
SPECIAL ISSUE PAPER

Adaptive‐capacity and robust natural language
watermarking for agglutinative languages
Mi‐Young Kim* and Randy Goebel

University of Alberta, Department of Computing Science, Edmonton, Alberta, Canada

ABSTRACT

We present a robust and adaptive‐capacity watermarking algorithm for agglutinative languages. All processes, including
the selection of sentences to be watermarked, watermark embedding, and watermark extraction, are based on syntactic
dependency trees. We show that it is more robust to use syntactic dependency trees than the surface forms of sentences in
text watermarking. For the agglutinative languages, we embed watermark using the two main characteristics of the
languages. First, because a word consists of several morphemes, we can watermark sentences using morphological
division/combination without deep linguistic analysis. Second, they permit relatively free word order, so we can move a
syntactic constituent within its clause. Finally, to increase the information‐hiding capacity, we adaptively compute the
number of watermark bits to be embedded for each sentence.

We perform three kinds of evaluation: perceptibility, robustness, and capacity of our method. High capacity is achieved by
dynamically determining possibly embeddedwatermark bits for each sentence. The secret rank based on a syntactic dependency
tree strengthens robustness of our method. Finally, we show that the displacement of syntactic constituents and morphological
division/combination does not affect the style and naturalness of the text. Copyright © 2011 John Wiley & Sons, Ltd.Q1

KEYWORDS

natural language watermarking; agglutinative language; morphological division; syntactic dependency tree

*Correspondence

Mi‐Young Kim, University of Alberta, Department of Computing Science, Edmonton, Alberta, Canada.
E‐mail: colorful@postech.ac.kr

1. INTRODUCTION

Text watermarking is an emerging research area that
combines natural language processing and information
security. The goal is to embed additional information into
the natural text, for subliminal communication, hidden
information transmission, content, and authorship authen-
tication, and generally enrich the text with metadata [1].

Watermarking techniques have been extensively ex-
plored for multimedia documents in the last decade [2]. In
contrast, the studies on text watermarking are just starting.

For example, in [3–6], the techniques of synonym
substitution for watermarking have been addressed, and
various attack scenarios have been described. The
ambiguity induced on the word precision by the synonym
substitution technique has led Topkara et al. [7] to syntax‐
based natural language watermarking. Their technique
basically focuses on the syntactic sentence paraphrasing. It
turns out that the syntactic approach offers the richest set
of text watermarking tools.

Note that agglutinative language differs significantly
from Indo‐European languages in that it permits relatively

free word order and that a word in the agglutinative
languages consists of several morphemes. In the agglutina-
tive languages, morphological division/combination and
the movement of a syntactic constituent within its clause do
not change the meaning or style of the text. For this reason,
we believe that agglutinative languages are an appropriate
target for text watermarking based on morphological
division/combination and syntactic adverbial movement.

We believe that the robustness of watermarking is
improved when one uses a metarepresentation, such as
syntactic structures, rather than the surface sentences.
Because watermarking is performed based on syntactic
structures, it is difficult for an attacker to find out those
watermark patterns from the original sentences.

Among syntactic structure types, we use syntactic
dependency trees for watermarking of the agglutinative
languages, because they are simple, easily constructable,
and more popular for representing the syntactic structures
of agglutinative languages.

Within this structure of using dependency trees, we
include a method to adaptively determine the number of
watermark bits to be embedded for each sentence, based on

SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks (2011)

Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.336

Copyright © 2011 John Wiley & Sons, Ltd.

Journal Code Article ID Dispatch: 07.04.11 CE: Dorio, Lynette
S E C 3 3 6 No. of Pages: 10 ME:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

the characteristics of the dependency tree. This provides a
basis for both high and adaptive information‐hiding capacity.

2. ADAPTIVE‐CAPACITY AND
ROBUST TEXT WATERMARKING

2.1. Overall process

As shown in FigureF1 1, watermark embedding involves
several steps. First, we performed syntactic analysis for the
original text. Second, we adaptively decided the number of
watermark bits to be embedded for each sentence. Third,
we chose sentences to be watermarked according to their
secret ranks, in ascending rank order and embed a
watermark by modifying syntactic dependency trees.
Finally, from the modified syntactic trees, we generated
marked sentences.

