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Abstract. Our legal question answering system combines legal information 
retrieval and textual entailment, and we describe a legal question answering 
system that exploits a deep convolutional neural network.  We have evaluated 
our system using the training/test data from the competition on legal 
information extraction/entailment (COLIEE).  The competition focuses on the 
legal information processing related to answering yes/no questions from 
Japanese legal bar exams, and it consists of three phases: ad-hoc legal 
information retrieval, textual entailment, and a learning model-driven 
combination of the two phases. Phase 1 requires the identification of Japan civil 
law articles relevant to a legal bar exam query. For that phase, we have 
implemented a combined TF-IDF and Ranking SVM information retrieval 
component. Phase 2 requires the system to answer “Yes” or “No” to previously 
unseen queries, by comparing extracted meanings of queries with relevant 
articles. Our training of an entailment model focuses on features based on word 
embeddings, syntactic similarities and identification of negation/antonym 
relations. We augment our textual entailment component with a convolutional 
neural network with dropout regularization and Rectified Linear Units. To our 
knowledge, our study is the first to adapt deep learning for textual entailment.  
Experimental evaluation demonstrates the effectiveness of the convolutional 
neural network and dropout regularization. The results show that our deep 
learning-based method outperforms our baseline SVM-based supervised model 
and K-means clustering. 
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information retrieval, convolutional neural network 

1. Task Description 

Legal question answering can be considered as a number of intermediate steps. For 
instance, consider a question such as “Is it true that a special provision that releases 
warranty can be made, but in that situation, when there are rights that the seller 
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establishes on his/her own for a third party, the seller is not released of warranty?” In 
this example, a system must first identify and retrieve relevant documents, typically 
legal statutes, and subsequently, identify a most relevant sentence. Finally, it must 
compare the semantic connections between question and the relevant sentence, and 
determine whether an entailment relation holds.  

 
Deep Neural Networks (DNNs) are an emerging technology that has recently 

demonstrated dramatic success in several areas, including speech feature extraction 
and recognition. Incorporation of convolution and subsequent pooling into a neural 
network has provided the basis for a technique called Convolutional Neural Networks 
(CNNs) [22]. CNNs have shown good performance in image and speech recognition 
[18], and many studies have proposed applying CNNs to natural language processing 
[11,12]. Here we adapt a CNN for legal question answering, especially focused on 
textual entailment. One primary motivation for using deeper models such as neural 
networks with many layers is that they have the potential to be much more 
representationally efficient compared with shallower neural network models. In 
textual entailment, we will extract linguistic features between two sentences, and 
determine textual entailment by comparing the features. In this task, not all linguistic 
features are directly related to each other, so we intend to capture related features,  
then connect them locally. One major motivation for CNNs is to restrict the network 
architecture through the use of local connections known as receptive fields.  

 
The Competition on Legal Information Extraction/Entailment (COLIEE) 2015 

focuses on two aspects of legal information processing related to answering yes/no 
questions from legal bar exams: legal document retrieval (Phase 1), and textual 
entailment for Yes/No question answering of legal queries (Phase 2).   

Phase 1 is an ad-hoc information retrieval (IR) task. The goal is to retrieve relevant 
Japan civil law articles that are most relevant to a legal bar exam. We approach this 
problem with two models based on statistical information. One is the TF-IDF model 
[1], i.e., term frequency-inverse document frequency. The relevance between a query 
and a document depends on their intersection word set. The importance of words is 
measured with a function of term frequency and document frequency as parameters. 
Our terms are lemmatized words, e.g., the verbs “attending,” “attends,” and “attended” 
are lemmatized as the same base form “attend.” 

Another popular model for text retrieval is a Ranking SVM model [2]. That model 
is used to re-rank documents that are retrieved by the TF-IDF model. The features 
used to train this model are lexical words, dependency path bigrams and TF-IDF 
scores. The intuition is that the supervised model can learn weights or priority of 
words based on training data, in addition to or as an alternative to TF-IDF.  

  
The goal of Phase 2 is to construct Yes/No question answering systems for legal 

queries, by confirming the entailment of questions from the relevant articles. The 
answer to a question is typically determined by measuring some kind of heuristically-
determined semantic similarity between question and answer. While there are many 
possible approaches, we note that neural network-based distributional sentence 
models have achieved success in many natural language processing tasks such as 
sentiment analysis [12], paraphrase detection [13], document classification [14], and 



question answering [11]. As a consequence of this success, it appears natural to 
approach textual entailment using similar techniques. Here we show that a neural 
network-based sentence model can be applied to the task of textual entailment. After 
constructing a set of pre-trained semantic word embeddings using the word2vec [20], 
we used a supervised method to learn a heuristic semantic-matching model between 
question and corresponding articles.  

