
Two-step Cascaded Textual Entailment for Legal Bar Exam
Question Answering

Mi-Young Kim and Randy Goebel
Alberta Machine Intelligence Institute

Department of Computing Science
University of Alberta

Edmonton AB, T6E 2G8 Canada
{miyoung2, rgoebel}@ualberta.ca

ABSTRACT
Our legal question answering system combines legal information
retrieval and textual entailment, and exploits semantic information
using a logic-based representation. We have evaluated our system
using the data from the competition on legal information
extraction/entailment (COLIEE)-2017. The competition focuses
on the legal information processing required to answer yes/no
questions from Japanese legal bar exams, and it consists of two
phases: ad hoc legal information retrieval (Phase 1), and textual
entailment (Phase 2). Phase 1 requires the identification of Japan
civil law articles relevant to a legal bar exam query. For this
phase, we have used an information retrieval approach using TF-
IDF combined with a simple language model. Phase 2 requires a
yes/no decision for previously unseen queries, which we approach
by comparing the approximate meanings of queries with relevant
statutes. Our meaning extraction process uses a selection of
features based on a kind of paraphrase, coupled with a
condition/conclusion/exception analysis of articles and queries.
We also extract and exploit negation patterns from the articles.
We construct a logic-based representation as a semantic analysis
result, and then classify questions into easy and difficult types by
analyzing the logic representation. If a question is in our easy
category, we simply obtain the entailment answer from the logic
representation; otherwise we use an unsupervised learning method
to obtain the entailment answer. Experimental evaluation shows
that our result ranked highest in the Phase 2 amongst all COLIEE-
2017 competitors.

CCS CONCEPTS
• Information systems → Information retrieval; Information
retrieval query processing • Applied computing → Law, social
and behavioral sciences; Law

KEYWORDS
Textual entailment, Question answering, legal text mining, logic
representation
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s).

1 SUMMARY OF OUR APPROACH
Our approach to legal question answering combines information
retrieval and textual entailment. We achieve this combination with
a number of intermediate steps. For instance, consider the
question “Is it true that a special provision that releases warranty
can be made, but in that situation, when there are rights that the
seller establishes on his/her own for a third party, the seller is not
released of warranty.” A system must first identify and retrieve
relevant documents (typically legal statutes), and subsequently,
identify those sentences most relevant to answering the question.
Finally, it must extract and compare semantic connections
between the question and the relevant sentences, and confirm a
threshold of evidence about whether an entailment relation holds.
 The Competition on Legal Information Extraction/Entailment
(COLIEE) 20171 focuses on two aspects of legal information
processing related to answering yes/no questions from legal bar
exams: legal document retrieval (Phase 1), and whether there is a
textual entailment relation between a query and relevant legal
documents (Phase 2).
We treat Phase 1 as an ad-hoc information retrieval (IR) task. The
goal is to retrieve relevant civil law statutes or articles that are
related to a question in legal bar exams, from which we can
confirm a yes or no answer based on deciding if the question is
entailed by the relevant statutes.
We approach the information retrieval part of this problem (Phase
1) with two models, both based on statistical information. One is
the TF-IDF model [6], i.e., term frequency-inverse document
frequency. The idea is that relevance between a query and a
document depends on their intersecting word set. The importance
of words is measured with a function of term frequency and
document frequency as parameters.
Another popular model for text retrieval is language model-based
information retrieval [16]. The language modeling approach to IR
directly models the idea that a document is a good match to a
query if the document model is likely to generate the query, which
will in turn happen if the document contains the query words
often. This model has shown good performance in the

1 http://webdocs.cs.ualberta.ca/~miyoung2/COLIEE2017/

ICAIL 2017, June 2017, London, UK M. Kim et al.