The following are the parameters and functions for
watermarking:

T= {s1, s2, …}: text document
W= {W1, …, Wn}: n watermark bits
K= {0, 1}*: the key set.
h1: K × {0,1}*➔ {0, 1}160, a keyed hash

function with 160‐bit output.
syn_rank: si➔ {0, 1}*
syn_wm: si× t➔ {0, 1}, where t is a number

We note that h1 can be easily constructed from standard
cryptographic hash functions such as SHA‐1.

Algorithm 1 shows thewatermark embedding algorithm.

Algorithm 1 Watermark embedding.

1: Input: T= {s1,s2…}: text document,
2: K= {0, 1}*: the key set.
3: Output: Tw={ S′1,S′2, …}
4: Compute Ri = h1(K, syn_rank(si)) for each sentence.
5: Here Ri is used as a secret rank of si.
6: We determine the number of watermark bits to be
7: embedded for each sentence based on its dependency
8: tree.
9: Finally, in the text T, rewrite the m sentences {s1, s2
10: , s3,…, sm} with least ranks to {s′1, s′2, s′3, …, s′m}
11: by modifying syntactic dependency treees such that
12: syn_wm(s′1, 1) =W1, syn_wm(s′1, 2) =W2 …
13: syn_wm(s′1, p) =Wp, …, syn_wm(s′m, 1) =Wn−q+1,
14: syn_wm(s′m, q) =Wn, and
15: syn_rank(si) = syn_rank(s′i).

In Algorithm 1, the sentence s′1 embeds p watermark
bits, and the sentence s′m embeds q watermark bits.

To determine p and q, we computed the number of
possible morphological division/combinations and syntac-
tic constituent movements from each syntactic dependency
tree of s1 and sm.

In line 4 of Algorithm 1, syn_rank is used to assign a
secret rank to each sentence. For this function, we used not
only the surface form of a sentence but also the syntactic
structure of the sentence. We used the length of each word
from the surface form of the sentence and the depth of
each node from the syntactic tree. Because the surface
form of the sentence can be easily revealed to an attacker,
depth information is more secure than the word length.
Therefore, we made the syn_rank value more sensitive to
the “hidden” depth value by raising the depth value to the
power of two.

The function syn_rank is computed as follows:

syn rank sð Þ ¼ ∑
i
2depth ið Þ � length ið Þ; (1)

where depth(i) is the depth of the i‐th node and length(i) is
the length of the word in the i‐th node.

Because an authorized person should obtain the same
secret rank from the marked sentence, the output of the
function syn_rank should not be changed after watermark
embedding, as describe in line 15 of Algorithm 1. That
means that the morphological division/combination and
the movement of syntactic constituents should not change
the output of syn_rank.

The depth of each node is not changed by syntactic
constituent movement, because the syntactic constituent
only changes its position into one of its siblings’ positions.

However, after morphological division/combination, a
node can be divided, or two nodes can be combined. To
ensure that syn_rank(s)= syn_rank(s′), we combined
divided tree nodes into one node by chunking. A detailed
explanation will be given Section 2.4.

Consider syn_wm in line 12 of Algorithm 1. The output
of syn_wm is the watermark bit, and it should reflect the
change of a syntactic dependency tree, which is computed
as follows.

If t‐th watermark bit of the sentence s is embedded by
morphological division/combination,

syn wm s; tð Þ :¼

1 if the node for t‐th watermark bit
is a chunk node in the syntactic
tree of s;

0 otherwise; if the node for t‐th
watermark bit is a normal node in
the syntactic tree of s:

8>>>>>><
>>>>>>:

Otherwise, if the t‐th watermark bit is embedded by
movement of a syntactic adverbial,

syn wm s; tð Þ :¼

1 if the syntactic adverbial for
t‐th watermark bit is the first
child in its clause in the
syntactic tree of s;

0 otherwise

8>>><
>>>:

If syn_wm is the same with the watermark bit, there is
no change in the syntactic tree. Otherwise, the transfor-
mation of the syntactic tree is performed.

Q6 Robust and adaptive‐capacity watermarking algorithm M.‐Y. Kim and R. Goebel

2 Security Comm. Networks (2011) © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

The resulting textual document Tw is the finally marked
document. After si was rewritten to s′i, its literal
expression was changed such that the watermark bits are
“embedded”; meanwhile, the depths of tree nodes and the
lengths of the words in the tree nodes do not change, and
hence, the ranks of the rewritten sentences do not change.

