textual entailment, Question answering, legal text mining, logic 
representation 
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1  SUMMARY OF OUR APPROACH 
Our approach to legal question answering combines information 
retrieval and textual entailment. We achieve this combination with 
a number of intermediate steps. For instance, consider the 
question “Is it true that a special provision that releases warranty 
can be made, but in that situation, when there are rights that the 
seller establishes on his/her own for a third party, the seller is not 
released of warranty.” A system must first identify and retrieve 
relevant documents (typically legal statutes), and subsequently, 
identify those sentences most relevant to answering the question. 
Finally, it must extract and compare semantic connections 
between the question and the relevant sentences, and confirm a 
threshold of evidence about whether an entailment relation holds.  
 The Competition on Legal Information Extraction/Entailment 
(COLIEE) 20171 focuses on two aspects of legal information 
processing related to answering yes/no questions from legal bar 
exams: legal document retrieval (Phase 1), and whether there is a 
textual entailment relation between a query and relevant legal 
documents (Phase 2).  
We treat Phase 1 as an ad-hoc information retrieval (IR) task. The 
goal is to retrieve relevant civil law statutes or articles that are 
related to a question in legal bar exams, from which we can 
confirm a yes or no answer based on deciding if the question is 
entailed by the relevant statutes.  
We approach the information retrieval part of this problem (Phase 
1) with two models, both based on statistical information. One is 
the TF-IDF model [6], i.e., term frequency-inverse document 
frequency. The idea is that relevance between a query and a 
document depends on their intersecting word set. The importance 
of words is measured with a function of term frequency and 
document frequency as parameters.  
Another popular model for text retrieval is language model-based 
information retrieval [16]. The language modeling approach to IR 
directly models the idea that a document is a good match to a 
query if the document model is likely to generate the query, which 
will in turn happen if the document contains the query words 
often.  This model has shown good performance in the 

                                                                    
1 http://webdocs.cs.ualberta.ca/~miyoung2/COLIEE2017/ 
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information retrieval field. We use this model to retrieve relevant 
legal statutes of a query bar exam.  
The goal of Phase 2 is to construct yes/no question answering 
systems for legal queries, by heuristically confirming entailment 
of a query from relevant articles. The answer to a question is 
typically determined by measuring some kind of semantic 
similarity between question and answer. Because the legal bar 
exam query and relevant articles are complex and varied, we need 
to carefully determine what kind of information is needed for 
confirming textual entailment. Here we exploit a logic-based 
representation that arises from syntactic analysis to produce a 
semantic result. After extracting features from that logical 
representation, we train the system to learn models for semantic 
matching between question and corresponding articles. These 
feature extraction methods are coupled with negation analysis, 
and then used to construct an unsupervised model to provide the 
required yes/no answers.  We classify questions into "easy" or 
“difficult”. If a question is easy, then we obtain the entailment 
result directly from the logic representation. Otherwise, we 
perform an unsupervised learning step to obtain the entailment 
result. 
The rest of our paper is structured as follows. First, we explain 
Phase 1 in Section 2, and then describe Phase 2 in Section 3. We 
show our experimental setup, results, and error analysis in Section 
4. Related work will be given in Section 5. Finally, our future 
work and conclusions are described in Section 6. 

2  PHASE 1: LEGAL INFORMATION    
RETRIEVAL 

2.1  IR Models 
We constructed two kinds of information retrieval models: the 
term frequency–inverse document frequency (tf-idf) model and 
language model-based information retrieval model. We will 
describe the two components in the following. 
 
2.1.1 The tf-idf model. One of our baseline models is a tf-idf 
model implemented in Lucene2, an open source IR system .  
The simplified version of Lucene's similarity score of an article to 
a query is: 
 

𝑡𝑓 − 𝑖𝑑𝑓 𝑄,𝐴 =    { 𝑡𝑓(𝑡,𝐴)  ×  
!∈!⋂!