2

information retrieval field. We use this model to retrieve relevant
legal statutes of a query bar exam.
The goal of Phase 2 is to construct yes/no question answering
systems for legal queries, by heuristically confirming entailment
of a query from relevant articles. The answer to a question is
typically determined by measuring some kind of semantic
similarity between question and answer. Because the legal bar
exam query and relevant articles are complex and varied, we need
to carefully determine what kind of information is needed for
confirming textual entailment. Here we exploit a logic-based
representation that arises from syntactic analysis to produce a
semantic result. After extracting features from that logical
representation, we train the system to learn models for semantic
matching between question and corresponding articles. These
feature extraction methods are coupled with negation analysis,
and then used to construct an unsupervised model to provide the
required yes/no answers. We classify questions into "easy" or
“difficult”. If a question is easy, then we obtain the entailment
result directly from the logic representation. Otherwise, we
perform an unsupervised learning step to obtain the entailment
result.
The rest of our paper is structured as follows. First, we explain
Phase 1 in Section 2, and then describe Phase 2 in Section 3. We
show our experimental setup, results, and error analysis in Section
4. Related work will be given in Section 5. Finally, our future
work and conclusions are described in Section 6.

2 PHASE 1: LEGAL INFORMATION
RETRIEVAL

2.1 IR Models
We constructed two kinds of information retrieval models: the
term frequency–inverse document frequency (tf-idf) model and
language model-based information retrieval model. We will
describe the two components in the following.

2.1.1 The tf-idf model. One of our baseline models is a tf-idf
model implemented in Lucene2, an open source IR system .
The simplified version of Lucene's similarity score of an article to
a query is:

𝑡𝑓 − 𝑖𝑑𝑓 𝑄,𝐴 = { 𝑡𝑓(𝑡,𝐴) ×
!∈!⋂!

[1 + log 𝑖𝑑𝑓 𝑡]!}

The score tf-idf(Q,A) is a measure which estimates the relevance
between a query Q and an article A. First, for every term t in
query A, we compute tf(t,A), and idf(t). The score tf(t,A) is the
term frequency of t in the article A, and idf(t) is the inverse
document frequency of the term t, which is the number of articles
that contain t. The final score is the sum of the scores of terms in
both the article and the query. The bigger tf-idf(Q,A), the more
relevance between the query Q and the article A.

2 https://lucene.apache.org/

2.1.2 The language model-based IR. We would like to estimate,
the probability of the query Q (legal bar exam question) given the
language model of document d (legal statute) as follows.

.

The first term is the probability of generating words in the query
and the second term is the probability of not generating other

terms. The specific probabilities for are defined in
Ponte and Croft [16]. We used the Lucene package for this
language model-based IR. In the next subsection, we show the
experimental results using the two IR models.

2.2 Experiments for Phase 1
The COLIEE legal IR task has several sets of queries with the
Japan civil law articles as documents (1044 articles in total). Here
follows one example of the query and a corresponding relevant
article.

Question: A person who made a manifestation of intention which
was induced by duress emanated from a third party may rescind
such manifestation of intention on the basis of duress, only if the
other party knew or was negligent of such fact.
Related Article: (Fraud or Duress) Article 96(1) Manifestation of
intention which is induced by any fraud or duress may be
rescinded. (2)In cases any third party commits any fraud inducing
any person to make a manifestation of intention to the other party,
such manifestation of intention may be rescinded only if the other
party knew such fact.(3)The rescission of the manifestation of

)|(ˆ0.1)|(ˆ)|(ˆ d

QwQw

dd MwpMwpMQp ∏∏
∉∈

−×=

)|(ˆ dMQp

Table 1: Performances of Information Retrieval
Method Precision Recall F-measure
TF-IDF 0.6667 0.4727 0.5532
Language model 0.6026 0.4272 0.5000

Table 2: Performances between our method vs. others
Method Precision Recall F-measure
Our TF-IDF 0.6667 0.4727 0.5532
HUKB-1 0.6582 0.4727 0.5503
HUKB-2 0.5870 0.4910 0.5347
HUKB-3 0.5514 0.5636 0.5438
iLis7-1 0.7350 0.5546 0.6321
iLis7-2 0.6547 0.5000 0.5670
JAISTNLP2-1a 0.6282 0.4455 0.5213
JAISTNLP2-1b 0.6154 0.4364 0.5106
JNLP1-R 0.6860 0.5364 0.6020
JNLP1-RT 0.6897 0.5455 0.6091
JNLP1-T 0.5000 0.3545 0.4149
KID17 0.7037 0.5182 0.5969
KIS-IE-M 0.2632 0.2727 0.2679
KIS-IE-NM 0.3462 0.2455 0.2872
NOR17 0.4622 0.5000 0.4803
VNPT 0.4306 0.2818 0.3407

Two-step Cascaded Textual Entailment ICAIL 2017, June 2017, London UK

 3

intention induced by the fraud pursuant to the provision of the
preceding two paragraphs may not be asserted against a third
party without knowledge.