To extract the embedded watermark, using the key K,
an authorized person uses Algorithm 2.

Algorithm 2 Watermark extraction.

1: Input: K, Tw
2: Output: Watermark bits W= {W1, …, Wn}
3: Compute Ri=h1(K, syn_rank(si)) for each sentence in Tw.
4: Determine the number of embedded watermark
5: bits for each sentence by the characteristic of its
6: dependency tree.
7: Obtain n-bit string W from the sentences with
8: least Ri values using syn_wm functions.

We will explain in detail how we dynamically deter-
mine the number of embedded watermark bits and the two
kinds of transformation of syntactic trees in the next
subsection.

2.2. Syntactic dependency parsing and
clausal segmentation

We performed text watermarking for Korean, which is a
representative agglutinative language.

A syntactic dependency parser was used to determine
the syntactic relation between words in a sentence. To
obtain a syntactic dependency tree, we used the Korean
syntactic parser of Kim et al. [8]. FigureF2 2 shows an
example of a syntactic dependency tree. In that tree, a
parent node functions as the syntactic governor of its child
nodes, and each child node functions as the syntactic
dependent of its parent node.

Although the agglutinative languages allow relatively
free word order, the boundaries within which a word can

move are still constrained, but we can move a word within
the clause in which it belongs. To determine the scope of
possible moves, we performed clausal segmentation after
syntactic dependency parsing.

The clausal segmentation procedure is as follows. First,
we automatically detected all the predicates in the obtained
parse tree. Then, we constructed one clause for each
predicate by including all the child nodes of a predicate
node. In Figure 2, the oval nodes indicate predicates.
Because five predicates exist in Figure 2, we can obtain
five clauses from the syntactic tree. The clauses are shown
in Figure F33.

We then calculated the number of watermark bits to be
embedded according to the syntactic tree. For syntactic
constituent movement, we chose the constituents that
satisfy the conditions in Section 2.3. For morphological
division/combination, we chose nominal predicate nodes
explained in Section 2.4. Finally, the number of
constituents that are chosen for movement and that of
nominal predicates become the number of watermark bits
to be embedded in the sentence.

2.3. Watermarking by the movement of a
syntactic constituent

We selected a syntactic constituent from each clause that
meets the following target constituent conditions.

(1) It is an adverbial.
(2) It should have at least one sibling that is not an

adverbial.
(3) It is not a conjunctive adverbial.
(4) Its syntactic governor is a predicate, not noun/

adverb/etc.
(5) A comma is not attached to the adverbial.
(6) Its final ending is not a topical marker.

Amongst syntactic constituents, adverbials can move
more freely in a sentence without semantic distortion [9].
Therefore, we chose adverbial constituents from a

Figure 1. Text watermarking procedure. Q5

Robust and adaptive‐capacity watermarking algorithmM.‐Y. Kim and R. Goebel

3Security Comm. Networks (2011) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

colorful
연필
I resupplied Figure 1 after correcting overlapping data. Please change this Figure 1 into the new Figure 1.

syntactic tree as target constituents for movement. Second,
it should have at least one sibling to swap positions. If the
sibling is also an adverbial, the interchange between two
adverbials does not give any hint whether an adverbial
is moved or not. Therefore, a target adverbial should have
at least one sibling that is not an adverbial. Third, a
conjunctive adverbial, exceptionally, is located in the fixed
position in a sentence. Therefore, it is not permitted to
move freely. Moreover, when an adverbial’s syntactic
governor is not a predicate but a noun/adverb/sentence/
etc., the position of the adverbial adds some semantic
nuance to the meaning of the sentence. Lastly, in the case

that a comma is attached to an adverbial, or the final
ending of an adverbial is a topical marker, the position of
the adverbial also tends to indicate some semantic nuance.
When the position of an adverbial indicates some semantic
nuance, we excluded these types of adverbials from the
target candidates. Because our purpose is to move one
target constituent into the first position among its siblings,
we do not need two target constituents in a clause. If more
than one target constituent candidate exists in a clause, we
randomly selected one.

In Figure 2, the underlined bold words indicate those
that function as adverbials. Five adverbials exist in Figure 2.

Figure 2. Example of a syntactic dependency tree.

Figure 3. Clausal segmentation from a syntactic dependency tree.