In addition to semantic word embeddings, our system uses features that depend on 
some components of the syntactic structure, and the presence of negation. We employ 
a convolutional neural network algorithm with dropout regularization and Rectified 
Linear Units, and compare its performance with baseline system based on support 
vector machines.  

 
 

2. Phase 1: Legal Information Retrieval 
 

2.1 IR Models 
 
2.1.1 TF-IDF model 

Here we introduce our TF-IDF and Ranking SVM models. Queries and articles are 
all tokenized and parsed by the Stanford NLP tool. For the IR task, the similarity of a 
query and an article is based on the terms within them. Our terms for TF-IDF are 
lemmatized words.  

For TF-IDF, we use the simplified version of Lucene’s similarity score of an article 
to a query as suggested in [15]: 

 

𝑡𝑓-‐𝑖𝑑𝑓 𝑄,𝐴 =    [ 𝑡𝑓 𝑡,𝐴 ×{1 + log 𝑖𝑑𝑓 𝑡 }!]
!

 

 
The score tf-idf(Q,A) is a measure which estimates the relevance between a query Q 
and an article A. First, for every term t in the query A, we compute tf(t,A), and idf(t). 
The score tf(t,A) is the term frequency of t in the article A, and idf(t) is the inverse 
document frequency of the term t, which is the number of articles that contain t. After 
some normalization computed within the Lucene package, we multiply tf(t,A) and 
idf(t), and then we compute the sum of these multiplication scores for all terms t in the 
query A. This summation result is tf-idf(Q,A). The bigger tf-idf(Q,A) is, the more 
relevant between the query Q and the article A. The real version has some normalized 
parameters in terms of an article's length to alleviate the functions biased towards 
long documents. The parameters are set as the default of the Lucene's TF-IDF model. 

 
 
2.1.2 Ranking SVM 

The Ranking SVM model was proposed by Joachims [2]. That model ranks a set of 
retrieved documents based on a selection of attributes from user's data.  Given the 
feature vector of a training instance, i.e., a retrieved article set given a query, denoted 
by Φ(Q, Ai), the model tries to find a ranking that satisfies constraints: 

∅ 𝑄,   𝐴! > ∅ 𝑄,   𝐴!  



 
where Ai is a relevant article for the query Q, while Aj is less relevant. 
 
We adopt the same model and features suggested in [15]. The three types of 

features are as follows: 
− Lexical words: the lemmatized normal form of surface structure of words in 

both the retrieved article and the query. In the conversion to the SVM's 
instance representation, this feature is converted into binary features whose 
values are one or zero, i.e., depending on if a word exists in the intersection 
word set or not. 

− Dependency pairs: word pairs that are linked by a dependency link. The 
intuition is that, compared with the bag of words information, syntactic 
information should improve the capture of salient semantic content. 
Dependency parse features have been used in many NLP tasks, and improved 
IR performance [3]. This feature type is also converted into binary values. 

− TF-IDF score (Section 2.1.1). 
 
We set the Ranking SVM model's parameter c according to the cross validation on 

the training set. 
 

2.2 Experiments 
 

The legal IR task that we use to test our system has several sets of queries paired 
with the Japan civil law articles as documents (724 articles in total). Here follows one 
example of the query and a corresponding relevant article.  

 
Question: A person who made a manifestation of intention which was induced by 
duress emanated from a third party may rescind such manifestation of intention on the 
basis of duress, only if the other party knew or was negligent of such fact. 
 

Related Article:  (Fraud or Duress) Article 96 (1)Manifestation of intention which is 
induced by any fraud or duress may be rescinded. (2)In cases any third party commits 
any fraud inducing any person to make a manifestation of intention to the other party, 
such manifestation of intention may be rescinded only if the other party knew such 
fact.(3)The rescission of the manifestation of intention induced by the fraud pursuant to 
the provision of the preceding two paragraphs may not be asserted against a third 
party without knowledge. 
 