Before the final test set was released, we received 10 sets of
queries for a dry run. The 10 sets of data include 581 queries. For
test data, we received 78 queries. They provided original Japanese
data English translation. For the Task 1, we used English data as
input to the Lucence IR package. The metric for measuring our IR
models is Precision, Recall, and F-measure.
Table 1 presents the result of using the different models on the test
data. The result shows that the TF-IDF model achieves better
performance than the language model-based IR model.

Table 2 shows comparison between our IR result of the TF-IDF
model and other system’s results on the test data. Our result
ranked 6th among the 16 submissions.

3 PHASE 2: ANSWERING YES/NO
QUESTIONS

Our procedure of textual entailment to answer Yes/No questions
is as follows:

1. Divide a query and the corresponding article into
 “Condition(s),” “Conclusion,” and “Exception-
 condition(s).”

2. Detect Negation
3. Construct logic representation from the syntactic

 analysis tree
4. Classify the question into easy or difficult type (two-

 steps)

5. 1st step: If a question is an easy type, determine the
entailment answer based on the logic representation

6. 2nd step: Otherwise, perform an unsupervised learning

We will explain each procedure in the next subsections.

3.1 Condition, conclusion and exceptional cases
detection

From our data, we extract components based on the patterns in
Figure 1. In case where multiple patterns are triggered, we apply
each pattern based on the rule order in Figure 1.
 We segment sentences using keywords in the condition. The
keywords of the condition are as follows: “in case(s),” “if,”
“unless,” “with respect to,” “when,” and “, (comma).” After this
segmentation, the last segment is considered to be a conclusion,
and the rest of the sentence is considered as a condition. (We used
the symbol Σ to denote the concatenation of the segments). We
also distinguish segments that denote exceptional cases. Currently,
we take the exception_keyword indication as “Provided, however,
this shall not apply, if(unless).”
 The following is an example of the condition and conclusion
detection:
<Civil law example> A person who employs others for a certain
business, shall be liable for damages inflicted on a third party by
his/her employees with respect to the execution of that business;
Provided, however, that this shall not apply, if the employer
exercised reasonable care in appointing the employee or in
supervising the business, or if the damages could not have been
avoided even if he/she had exercised reasonable care.
(1) Conclusion => shall be liable for damages inflicted
on a third party by his/her employees with respect to the
execution of that business;
(2) Condition => A person who employs others for a certain
business
(3) Exception sentence => Provided, however, that this shall not
apply, if the employer exercised reasonable care in appointing the
employee or in supervising the business, or
if the damages could not have been avoided even if he/she had
exercised reasonable care.
Conclusion => NEG shall be liable for damages inflicted
on a third party by his/her employees with respect to the
execution of that business.
 Condition
 Condition (OR) =>
 Condition (OR) => if the employer exercised
 reasonable care in appointing the employee
 Condition => in supervising the business
 Condition => if the damages could not have been
 avoided even if he/she had exercised reasonable care.

3.2 Detecting negation
As part of our semantic analysis, we construct a simple negation
dictionary. A most important features in determining semantic
entailment is the accurate attribution of negation. In our approach,

1. conclusion :=
 segmentlast(sentence, keyword)
2. condition :=

 segmenti(sentence, keyword)
i≠last∑

3. condition := condition [or] condition
4. condition := sub_ condition [and] sub_ condition
5. exception_ sentence :=
 sentence including exception_ keyword
6. exception_ condition :=

segmenti(exception_ sentence,
 exception_ keyword)i≠last∑

7. exception_ condition :=
 exception_ condition [or] exception_ condition
8. exception_ condition :=
 sub_ exception_ condition [and]
 sub_ exception_ condition
9. exception_ conclusion := NEG conclusion

Figure 1: Rules for component detection

ICAIL 2017, June 2017, London, UK M. Kim et al.