[1 + log 𝑖𝑑𝑓 𝑡 ]!} 

 
The score tf-idf(Q,A) is a measure which estimates the relevance 
between a query Q and an article A. First, for every term t in 
query A, we compute tf(t,A), and idf(t). The score tf(t,A) is the 
term frequency of t in the article A, and idf(t) is the inverse 
document frequency of the term t, which is the number of articles 
that contain t. The final score is the sum of the scores of terms in 
both the article and the query. The bigger tf-idf(Q,A), the more 
relevance between the query Q and the article A.  

                                                                    
2 https://lucene.apache.org/ 

 
2.1.2 The language model-based IR. We would like to estimate, 
the probability of the query Q (legal bar exam question) given the 
language model of document d (legal statute) as follows. 
 

. 

The first term is the probability of generating words in the query 
and the second term is the probability of not generating other 

terms. The specific probabilities for  are defined in 
Ponte and Croft [16]. We used the Lucene package for this 
language model-based IR. In the next subsection, we show the 
experimental results using the two IR models. 

2.2  Experiments for Phase 1 
The COLIEE legal IR task has several sets of queries with the 
Japan civil law articles as documents (1044 articles in total). Here 
follows one example of the query and a corresponding relevant 
article.  
 
Question: A person who made a manifestation of intention which 
was induced by duress emanated from a third party may rescind 
such manifestation of intention on the basis of duress, only if the 
other party knew or was negligent of such fact. 
Related Article:  (Fraud or Duress) Article 96(1) Manifestation of 
intention which is induced by any fraud or duress may be 
rescinded. (2)In cases any third party commits any fraud inducing 
any person to make a manifestation of intention to the other party, 
such manifestation of intention may be rescinded only if the other 
party knew such fact.(3)The rescission of the manifestation of 

)|(ˆ0.1)|(ˆ)|(ˆ d

QwQw

dd MwpMwpMQp ∏∏
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Table 1: Performances of Information Retrieval 
Method Precision Recall F-measure 
TF-IDF 0.6667 0.4727 0.5532 
Language model 0.6026 0.4272 0.5000 

 
Table 2: Performances between our method vs. others 
Method Precision Recall F-measure 
Our TF-IDF 0.6667 0.4727 0.5532  
HUKB-1 0.6582 0.4727 0.5503  
HUKB-2 0.5870 0.4910 0.5347  
HUKB-3 0.5514 0.5636 0.5438 
iLis7-1 0.7350 0.5546 0.6321  
iLis7-2 0.6547 0.5000 0.5670  
JAISTNLP2-1a 0.6282 0.4455 0.5213  
JAISTNLP2-1b 0.6154 0.4364 0.5106  
JNLP1-R 0.6860 0.5364 0.6020  
JNLP1-RT 0.6897 0.5455 0.6091  
JNLP1-T 0.5000 0.3545 0.4149  
KID17 0.7037 0.5182 0.5969  
KIS-IE-M 0.2632 0.2727 0.2679  
KIS-IE-NM 0.3462 0.2455 0.2872  
NOR17 0.4622 0.5000 0.4803  
VNPT 0.4306 0.2818 0.3407  
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intention induced by the fraud pursuant to the provision of the 
preceding two paragraphs may not be asserted against a third 
party without knowledge. 
 
Before the final test set was released, we received 10 sets of 
queries for a dry run. The 10 sets of data include 581 queries. For 
test data, we received 78 queries. They provided original Japanese 
data English translation. For the Task 1, we used English data as 
input to the Lucence IR package. The metric for measuring our IR 
models is Precision, Recall, and F-measure. 
Table 1 presents the result of using the different models on the test 
data. The result shows that the TF-IDF model achieves better 
performance than the language model-based IR model.   
 
Table 2 shows comparison between our IR result of the TF-IDF 
model and other system’s results on the test data.  Our result 
ranked 6th among the 16 submissions. 

3  PHASE 2: ANSWERING YES/NO 
QUESTIONS 

Our procedure of textual entailment to answer Yes/No questions 
is as follows: 

1. Divide a query and the corresponding article into     
              “Condition(s),”     “Conclusion,” and “Exception-    
               condition(s).” 