Before the final test set was released, we received 6 sets of queries for a “dry run” 

in COLIEE 2015. The 6 sets of data include 267 queries, and 326 relevant articles 
(average 1.22 articles per query). We used a corresponding 6-fold leave-one-out cross 
validation evaluation. The metrics for measuring our IR model performance is Mean 
Average Precision (MAP): 

                            

𝑀𝐴𝑃 𝑄 =
  1
𝑄

1
𝑚

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅!
!∈ !,!!∈!

 

 



where Q is the set of queries, and m is the number of retrieved articles. Rk is the set of 
ranked retrieval results from the top until the k-th article. In the following experiments, 
we set m as 5 for all queries, corresponding to the column MAP@5 in Table 1. 

Table 1 shows the results of experiments with our two IR models on the legal IR 
task on the training set. The ensemble SVM-Ranking model is slightly better than the 
TF-IDF model.  Table 2 shows the results of our SVM-ranking model on the final 
test set. The test data size is 79 queries for Phase 1. The performance of our system 
was ranked first among the submitted systems in the Competition on Legal 
Information Extraction/Entailment (COLIEE) 2015 [23]. 

 
 
 

Id Models MAP@5 

1 TF-IDF with lemma 0.294 

2 SVM-ranking  0.302 

 
Table 2. IR results on test data using the SVM-ranking model 

 
Participant ID Performance on Phase 1 

 

UA (University  

of Alberta) 

 

* The number of submitted articles: 79 
* The number of correctly submitted articles: 50 

Precision 0.6329 
Recall 0.4902 
F-measure 0.5525 

 
 
 

3. Phase 2: Answering ‘Yes’/’No’ Questions Using a Convolutional 
Neural Network 

 
Our system uses syntactic information in addition to word embedding to predict 

textual entailment. We exploit syntactic similarity features, negation and antonyms in 
Kim et al. [15]. Details are provided in the next subsections.  

 
 
3.1 Our System 

3.1.1 Model description 

The problem of answering a legal yes/no question can be viewed as a binary 
classification problem. Assume a set of questions Q, where each question qi ∈ Q is 
associated with a list of corresponding article sentences {ai1, ai2, …, aim}, where yi = 1 
if the answer is ‘yes’ and yi= 0 otherwise. We choose the most relevant sentence aij 

 Table 1. IR results on dry run data with different models. 



using the algorithm of Kim et al. [15], and we simply treat each data point as a triple 
(qi, aij, yi). Therefore, our task is to learn a classifier over these triples so that it can 
predict the answers of any additional question-article pairs.  
 Our solution assumes that correct answers have high semantic similarity to questions. 
We model questions and answers as vectors using word embedding and linguistic 
information, and evaluate the relatedness of each question-article pair in a shared 
vector space. Following Yu et al. [11], given the vector representations of a question q 
and a most relevant article sentence a, the probability of the answer being correct is  
 

𝑝 𝑦 = 1 𝒒,𝒂 = 𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑟 𝒒𝑻𝑴𝒂 + 𝒃  
 
Where the bias term b and the transformation matrix M in Rd×d are model parameters. 
This formulation can be understood as follows: we first generate a question through 
the transformation q’=Ma, and then measure the similarity of the generated question q’ 
and the given question q by their dot product. The rectifier function is used as an 
activation function. 
 
As mentioned above, a Convolutional Neural Network(CNN) is a biologically-
inspired variant of a multi-layer perceptron. CNN employs two component 
techniques: (1) restricting the network architecture through the use of local 
connections known as receptive fields; and (2) constraining the choice of synaptic 
weights through the use of weight-sharing. Most of the applications of CNNs include 
a max-pooling layer, which reduces and integrates the neighboring neurons’ outputs. 
CNNs also exploit spatially-local correlation by enforcing a local connectivity pattern 
between neurons of adjacent layers.  
 
CNN-based models have been proved to be effective in applications such as twitter 
sentiment prediction [12] and semantic parsing [16]. Figure 1 illustrates the 
architecture of the CNN-based sentence model in one dimension. We use word 
embedding and linguistic features with one convolutional layer and one pooling layer. 
A word embedding is a parameterized function mapping words in some language to 
high-dimensional vectors. We use the Bag-of-words model of [11] for word 
embedding. 

Figure 1. Our CNN architecture 



Given word embeddings, the bag-of-words model generates the vector representation 
of a sentence by summing over the embeddings of all words in the sentence, after 
removing stopwords. The vector is then normalized by the length of the sentence.  