4

we construct a negation knowledge base as described in Kim et al.
[18]. We identify three types of negation expressions as shown in
Table 3: one is to note negation prefixes such as ”not,” ”no,” etc.
Another is the case where the word itself conveys negative
information. To extend our identification of negation words, we
also use the Kadokawa thesaurus which has a 4-level hierarchy of
about 1,100 semantic classes. Concept nodes in level L1, L10, and
L100 are further divided into 10 subclasses, as shown in Figure 2.

3.3 Step 1: Semantic representation
We constructed a logic-based representation from semantic
parsing using a dependency parser [7] previously created for
agglutinative languages. This parser embeds its own
morphological analyzer and uses a dictionary that includes rich
linguistic knowledge such as verb-argument information syntactic
function and semantic category for each argument. This is a rule-
based parser based on rich dictionary knowledge. Because this
parser is for the Korean language, we translated the Japanese data
into Korean using the Excite translation tool3. We find verbs and
their corresponding arguments using dependency relations, and
assign semantic roles using the verb-argument dictionary and
syntactic function. Since a dependency parser structure is very
similar to the semantic parse structure, it is relatively easy to
transform the dependency parser result into our desired semantic
parse structure. We construct a semantic representation by

3 http://www.excite.co.jp/world

transforming passive forms to active forms in the syntactic parse
tree, and determine the semantic role using the Kadokawa
thesaurus concept numbers and dictionary information in the
syntactic tree structure of Kim et al. [7]. For the case role
matching between syntactic roles and semantic roles, we
constructed simple heuristic rules based on our own training data.
The dictionary in Kim et al. [7] includes 113,000 entries, each of
which identify required arguments of a predicate, semantic types,
and semantic roles of arguments. Figure 3 is an example of the
semantic representation for the sentence “A juristic act performed
by an adult ward, may be rescinded; Provided, however, that, this
shall not apply, to any act relating to daily life, such as the
purchase of daily household items.”
As shown in Figure 3, a noun phrase chunk (e.g., “a jurisin act”)
or a verb phrase chunk (e.g., “may be rescinded”) are considered
single nodes in the tree. In Figure 3, the syntactic parse tree says
that ”a jurisin act” is a subject of ”may be rescinded” and ”by an
adult ward” is an adverbial of ”performed”. However, after
converting passive form to active form, ”a jurisin act” functions
as a theme of ”rescind”, and also a theme of ”perform”. ”An adult
ward” can be an agent of the verb ”perform”. The parsing
dictionary has the information that ”perform” requires an
agent(concept_no.:n5) and a theme (concept_no.: n3, n4, n6,
n7 ,n8, n9). In the Kadokawa concept number description, ‘v’
means ‘verb’, and ‘n’ means ‘noun’. Logical representation is
constructed by segmenting the input sentence into the condition,
conclusion, exceptional condition, and exceptional conclusion.
After that, we extract the Kadokawa thesaurus concept number for
the predicate and corresponding arguments in each segment.
Dictionary information and corresponding logical representation
of the semantic parse tree in Figure 3 are as below.

Table 3: Negation types
Negation type Example
Negation affix not, no, unless, without,

unable
Negation words rescind, revoke, lack, cease,

block
Negation concepts 125(no), 444(cancel)

Figure 2: Concept hierarchy of the Kadokawa

thesaurus [4]

Figure 3: Example of the semantic representation

Two-step Cascaded Textual Entailment ICAIL 2017, June 2017, London UK

 5

===
DICTIONARY INFO:
[VERB(Kadokawa#): ARG(required argument with the
corresponding concept number)]
1. rescind(v444) : ARG(agent(n5*), theme(n*))
2. perform(v783) : ARG(agent(n5*), theme(n3*,n4*,
 n6*,n7*,n8*,n9*))
3. apply to(v381) : ARG(agent(n*), theme(n*))
[NOUN(Kadokawa#)]
adult(n124), ward(n507), jurisin(n734), act(n360), rescind(
v444), act(n360), daily life(n350), purchase(n742),
household item(n900)
=====================================
LOGICAL REPRESENTATION:
 [Condition] v783(AGT:n124,n507, THM:n734,n360)
à[Conclusion]v444(THM : n734, n360)
 [Exception Condition]n360, n350, n742, n900
à [Exception Conclusion]NEG v444(THM : n734,n360)
=====================================

Generally, each statue can have two logical components: one is a
general case, and the other is an exceptional case. If a
corresponding query belongs to the exceptional case, then we will
use the exceptional case logic for the statute and compare it's
meaning with that of the query. Otherwise, the logic for general
case in the statute will be compared with a query.