2. Detect Negation 
3. Construct logic representation from the syntactic     

              analysis tree 
4. Classify the question into easy or difficult type (two-  

              steps) 

5. 1st step: If a question is an easy type, determine the 
entailment answer based on the logic representation 

6. 2nd step: Otherwise,  perform an unsupervised learning 
 
We will explain each procedure in the next subsections. 

3.1  Condition, conclusion and exceptional cases 
detection 

From our data, we extract components based on the patterns in 
Figure 1. In case where multiple patterns are triggered, we apply 
each pattern based on the rule order in Figure 1.   
  We segment sentences using keywords in the condition. The 
keywords of the condition are as follows: “in case(s),” “if,” 
“unless,” “with respect to,” “when,” and “, (comma).” After this 
segmentation, the last segment is considered to be a conclusion, 
and the rest of the sentence is considered as a condition. (We used 
the symbol Σ to denote the concatenation of the segments). We 
also distinguish segments that denote exceptional cases. Currently, 
we take the exception_keyword indication as “Provided, however, 
this shall not apply, if(unless).” 
   The following is an example of the condition and conclusion 
detection: 
<Civil law example> A person who employs others for a certain 
business, shall be liable for damages inflicted on a third party by 
his/her employees with respect to the execution of that business; 
Provided, however, that this shall not apply, if the employer 
exercised reasonable care in appointing the employee or in 
supervising the business, or if the damages could not have been 
avoided even if he/she had exercised reasonable care. 
(1) Conclusion => shall be liable for damages inflicted 
on a third party by his/her employees with respect to the 
execution of that business; 
(2) Condition => A person who employs others for a certain 
business 
(3) Exception sentence => Provided, however, that this shall not 
apply, if the employer exercised reasonable care in appointing the 
employee or in supervising the business, or  
if the damages could not have been avoided even if he/she had 
exercised reasonable care. 
Conclusion => NEG shall be liable for damages inflicted 
on a third party by his/her employees with respect to the 
execution of that business. 
   Condition 
       Condition (OR) => 
          Condition (OR) => if the employer exercised 
                         reasonable care in appointing the employee 
          Condition => in supervising the business 
       Condition => if the damages could not have been 
          avoided even if he/she had exercised reasonable care. 
 

3.2  Detecting negation 
As part of our semantic analysis, we construct a simple negation 
dictionary.   A most important features in determining semantic 
entailment is the accurate attribution of negation. In our approach, 

1. conclusion :=
        segmentlast(sentence,  keyword)
2. condition :=

        segmenti(sentence,  keyword)
i≠last∑  

3. condition := condition [or] condition
4. condition := sub_ condition [and] sub_ condition
5. exception_ sentence :=
        sentence including exception_ keyword
6. exception_ condition :=

        
segmenti(exception_ sentence,
                  exception_ keyword)i≠last∑

7. exception_ condition :=
        exception_ condition [or] exception_ condition
8. exception_ condition :=
       sub_ exception_ condition [and]
        sub_ exception_ condition
9. exception_ conclusion := NEG  conclusion

Figure 1: Rules for component detection 



ICAIL 2017, June 2017, London, UK M. Kim et al. 
 

4 
 

we construct a negation knowledge base as described in Kim et al. 
[18]. We identify three types of negation  expressions as shown in 
Table 3: one is to note negation prefixes such as ”not,” ”no,” etc. 
Another is the case where the word itself conveys negative 
information. To extend our identification of negation words, we 
also use the Kadokawa thesaurus which has a 4-level hierarchy of 
about 1,100 semantic classes. Concept nodes in level L1, L10, and 
L100 are further divided into 10 subclasses, as shown in Figure 2. 
 