 

𝑠 =
1
𝑛

𝑠!

!

!!!

 

 
In the formula above, s and si are d-dimensional vectors. si corresponds to the vector 
of the i-th word in the sentence, n is the number of words in the sentence, and s is 
vector representation of the sentence. We used word2vec [20] word embedding 
technique (d=50, which is typically used), and used the training data of COLIEE 2014 
for training word2vec. Word2vec [20] used a neural network consisting of input layer, 
projection layer, and output layer and they removed a hidden layer to improve 
learning speed.  
 

In addition to word embeddings, the types of features we use are as follows: 
 
a) Word Lemma 
b) Tree structure features (considering only roots) 
 
Feature 1 : wroot(conditionquery_n) 
Feature 2: wroot(conditionarticle_n) 
Feature 3: wroot(conclusionquery_n) 
Feature 4: wroot(conclusionarticle_n) 
Feature 5: neg_level(conditionquery_n) 
Feature 6: neg_level(conditionarticle_n) 
Feature 7: neg_level(conclusionquery_n) 
Feature 8: neg_level(conclusionarticle_n) 
 
In Figure 1, the input layer consists of the following word embedding vectors and 

binary values: 
 

1) v1, v3,..., v99 (odd index of nodes between v1 and v99): word embedding vector of 
the query sentence 

2) v2, v4, ..., v100 (even index of nodes between v2 and v100): word embedding vector 
of the relevant article sentence 

3) v101, v103, ..., v199 (odd index of nodes between v101 and v199): word embedding 
vector of the Feature 1 

4) v102, v104, ..., v200 (even index of nodes between v102 and v200): word 
embedding vector of the Feature 2 

5) v201, v203, ..., v299 (odd index of nodes between v201 and v299): word embedding 
vector of the Feature 3 

6) v202, v204, ..., v300 (even index of nodes between v202 and v300):  word 
embedding vector of the Feature 4 

7) v301-v304 : binary values of the Features 5-8 
 

In the features above, articlen is the most relevant article of the query queryn. First 
we detect condition part and conclusion part in the question and corresponding article, 



and also compute negation value (neg_level()) of each part according to Kim et al. 
[15]. The following is an example of condition and conclusion detection: 

 
 
<Civil Law Article 177> Acquisitions of, losses of and changes in real rights 

concerning immovable properties may not be asserted against third parties, unless 
the same are registered pursuant to the applicable provisions of the Real Estate 
Registration Act (Law No. 123 of 2004) and other laws regarding registration. 

 
(1) Conclusion => Acquisitions of, losses of and changes in real rights concerning   
             immovable properties may not be asserted against third parties, 
(2) Condition => unless the same are registered pursuant to the applicable  
           provisions of the Real Estate Registration Act (Law No. 123 of 2004)  
          and other laws regarding registration. 
 
 
In Features 1-4, wroot(s) means the root word in the syntactic tree of the sentence s. 

Features 1-4 consider both lexical and syntactic information, and Features 5-8 
incorporate negation and antonym information. We use some morphological and 
syntactic analysis to extract lemma and dependency information. Details of the 
morphological and syntactic analyzer are given in Section 3.2. 

 
As shown in Figure 1, the nodes of the input layer of even indices between v1 and 

v100 (such as v2, v4, v6.... and v100) indicate the word embedding vector for a 
relevant article sentence, and the nodes of odd indices between v1 and v100 (such as 
v1, v3, ... and v99) show the word embedding vector for a query sentence. The nodes 
between v101 and v304 are linguistic features. Because the adjacent two nodes 
indicate the same feature type (e.g., v1 and v2 indicate the first index value of each 
word embedding vector), we make a convolutional layer constructed from the 
adjusting two input nodes.   
  The convolutional vector t in R2 (the 2-dimensional real number space) projects 
adjacent two nodes into a feature value ci, computed as follows:  
 

𝐶! = 𝑟𝑒𝑐𝑡𝑖𝑓𝑖𝑒𝑟 𝒕 ∗ 𝑣!:!!! + 𝑏 ,  
 
where rectifier(x) = max(0,x). We explain the rectifier function in the subsection 3.1.2.  
 
In the pooling layer, we just do summation of 3 adjacent ci values, to reduce the 
features. The number 3 was just chosen for this experiment, and we can find an 
optimal number in future work. The pi values in the pooling layer as follows: 
 

𝑝! = 𝑐!