3.3.1 Contradiction between logical representations
We augment negation information with the logical form. The
following shows the augmented result of the logical representation
of Figure 3. Notice that v444 is replaced with NEG.
===
Negation info:
rescind (v444): NEG
=====================================
AUGMENTED LOGICAL REPRESENTATION:
 [Condition] v783 (AGT:n124, n507, THM:n734,n360)
à [Conclusion]NEG (THM : n734,n360)
 [Exception Condition] n360,n350,n742,n900
à[Exception Conclusion]NEG NEG (THM :n734, n360)
=====================================
To compare the semantic content between logical representations
is difficult. So, we use a logical representation only for the
identification of easy questions. If the concepts (Kadokawa
thesaurus numbers) of the predicates and arguments of a query
appear in the corresponding article, then we consider the question
is easy, for which we just count the negation level and return the
answer. If there are multiple concepts for an argument (or
predicate) in a query, we consider it is acceptable if any one
concept appears in the corresponding article. In our training data,
47.85% of the data were assigned as easy questions, and 52.15%
were assigned as non-easy questions.
 The negation level (neg_level()) is computed as following: if
negation(NEG) occurs an odd number of times, its negation level
is 1. Otherwise if the negation(NEG) occurs an even number of

times, including zero, its negation level is 0. If the neg_level() of
the query condition is the same with that of the statute condition,
and the neg_level() of the query conclusion is the same with that
of the statute conclusion, then we consider the answer is ‘yes’ (the
entailment is true), otherwise the answer is ‘no’ (the entailment is
not true.)
 The output of our logic-based system is also used below in an
unsupervised learning model for assigning labels of condition and
conclusion clusters for non-easy questions.

3.4 Step 2: Unsupervised machine learning
For the questions not confirmed as easy, we need to construct
deeper representations. Fully general solutions are extremely
difficult, if not impossible; for our first approximation to the non-
easy cases, we have developed a method using unsupervised
learning based on more detailed linguistic information. Since we
do not know the impact each linguistic attribute has on our task,
we use a machine learning algorithm that learns what information
is relevant in the text to achieve our goal.
 The types of features we use are as follows:

 •Negation feature (neg_level())
 •Syntactic representation features Considering condition,
 conclusion, and exception
 •Sematic representation features Considering semantic role
 (argument, predicate)
 •Lexical semantic features Having the same Kadokawa
 thesaurus concept code.

 We use our learning method on linguistic features to confirm
the following semantic entailment features:

 Feature 1 is intended to consider if the concepts of main
predicates between a query conclusion and an article conclusion
are the same. Most of the conclusion segment includes only one
predicate (main predicate), so we just compare the meaning of the
main predicates between a query and a law statute. We consider
two concepts are the same, if their Kadokawa thesaurus numbers
are the same. Features 2 and 4 check if there are overlapped
concepts in the arguments between a query conclusion (condition)

Feature 1: if (concept(wmain _ pred),Queryconclusion)∩
 (concept(wmain _ pred),Articleconclusion)
Feature 2 : If ∃i, j(concept(w arg i),Queryconclusion)∩
 (concept(w arg j),Articleconclusion)
Feature 3 : If ∃i, j(concept(wpredi),Querycondition)∩
 (concept(wpredj),Articlecondition)
Feature 4 : If ∃i, j(concept(w arg i),Querycondition)∩
 (concept(w arg j),Articlecondition)
Feature 5 : If neg_ level(Querycondition) =
 neg_ level(Articlecondition)
Feature 6 : If neg_ level(Queryconclusion) =
 neg_ level(Articleconclusion)

ICAIL 2017, June 2017, London, UK M. Kim et al.