3.3  Step 1: Semantic representation 
We constructed a logic-based representation from semantic 
parsing using a dependency parser [7] previously created for 
agglutinative languages. This parser embeds its own 
morphological analyzer and uses a dictionary that includes rich 
linguistic knowledge such as verb-argument information syntactic 
function and semantic category for each argument. This is a rule-
based parser based on rich dictionary knowledge. Because this 
parser is for the Korean language, we translated the Japanese data 
into Korean using the Excite translation tool3. We find verbs and 
their corresponding arguments using dependency relations, and 
assign semantic roles using the verb-argument dictionary and 
syntactic function. Since a dependency parser structure is very 
similar to the semantic parse structure, it is relatively easy to 
transform the dependency parser result into our desired semantic 
parse structure. We construct a semantic representation by 

                                                                    
3 http://www.excite.co.jp/world 

transforming passive forms to active forms in the syntactic parse 
tree, and determine the semantic role using the Kadokawa 
thesaurus concept numbers and dictionary information in the 
syntactic tree structure of Kim et al. [7]. For the case role 
matching between syntactic roles and semantic roles, we 
constructed simple heuristic rules based on our own training data.  
The dictionary in Kim et al. [7] includes 113,000 entries, each of 
which identify required arguments of a predicate, semantic types, 
and semantic roles of arguments. Figure 3 is an example of the 
semantic representation for the sentence “A juristic act performed 
by an adult ward, may be rescinded; Provided, however, that, this 
shall not apply, to any act relating to daily life, such as the 
purchase of daily household items.” 
As shown in Figure 3, a noun phrase chunk (e.g., “a jurisin act”) 
or a verb phrase chunk (e.g., “may be rescinded”) are considered 
single nodes in the tree. In Figure 3, the syntactic parse tree says 
that ”a jurisin act” is a subject of ”may be rescinded” and ”by an 
adult ward” is an adverbial of ”performed”. However, after 
converting passive form to active form, ”a jurisin act” functions 
as a theme of ”rescind”, and also a theme of ”perform”. ”An adult 
ward” can be an agent of the verb ”perform”. The parsing 
dictionary has the information that ”perform” requires an 
agent(concept_no.:n5) and a theme (concept_no.: n3, n4, n6, 
n7 ,n8, n9). In the Kadokawa concept number description, ‘v’ 
means ‘verb’, and ‘n’ means ‘noun’. Logical representation is 
constructed by segmenting the input sentence into the condition, 
conclusion, exceptional condition, and exceptional conclusion. 
After that, we extract the Kadokawa thesaurus concept number for 
the predicate and corresponding arguments in each segment. 
Dictionary information and corresponding logical representation 
of the semantic parse tree in Figure 3 are as below. 
 
 
 

Table 3: Negation types 
Negation type Example 
Negation affix not, no, unless, without, 

unable 
Negation words rescind, revoke, lack, cease, 

block 
Negation concepts 125(no), 444(cancel) 
 

 
Figure 2: Concept hierarchy of the Kadokawa 

thesaurus [4] 

Figure 3: Example of the semantic representation 
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========================================= 
DICTIONARY INFO: 
[VERB(Kadokawa#): ARG(required argument with the 
corresponding concept number)] 
1. rescind(v444) : ARG(agent(n5*), theme(n*)) 
2. perform(v783) : ARG(agent(n5*), theme(n3*,n4*, 
                                         n6*,n7*,n8*,n9*)) 
3. apply to(v381) : ARG(agent(n*), theme(n*)) 
[NOUN(Kadokawa#)] 
adult(n124), ward(n507), jurisin(n734), act(n360), rescind( 
v444), act(n360), daily life(n350), purchase(n742), 
household item(n900) 
===================================== 
LOGICAL REPRESENTATION: 
    [Condition] v783(AGT:n124,n507, THM:n734,n360) 
à[Conclusion]v444(THM : n734, n360) 
    [Exception Condition]n360, n350, n742, n900 
à  [Exception Conclusion]NEG v444(THM : n734,n360) 
===================================== 
 
Generally, each statue can have two logical components: one is a 
general case, and the other is an exceptional case. If a 
corresponding query belongs to the exceptional case, then we will 
use the exceptional case logic for the statute and compare it's 
meaning with that of the query. Otherwise, the logic for general 
case in the statute will be compared with a query. 
 