!!

!!!!!!

                    𝑖 = 1,2,… ,101 

 



The training is done with multithreaded mini-batch gradient descent in the weka2 tool.  
  
3.1.2 Dropout regularization and Rectified Linear Units 
 
When a neural network is trained on a small training set, it typically performs poorly 
on test data. This "overfitting" is greatly reduced by randomly omitting some of the 
feature detectors on each training case. It is called 'dropout'. The dropout prevents 
complex co-adaptations in which a feature detector is only helpful in the context of 
several other specific feature detectors. Random dropout gives big improvements on 
many benchmark tasks and sets new records for speech and object recognition [21]. 
We found that the dropout rate needs to be between 0.6 and 0.7 for a hidden layer and 
0.1 for an input layer in order to make it effective in achieving low errors.   
We also employ the Rectified Linear Unit for CNN. Neural networks with rectified 
linear unit (ReLU) non-linearities have been highly successful for computer vision 
tasks and have been shown to be faster to train than standard sigmoid units [17]. 
  
ReLU is a neuron which uses a rectifier instead of a hyperbolic tangent or logistic 
function as an activation function. Rectifier f(x)=max(0,x) allows a network to easily 
obtain sparse representations.  

 
 

3.1.3 Supervised learning with SVM 
 
We have compared our method with SVM, as a kind of supervised learning model. 

Using the SVM tool included in the Weka [4] software, we performed cross-
validation for the 179 questions of the dry run data in COLIEE 2014 using word 
embedding vector and linguistic features in Section 3.1.1. We used a linear kernel 
SVM because it is popular for real-time applications as they enjoy both faster training 
and classification speeds, with significantly reduced memory requirements than non-
linear kernels, because of the compact representation of the decision function. 

 
 
3.2 Experimental setup for Phase 2 
 

In the general formulation of the textual entailment problem, given an input text 
sentence and a hypothesis sentence, the task is to make predictions about whether or 
not the hypothesis is entailed by the input sentence. We report the accuracy of our 
method in answering yes/no questions of legal bar exams by predicting whether  
questions are entailed by the corresponding civil law articles.  

 There is a balanced positive-negative sample distribution in the dataset (55.87% 
yes, and 44.13% no) for a dry run of COLIEE 2014 dataset, so we consider the 
baseline for true/false evaluation is the accuracy when returning always “yes,” which 
is 55.87%. Our data for our dry run has 179 questions. 

The original examinations are provided in Japanese and English, and our initial 
implementation used a Korean translation, provided by the Excite translation tool 
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(http://excite.translation.jp/world/). The reason that we chose Korean is that we have a 
team member whose native language is Korean, and the characteristics of Korean and 
Japanese language are similar. In addition, the translation quality between two 
languages ensures relatively stable performance. Because our study team includes a 
Korean researcher, we can easily analyze the errors and intermediate rules in Korean. 
We used a Korean morphological analyzer and dependency parser [5].  

 
3.3 Experimental results 

 
To compare our performance with Kim et al. [15], we measured our system's 

performance on the dry run data of COLIEE 2014. Table 3 shows the experimental 
results. An SVM-based model showed accuracy of 60.12%, and a convolutional 
neural network with pre-trained semantic word embeddings and dropout showed best 
performance of 63.87% with the setting of input layer dropout rate of 0.1, hidden 
layer dropout rate of 0.6, and 100 hidden layer nodes. When we did not use the 
dropout regularization, the accuracy was lower by 1.22%. Without dropout and word 
embedding, the accuracy was 56.30%, which showed no significant difference with 
the baseline accuracy. We also compare our performance with the Kim et al.’s [15] 
performance using the same dataset. In [15], they used their linguistic features for 
SVM learning, and also proposed a model combining rule-based method and k-means 
clustering. Our CNN performance outperformed both of their SVM model and 
combined model. 