Robust and adaptive‐capacity watermarking algorithm M.‐Y. Kim and R. Goebel

4 Security Comm. Networks (2011) © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

colorful
연필
I resupplied Figure 2 after correcting overlapping data. Please change this Figure 2 into the new Figure 2.

Amongst them, some adverbials are excluded from the set
of target constituents. For example, the adverbial “gajang
(most)” is excluded from the target constituents because its
governor is not a predicate but a noun.

According to syn_wm in Section 2.1, if the watermark
bit is 1, we moved the syntactic adverbial into the first
position in its clause. Otherwise, no adverbial should be in
the first position.

FigureF4 4 shows the movement for the target constituent
“jung‐eseo (among)”. If the watermark bit is 1, then the
constituent is moved. When moving a target adverbial
node, we should also move all its children. For example, in
Figure 4, the nodes “jaebaeji (cultivation area)” and
“gamgyul (citrus)” are child nodes of the target adverbial
node “jung‐eseo (among)”, so these were also moved. The
converted tree is shown in the right side of Figure 4. After

completing target adverbial movement, we finally obtained
the converted parse tree as shown in Figure F55.

In the extreme case, even though all moved adverbials
appear first in their clauses, it is difficult to find out
watermark patterns in the marked sentences, because one
sentence consists of many clauses, and an adverbial does
not appear first in the surface form of the sentence if the
adverbial has child nodes.

2.4. Watermarking by morphological
division/combination

As mentioned, because Korean is an agglutinative language,
a single word consists of several morphemes. Typically, one
word consists of a content morpheme and a function
morpheme. However, some words have more than one

Figure 4. Example of syntactic constituent movement.

Figure 5. Final converted tree and marked sentence.

Robust and adaptive‐capacity watermarking algorithmM.‐Y. Kim and R. Goebel

5Security Comm. Networks (2011) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

colorful
연필
 I resupplied Figure 5 after correcting overlapping data. Please change this Figure 5 into the new Figure 5.

content morpheme. Therefore, words that have more than
one content morpheme are divided into new words.

In Korean, a predicate nominal has two content mor-
phemes, a nominal and a predicate. We divided a predicate
nominal into two new words and inserted a function
morpheme for the first new word that does not have a
function morpheme. An example is shown in FigureF6 6.
A predicate nominal consists of “content morpheme1
(nominal) + content morpheme2 (support predicate) + func-
tion morpheme”. In the example of Figure 6, a subordinate
ending is used as a function morpheme. As shown in
Figure 6, after division, the first new word consists of only a
nominal, and the second new word consists of a predicate
and a function morpheme. Subsequently, the first word does
not have a function morpheme. Therefore, we inserted a
relevant function morpheme based on the relationship be-
tween the nominal and the predicate, determined as follows.

(1) If the support predicate indicates active voice (e.g.“ha”,
“siki”), then the nominal functions as the object of the
predicate. Therefore, we inserted an object case
particle, “eul” or “reul”.

(2) If the support predicate indicates passive voice(e.g.
“doi”), then the nominal functions as the subject of
the predicate. Therefore, we inserted a subject case
particle, “i” or “ga”.

In Figure 6, we can see that a subject case particle is
inserted into the first word because the support predicate
(“doi”) indicates a passive voice. Let us perform morpho-
logical division for the three nominal predicates indicated
in Figure 2. Finally, the example tree after morphological
division is shown in FigureF7 7, and it shows that all the
watermark bits for these three nominal predicates are 1. To
guarantee syn_rank(s) = syn_rank(s′), a single node was
assigned for the divided two words by chunking as shown
in Figure 7, and the morphological division/combination
does not change the syntactic structure. To make the word
length unchanged after morphological division, word
length for a chunk node was calculated as “word length1 +
word length2−1”. Because one function morpheme has
been added, we substracted 1.

The morphological combination process is simply the
reverse process. We selected a chunk node from a
syntactic tree: if the watermark bit is 0, we combined the

two words in the chunk node into one new word, by
deleting the function morpheme in the first word. We then
removed the chunk node and inserted a predicate normal
node with the new word.

We adjusted the process if syn_wm in Section 2.1 does
not correspond to the watermark bit.

2.5. Generation of a marked sentence

We then recombined the nodes of a parse tree and obtained
a marked sentence as described in the bottom of Figure 5.

3. EXPERIMENTAL RESULTS

3.1. Performance of our system

We evaluated the performance of our system on percepti-
bility, robustness, and capacity by the following methods.