6

and its relevant article conclusion (condition). Feature 3 checks if
there are overlapped concepts in predicates between a query
condition and its relevant article condition. Features 5 and 6 check
the negation levels between the query condition (conclusion), and
corresponding article condition (conclusion).
The inputs for our unsupervised learning model are all the
questions and corresponding articles. The outputs are two clusters
of the questions. The yes/no outputs of easy questions (which
have already been obtained) are used as a key for assigning yes/no
label of each cluster. The cluster that includes a higher portion of
yes of the easy questions is assigned the label ‘yes’, and the other
cluster is assigned ‘no’. For the non-easy questions, we determine
their yes/no answers following their clustering labels. For the easy
questions, we use results in Section 3.4 using neg_level(),
regardless of the clustering labels of the questions, because the
logic produces more accurate answers for easy questions than the
clustering output. We use a simple K-means clustering algorithm
with K=2 for unsupervised learning. We trained the K-means
clustering algorithm using the Korean-translated training data, and
then use the clusters to classify the unseen test data.

4 EXPERIMENTS

4.1 Experimental setup

In the general formulation of the textual entailment problem,
given an input text sentence and a hypothesis sentence, the task is
to make predictions about whether or not the hypothesis is
entailed by the input sentence. We report the accuracy of our
method in answering yes/no questions of legal bar exams by

predicting whether the questions are entailed by the corresponding
civil law articles.
 There is a balanced positive-negative sample distribution in the
training dataset (51.63% yes, and 48.37% no) of the COLIEE
2017 dataset, so we consider the baseline for true/false evaluation
is the accuracy when returning always yes, which is 51.63%.
 Our training data has 581 questions, with total 1044 civil law
articles, and test data has 78 questions. We use an unsupervised
learning method, since the data size is not big enough to separate
it into training and test data.

4.2 Experimental results
Table 4 shows the experimental results for Phase 2 using the
formal run data of COLIEE 2017. The formal run data size is 66
queries for Textual Entailment task.
 Our performance is 71.79%, and it ranked highest in the
COLIEE-2017 competition by 6.41%, compared to the 2nd ranked
systems of KIS-YN-S and NAIST2 as shown in Table 5.
 Table 6 shows the experimental results arising from adjusting
some features in our method. When we used only one approach
without combining logical form and machine learning, the
performance was lower. When we did not use our logical
representation, we considered only lexical words in the whole
query/statute and negation level as features for the machine
learning. When we did not use machine learning, we considered
only the negation level.

4.3 Error analysis
From unsuccessful instances, we classified the error types as
shown in Table 7. The biggest error arises, of course, from the
semantic similarity error, and we believe our Kadokawa thesaurus
is not sufficient to capture the required depth of semantic
similarity. The second biggest error is because of complex

Table 4: Our Performances in Textual Entailment
Method Accuracy
TF-IDF+TE 0.7179
LM+TE 0.6923

Table 5: Performance between our method vs. others for

Textual Entailment
Method Accuracy Method Accuracy
Our TF-IDF+TE 0.7179 KIS-YN-

A
0.5385

iLis7 0.5641 KIS-YN-
CM

0.5385

iLis9-1 0.5769 KIS-YN-
CS

0.5897

iLis9-2 0.5385 KIS-YN-
M

0.5769

JAISTNLP2-2a-1a 0.5128 KIS-YN-
S

0.6538

JAISTNLP2-2a-1b 0.4744 NAIST1 0.6154
JAISTNLP2-2b-1a 0.4872 NAIST2 0.6538
JAISTNLP2-2b-
1b

0.5000 NAIST3 0.4744

JNLP1-R 0.4359 NOR17 0.5385
JNLP1-RT 0.4872

Table 6: Ablation analysis for our features
Method Accuracy(%)

Our method using all steps 71.79
Without logical representation (1st step) 61.54

Without machine learning (2nd step) 44.87

Table 7: Error types of incorrectly answered questions
Error type Accu.

(%)
Error type Accu.