Table 3. Experimental results on dry run data for Phase 2 

 
Table 4. Experimental Results on the formal run data of COLIEE 2015 

 
 
 
 
 

Our method Accurac
y (%) 

Baseline 55.87 

Cross-validation with Supervised learning (SVM) [15] 59.43 

Rule-based model + K-means clustering [15] 61.96 

Cross-validation with Supervised learning (SVM) using our features 60.12 

Convolutional Neural Network with Word Embedding + Linguistic features 
+ Dropout  

63.87 

Convolutional Neural Network with Word Embedding +Linguistic features 62.65 

Convolutional Neural Network with only linguistic features 56.30 

Our method Accuracy(%) 

Entailment results (Phase 2) 66.67 

Combined results (Phase 3) 65.82 



 
 
 
 
 
 

Table 5. Error types 

Error type Accuracy (%) Error type Accuracy(%) 

Specific example case 6.28 Paraphrasing 38.85 

Exceptional case 9.14 Complex constraints 
in condition 

28.09 

Incorrect detection of 
condition, conclusion  

3.84 Reference to another 
article 

4.10 

Etc. 9.7   

 
Table 4 shows the experimental results using formal run data of COLIEE 2015. 

The formal run data size of COLIEE 2015 is 66 queries for Phase 2 from the bar exam 
of 2013. For Phase 3, we use the same test data of Phase 1, which consists of 79 
queries extracted from the bar exam of 2012. Our performance of textual entailment 
(phase 2) is 66.67%, and the performance of combined phase (phase 3) is 65.82%. 
This result is ranked first among the systems in COLIEE 2015 competition [23].  

From unsuccessful instances, we classified the error types as shown in Table 5. We 
could not identify the errors arising from the Neural Network architecture or 
embedding vectors, so we just classified the errors into 7 cases which are shown in 
Table 5.  The biggest error arises, of course, from the paraphrasing problem. The 
second biggest error is because of complex constraints in conditions. As with the 
other error types, there are cases where a question is an example case of the 
corresponding article, and the corresponding article embeds another article. There has 
been also errors in the case that a question is an exceptional case of the corresponding 
legal law article. In further work, we will need to complement our knowledge base 
with some kind of paraphrasing dictionary employing a paraphrase detection method.  

 

4   Related work 

Only very recently have researchers started to apply deep learning to question 
answering [11,16,19]. Relevant work includes Yih et al. [16] who constructed models 
for single-relation question answering with a knowledge base of triples. In the same 
direction, Bordes et al. [19] used a type of siamese network for learning to project 
question and answer pairs into a joint space. Finally, Yu et al. [11] selected answer 
sentences, which includes the answer of a question. They modelled semantic 
composition with a recursive neural network. However these tasks differ from the 



work presented here in that our purpose is not to make a choice of answer selection in 
a document, but to answer “yes” or “no.” 
 

A textual entailment method from W. Bdour et al. [6] provided the basis for a 
Yes/No Arabic Question Answering System. They used a kind of logical 
representation, which bridges the distinct representations of the functional structure 
obtained for questions and passages. This method is also not appropriate for our task. If 
a false question sentence is constructed by replacing named entities with terms of 
different meaning in the legal article, a logic representation can be helpful.  However, 
false questions are not simply constructed by substituting specific named entities, and 
any logical representation can make the problem more complex. Nielsen et al. [7] 
extracted features from dependency paths, and combined them with word-alignment 
features in a mixture of an expert-based classifier. Zanzotto et al. [8] proposed a 
syntactic cross-pair similarity measure for RTE. Harmeling [9] took a similar 
classification-based approach with transformation sequence features. Marsi et al. [10] 
described a system using dependency-based paraphrasing techniques. All these 
previous systems uniformly conclude that syntactic information is helpful in RTE: we 
also use syntactic information. 

As further research, we will try unsupervised pre-training with a CNN to solve the 
problem of small training datasets. We are also considering adopting more 
convolutional layers and pooling layers in the CNN architecture, and investigating the 
effect of more layers in the textual entailment problem.  The challenge is the 
management of the tradeoff between encoding attribute dependencies and learning 
effective models. 

5   Conclusion 

We have described our implementation for the Competition on Legal Information 
Extraction/Entailment (COLIEE) Task.  

For Phase 1, legal information retrieval, we implemented a Ranking-SVM model 
for the legal information retrieval task. By incorporating features such as lexical 
words, dependency links, and TF-IDF score, our model shows better mean average 
precision than TF-IDF. 

For Phase 2, we have proposed a method to answer yes/no questions from legal bar 
exams related to civil law. We used a convolutional neural network model using 
dropout regularization and Rectified Linear Units with pre-trained semantic word 
embeddings. We also extract deep linguistic features with lexical, syntactic 
information based on morphological analysis and dependency trees. We show the 
improved performance over previous systems, using a convolutional neural network.  
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