3.3.1  Contradiction between logical representations 
We augment negation information with the logical form. The 
following shows the augmented result of the logical representation 
of Figure 3. Notice that v444 is replaced with NEG. 
========================================= 
Negation info: 
rescind (v444): NEG 
===================================== 
AUGMENTED LOGICAL REPRESENTATION: 
    [Condition] v783 (AGT:n124, n507,  THM:n734,n360)  
à [Conclusion]NEG (THM : n734,n360) 
     [Exception Condition] n360,n350,n742,n900 
à[Exception Conclusion]NEG NEG (THM :n734, n360) 
===================================== 
To compare the semantic content between logical representations 
is difficult. So, we use a logical representation only for the 
identification of easy questions. If the concepts (Kadokawa 
thesaurus numbers) of the predicates and arguments of a query 
appear in the corresponding article, then we consider the question 
is easy, for which we just count the negation level and return the 
answer. If there are multiple concepts for an argument (or 
predicate) in a query, we consider it is acceptable if any one 
concept appears in the corresponding article. In our training data, 
47.85% of the data were assigned as easy questions, and 52.15% 
were assigned as non-easy questions. 
    The negation level (neg_level()) is computed as following: if 
negation(NEG) occurs an odd number of times, its negation level 
is 1. Otherwise if the negation(NEG) occurs an even number of 

times, including zero, its negation level is 0.  If the neg_level() of 
the query condition is the same with that of the statute condition, 
and the neg_level() of the query conclusion is the same with that 
of the statute conclusion, then we consider the answer is ‘yes’ (the 
entailment is true), otherwise the answer is ‘no’ (the entailment is 
not true.) 
    The output of our logic-based system is also used below in an 
unsupervised learning model for assigning labels of condition and 
conclusion clusters for non-easy questions.  

3.4  Step 2: Unsupervised machine learning 
For the questions not confirmed as easy, we need to construct 
deeper representations. Fully general solutions are extremely 
difficult, if not impossible; for our first approximation to the non-
easy cases, we have developed a method using unsupervised 
learning based on more detailed linguistic information. Since we 
do not know the impact each linguistic attribute has on our task, 
we use a machine learning algorithm that learns what information 
is relevant in the text to achieve our goal. 
    The types of features we use are as follows: 
 
  •Negation feature      (neg_level()) 
  •Syntactic representation features  Considering condition,      
                                     conclusion, and exception 
  •Sematic representation features  Considering semantic role  
                                     (argument, predicate) 
  •Lexical semantic features  Having the same Kadokawa  
                                     thesaurus concept code. 
 
    We use our learning method on linguistic features to confirm 
the following semantic entailment features: 
 

 
 
 
    Feature 1 is intended to consider if the concepts of main 
predicates between a query conclusion and an article conclusion 
are the same. Most of the conclusion segment includes only one 
predicate (main predicate), so we just compare the meaning of the 
main predicates between a query and a law statute. We consider 
two concepts are the same, if their Kadokawa thesaurus numbers 
are the same.  Features 2 and 4 check if there are overlapped 
concepts in the arguments between a query conclusion (condition) 

Feature 1: if (concept(wmain _ pred),Queryconclusion)∩
                     (concept(wmain _ pred),Articleconclusion)
Feature 2 : If  ∃i, j(concept(w arg i),Queryconclusion)∩
                        (concept(w arg j),Articleconclusion)
Feature 3 : If  ∃i, j(concept(wpredi),Querycondition)∩
                           (concept(wpredj),Articlecondition)
Feature 4 : If  ∃i, j(concept(w arg i),Querycondition)∩
                           (concept(w arg j),Articlecondition)
Feature 5 : If  neg_ level(Querycondition) =
                      neg_ level(Articlecondition)
Feature 6 : If  neg_ level(Queryconclusion) =
                      neg_ level(Articleconclusion)
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and its relevant article conclusion (condition). Feature 3 checks if 
there are overlapped concepts in predicates between a query 
condition and its relevant article condition. Features 5 and 6 check 
the negation levels between the query condition (conclusion), and 
corresponding article condition (conclusion).  
The inputs for our unsupervised learning model are all the 
questions and corresponding articles. The outputs are two clusters 
of the questions. The yes/no outputs of easy questions (which 
have already been obtained) are used as a key for assigning yes/no 
label of each cluster. The cluster that includes a higher portion of 
yes of the easy questions is assigned the label ‘yes’, and the other 
cluster is assigned ‘no’. For the non-easy questions, we determine 
their yes/no answers following their clustering labels. For the easy 
questions, we use results in Section 3.4 using neg_level(), 
regardless of the clustering labels of the questions, because the 
logic produces more accurate answers for easy questions than the 
clustering output. We use a simple K-means clustering algorithm 
with K=2 for unsupervised learning. We trained the K-means 
clustering algorithm using the Korean-translated training data, and 
then use the clusters to classify the unseen test data.  
 