(%)
Specific example case 15.38 Semantic

similarity
error

34.62

Incorrect deletion of
the most similar
article sentence

14.10 More
constraints
in condition

20.51

Incorrect detection of
condition, conclusion,
and exceptional cases

10.25 Etc. 5.13

Two-step Cascaded Textual Entailment ICAIL 2017, June 2017, London UK

 7

constraints arising in statute conditions. As with the other error
types, there are cases where a question is an example case of the
corresponding article, and the corresponding article embeds
another article. We also found cases that indicate the need to do
more extensive temporal analysis.
 In addition, because our logical representation does not embed
modality information (such as “must”, “may”, etc.), it can also
cause errors. In future work, we plan to extend the richness of the
representation, as well as consider extending the data size (e.g.,
questions) in the legal domain.

5 RELATED WORK
A textual entailment method from Bdour et al. [2] provided the
basis for a Yes/No Arabic Question Answering System. They
used a kind of logical representation, which bridges the distinct
representations of the functional structure obtained for questions
and passages. Lien and Kouylekov [9] proposed semantic parsing
for textual entailment. Nielsen et al. [14] extracted features from
dependency paths, and combined them with word-alignment
features in a mixture of an expert-based classifier. Zanzotto et al.
[17] proposed a syntactic cross-pair similarity measure for RTE.
 Harmeling [5] took a similar classification-based approach with
transformation sequence features. Marsi et al. [12] described a
system using dependency-based paraphrasing techniques. All
these previous systems uniformly conclude that syntactic
information is helpful in RTE. Like in this previous work, we also
obtain syntactic information and construct semantic representation
using that syntactic information.
 There are many QA studies in the legal field. The first one is
ResPubliQA 2009 [15]. It describes the first round of ResPubliQA,
a Question Answering (QA) evaluation task over European
legislation, proposed at the Cross Language Evaluation Forum
(CLEF) 2009. The ResPubliQA 2009 exercise is aimed at
retrieving answers to a set of 500 questions. The answer of a
question is a paragraph of the test collection. The hypothetical
user considered for this exercise is a person interested in making
inquiries in the law domain, specifically on the European
legislation. There is another system for QA of legal documents
reported by Monroy et al. [13]. They used natural language
techniques such as stemming, and resources such as manually or
automatically constructed thesauri for improving question based
document retrieval. In addition, there was a method based on
syntactic tree matching [10], and a knowledge-based method
using a variety of thesaurus and dictionaries [1]. As further
research, we can enrich our knowledge base with deeper analysis
of data, and add paraphrasing dictionary.
 In previous Competitions on Legal Information
Extraction/Entailment (COLIEE) 2014-2016 [8], the competition
consists of three tasks: Legal Information retrieval (task 1), legal
text entailment (task 2), and combination of the tasks 1 and 2 (task
3). Participants have applied a variety of machine learning skills
and word features such as word embedding. However, there was
no previous use of induction on logic-based representations.

 In addition, there have been textual entailment challenges in the
SemEval 2013-2014. Bjerva et al. [3] which showed good
performance in recognizing textual entailment produced work as
follows: (1) produce a formal semantic representation using a
semantic parser Boxer for each sentence for a given sentence pair;
(2) translate these semantic representations into first-order logic;
and then (3) use off-the-shelf theorem provers and model builders
to check whether the first sentence entails the second, or whether
the sentences are contradictory. We simplify this process here,
and construct simplified semantic representation using phrase
chunking, exploit the structure of syntactic dependency trees, and
semantic similarity using Kadokawa thesaurus mapping.

6 CONCLUSION
We have described our most recent implementation for the
Competition on Legal Information Extraction/Entailment
(COLIEE)-2017 Task.
 For Textual entailment, we have proposed a method to answer
yes/no questions from legal bar exams related to civil law. We
used a two-step cascaded model using a logic-based
representation and machine learning. In support, we constructed a
negation dictionary. For the logical representation, we
transformed a syntactic parse tree, augmenting Kadokawa
thesaurus concept information. This method shows the best
performance in Textual entailment task in the COLIEE-2017
competition.

ACKNOWLEDGEMENTS

This research was supported by the Alberta Machine Intelligence
Institute (www.amii.ca). We are indebted to Ken Satoh of the
National Institute for Informatics, who had the vision to create
the COLIEE competition.

REFERENCES

[1] Arti Arya, Vishwanath Yaligar, Ramya D. Prabhu, Ramya Reddy, and Rohith

Acharaya. A knowledge based approach for recognizing textual entailment for
natural language inference using data mining. International Journal on
Computer Science and Engineering, 02(06):2133–2140, 2010.