4  EXPERIMENTS 

4.1  Experimental setup 
 
In the general formulation of the textual entailment problem, 
given an input text sentence and a hypothesis sentence, the task is 
to make predictions about whether or not the hypothesis is 
entailed by the input sentence. We report the accuracy of our 
method in answering yes/no questions of legal bar exams by 

predicting whether the questions are entailed by the corresponding 
civil law articles. 
    There is a balanced positive-negative sample distribution in the 
training dataset (51.63% yes, and 48.37% no) of the COLIEE 
2017 dataset, so we consider the baseline for true/false evaluation 
is the accuracy when returning always yes, which is 51.63%. 
   Our training data has 581 questions, with total 1044 civil law 
articles, and test data has 78 questions. We use an unsupervised 
learning method, since the data size is not big enough to separate 
it into training and test data. 
 

4.2  Experimental results 
Table 4 shows the experimental results for Phase 2 using the 
formal run data of COLIEE 2017. The formal run data size is 66 
queries for Textual Entailment task. 
  Our performance is 71.79%, and it ranked highest in the 
COLIEE-2017 competition by 6.41%, compared to the 2nd ranked 
systems of KIS-YN-S and NAIST2 as shown in Table 5.  
    Table 6 shows the experimental results arising from adjusting 
some features in our method. When we used only one approach 
without combining logical form and machine learning, the 
performance was lower. When we did not use our logical 
representation, we considered only lexical words in the whole 
query/statute and negation level as features for the machine 
learning. When we did not use machine learning, we considered 
only the negation level. 

4.3  Error analysis 
From unsuccessful instances, we classified the error types as 
shown in Table 7. The biggest error arises, of course, from the 
semantic similarity error, and we believe our Kadokawa thesaurus 
is not sufficient to capture the required depth of semantic 
similarity. The second biggest error is because of complex 

Table 4: Our Performances in Textual Entailment 
Method Accuracy 
TF-IDF+TE 0.7179 
LM+TE 0.6923 

 
Table 5: Performance between our method vs. others for 

Textual Entailment 
Method Accuracy Method Accuracy 
Our TF-IDF+TE 0.7179 KIS-YN-

A 
0.5385 

iLis7 0.5641 KIS-YN-
CM 

0.5385 

iLis9-1 0.5769 KIS-YN-
CS 

0.5897 

iLis9-2 0.5385 KIS-YN-
M 

0.5769 

JAISTNLP2-2a-1a 0.5128 KIS-YN-
S 

0.6538 

JAISTNLP2-2a-1b 0.4744 NAIST1 0.6154 
JAISTNLP2-2b-1a 0.4872 NAIST2 0.6538 
JAISTNLP2-2b-
1b 

0.5000 NAIST3 0.4744 

JNLP1-R 0.4359 NOR17 0.5385 
JNLP1-RT 0.4872   

 

Table 6: Ablation analysis for our features 
Method Accuracy(%) 

Our method using all steps 71.79 
Without logical representation (1st step) 61.54 

Without machine learning (2nd step) 44.87 
 

Table 7: Error types of incorrectly answered questions 
Error type Accu. 

(%) 
Error type Accu. 