[2] Wafa N. Bdour and Natheer K. Gharaibeh. Development of yes/no arabic
question answering system. International Journal of Artificial Intelligence and
Applications, 4(1):51–63. 2013.

[3] Johannes Bjerva, Johan Bos, Rob V.d. Goot, and Malvina Nissim. The meaning
factory: Formal semantics for recognizing textual entailment and determining
semantic similarity. In Proceedings of SemEval, pages 642–646, 2014.

[4] Susumu Ono, and Masando Hamanishi, New Synonym Dictionary. Kadokawa
Shoten. Japan. 1981

[5] Stefan Harmeling. 2007. An extensible probabilistic transformation-based
approach to the third recognizing textual entailment challenge. In Proceedings
of ACL PASCAL Workshop on Textual Entailment and Paraphrasing, pages
137–142, 2007.

[6] K. Sparck Jones, A statistical interpretation of term specicity and its application
in retrieval. In: Willett, P. (ed.) Document Retrieval Systems, pp. 132-142.
Taylor Graham Publishing, London, UK, UK, 1988.

[7] Mi-Young Kim, Sin-Jae Kang, and Jong-Hyeok Lee. 2001. Resolving ambigu-
ity in inter-chunk dependency parsing. In Proceedings of 6th Natural Language
Processing Pacific Rim Symposium, pages 263–270, 2001.

[8] Mi-Young Kim, Randy Goebel, Yoshinobu Kano, and Ken Satoh. COLIEE-
2016: Evaluation of the Competition on Legal Information Extraction and

ICAIL 2017, June 2017, London, UK M. Kim et al.

8

Entailment, In International Workshop on Juris-informatics (JURISIN 2016),
2016

[9] Elisabeth Lien and Milen Kouylekov. Semantic parsing for textual entailment.
In Proceedings of the International Conference on Parsing Technologies, pages
40–49, 2015.

[10] Zhewei Mai, Yue Zhang, and Dong-Hong Ji. Recognizing text entailment via
syntactic tree matchng. In Proceedings of NTCIR-9 Workshop meeting, pages
361–364, 2011.

[11] Christopher D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and D.
McClosky. The Stanford CoreNLP Natural Language Processing Toolkit. In
Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pp. 55-60, 2014.

[12] Erwin Marsi, Emiel Krahmer, and Wauter Bosma .Dependency-based
paraphrasing for recognizing textual entailment. In Proceedings of ACL
PASCAL Workshop on Textual Entailment and Paraphrasing, pages 83–88,
2007.

[13] Alfredo Monroy, Hiram Calvo, and Alexander Gelbukh. Nlp for shallow
question answering of legal documents using graphs. Lecture Notes in
Computer Science (from CICLING 2009), 5449:498–508, 2009.

[14] Rodney D. Nielsen, WayneWard, and James H. Martin. Toward depend-ency
path based entailment. In Proceedings of the second PASCAL Challenges
Workshop on RTE, pages 44–49, 2006.

[15] Anselmo Peas, Pamela Forner, Richard Sutcliffe, lvaro Rodrigo, Corina Forscu,
Iaki Alegria, Danilo Giampiccolo, Nicolas Moreau, and Petya Osenova.
Overview of respubliqa 2009: Question answering evaluation over euro-pean
legislation. Lecture Notes in Computer Science (from CLEF 2009 Workshop),
6241:174–196, 2009.

[16] Jay M. Ponte and Bruce Croft. "A language modeling approach to information
retrieval." In Proceedings of the 21st annual international ACM SIGIR
conference on Research and development in information retrieval, pp. 275-281.
ACM, 1998.

[17] Fabio M. Zanzotto, Alessandro Moschitti, Marco Pennacchiotti, and Maria T.
Pazienza. Learning textual entailment from examples. In Proceedings of the
second PASCAL Challenges Workshop on RTE, 2006

[18] M-Y. Kim, Y. Xu, and R. Goebel. Alberta-KXG: Legal Question Answering
Using Ranking SVM and Syntactic/Semantic Similarity. Eighth International
Workshop on Jurisinformatics (JURISIN), 2014