(%) 
Specific example case 15.38 Semantic 

similarity 
error 

34.62 

Incorrect deletion of 
the most similar 
article sentence 

14.10 More 
constraints 
in condition 

20.51 

Incorrect detection of 
condition, conclusion, 
and exceptional cases 

10.25 Etc. 5.13 
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constraints arising in statute conditions. As with the other error 
types, there are cases where a question is an example case of the 
corresponding article, and the corresponding article embeds 
another article. We also found cases that indicate the need to do 
more extensive temporal analysis. 
    In addition, because our logical representation does not embed  
modality information (such as “must”, “may”, etc.), it can also 
cause errors. In future work, we plan to extend the richness of the 
representation, as well as consider extending the data size (e.g., 
questions) in the legal domain. 
 

5 RELATED WORK 
A textual entailment method from Bdour et al. [2] provided the 
basis for a Yes/No Arabic Question Answering System. They 
used a kind of logical representation, which bridges the distinct 
representations of the functional structure obtained for questions 
and passages. Lien and Kouylekov [9] proposed semantic parsing 
for textual entailment. Nielsen et al. [14] extracted features from 
dependency paths, and combined them with word-alignment 
features in a mixture of an expert-based classifier. Zanzotto et al. 
[17] proposed a syntactic cross-pair similarity measure for RTE. 
 Harmeling [5] took a similar classification-based approach with 
transformation sequence features. Marsi et al. [12] described a 
system using dependency-based paraphrasing techniques. All 
these previous systems uniformly conclude that syntactic 
information is helpful in RTE. Like in this previous work, we also 
obtain syntactic information and construct semantic representation 
using that syntactic information.  
   There are many QA studies in the legal field. The first one is 
ResPubliQA 2009 [15]. It describes the first round of ResPubliQA, 
a Question Answering (QA) evaluation task over European 
legislation, proposed at the Cross Language Evaluation Forum 
(CLEF) 2009. The ResPubliQA 2009 exercise is aimed at 
retrieving answers to a set of 500 questions. The answer of a 
question is a paragraph of the test collection. The hypothetical 
user considered for this exercise is a person interested in making 
inquiries in the law domain, specifically on the European 
legislation. There is another system for QA of legal documents 
reported by Monroy et al. [13]. They used natural language 
techniques such as stemming, and resources such as manually or 
automatically constructed thesauri for improving question based 
document retrieval. In addition, there was a method based on 
syntactic tree matching [10], and a knowledge-based method 
using a variety of thesaurus and dictionaries [1]. As further 
research, we can enrich our knowledge base with deeper analysis 
of data, and add paraphrasing dictionary. 
   In previous Competitions on Legal Information 
Extraction/Entailment (COLIEE) 2014-2016 [8], the competition 
consists of three tasks: Legal Information retrieval (task 1), legal 
text entailment (task 2), and combination of the tasks 1 and 2 (task 
3). Participants have applied a variety of machine learning skills 
and word features such as word embedding. However, there was 
no previous use of induction on logic-based representations.  

   In addition, there have been textual entailment challenges in the 
SemEval 2013-2014. Bjerva et al. [3] which showed good 
performance in recognizing textual entailment produced work as 
follows: (1) produce a formal semantic representation using a 
semantic parser Boxer for each sentence for a given sentence pair; 
(2) translate these semantic representations into first-order logic; 
and then (3) use off-the-shelf theorem provers and model builders 
to check whether the first sentence entails the second, or whether 
the sentences are contradictory. We simplify this process here, 
and construct simplified semantic representation using phrase 
chunking, exploit the structure of syntactic dependency trees, and 
semantic similarity using Kadokawa thesaurus mapping. 
 

6  CONCLUSION 
We have described our most recent implementation for the 
Competition on Legal Information Extraction/Entailment 
(COLIEE)-2017 Task. 
    For Textual entailment, we have proposed a method to answer 
yes/no questions from legal bar exams related to civil law. We 
used a two-step cascaded model using a logic-based 
representation and machine learning. In support, we constructed a 
negation dictionary. For the logical representation, we 
transformed a syntactic parse tree, augmenting Kadokawa 
thesaurus concept information. This method  shows the  best 
performance in Textual entailment task in the COLIEE-2017 
competition. 
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