(1) Coverage of marked sentences (capacity)
(2) Naturalness of marked sentences (perceptibility)
(3) Information‐hiding capacity (capacity)
(4) Resistance to attack (robustness)

For evaluation, we used 3025 declarative sentences and
1975 news sentences in the corpus of Matec99 (Morpholog-
ical Analyzer and Tagger Evaluation Contest in Korean). As
shown in Table T1I, the average number of words/sentence is
18.24 for declarative sentences and 11.00 for news. To see
whether our method works well even for short sentences, we
also performed watermarking for short news sentences.

To measure the distortion of marked sentences, we used
a subjective evaluation by humans, as done by Meral et al.
[1]. Their evaluation method has humans examine the texts
and record their editing actions. The subjects were given
marked texts and asked to edit them for improved
intelligibility and style. This is a blind test because the
subjects were not aware that text watermarking has taken
place. In our study, three people checked for unnatural
sentences. We also computed the information‐hiding
capacity for our method, and the experiments were
executed on an AMD Phenom II X3 710 2.6GHz CPU
with 8GB of memory in the Ubuntu Linux environment.
The results are shown below.

Figure 6. Example of morphological division.

Robust and adaptive‐capacity watermarking algorithm M.‐Y. Kim and R. Goebel

6 Security Comm. Networks (2011) © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

(1) The relation of information‐hiding capacity is
1:5.41 (see TableT3 III).

(2) Average 2.84 bit/sentence of watermark is embed-
ded. (TableT2 II)

(3) The coverage about the sentences selected for
embedding watermark bit is 96.15% (see Table I).

(4) For the declarative sentences, the marked sentences
showed lower edit rate (see Table I).

(5) All the watermark bits are correctly extracted.
(6) This watermark embedding is robust in sentence

movement, retyping, printing, and font change.

3.2. Discussion

Table III shows the ratio of information‐hiding capacity,
which means for how many words of text, one bit of
watermark can be hidden. The ratio of information‐hiding
capacity of our approach is 1:5.41, which is an improvement
over that of Chiang et al. [10].

Table I shows the rate of unsuitable sentences among
marked sentences and that among original sentences. After
watermarking, the naturalness of marked sentences was

reduced in short news sentences. For news sentences,
whereas the morphological division/combination did not
cause any unnaturalness in short sentences, the movement

Figure 7. Example of morphological combination.

Table I. Edit rate of our system.

News Declarative sentences Overall

The number of sentences 1975 3025 5000
Average number of words/sentence 11.00 18.24 15.38
Sentences that can be watermarked 90.25% 100% 96.15%
Edit rateof marked sentences 13.62% 16.93%
Edit rate of original sentences before watermarking 12.48% 17.86%

Table II. Comparison of performances for information‐hiding
capacity.

Systems Information‐hiding capacity (bit/sentence)

Our system 2.84
Topkara et al. [3] 0.67
Atallah et al. [6],
Topkara et al. [7]

0.5

Stutsman et al. [11] 0.33
Meral et al. [12] 0.81
Murphy et al. [13] 0.31

Table III. Comparison of the relation of information‐hiding
capacity.

System Ratio of information‐hiding capacity

Our system 1:5.41
Chang et al. [10] 1:6.6

Robust and adaptive‐capacity watermarking algorithmM.‐Y. Kim and R. Goebel

7Security Comm. Networks (2011) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

colorful
연필
I resupplied Figure 7 after correcting overlapping data. Please change this Figure 7 into the new Figure 7.

of adverbial sometimes caused unnaturalness. However,
for longer sentences, we found that the naturalness of marked
sentences was even higher than original sentences. Table I
also shows that the coverage of our method is 96.15%.

In our system, the information‐hiding capacity is
2.84 bits/sentence outperforming all the previous methods
as shown in Table II. In previous methods, Topkara et al.
[3] showed capacity of 0.67 bit/sentence using lexical
substitution, and Atallah et al. [6] and Topkara et al. [7]
embedded average 0.5 bits/sentence of watermarks using a
syntactic method. Stutsman et al. [11] used a machine
translation method for watermarking and showed 0.33 bits/
sentence of information‐hiding capacity. Meral et al. [12]
embedded 0.81 bits/sentence of watermarks using mor-
phosyntactc alteration, and Murphy et al. [13] embedded
0.31 bits/sentence of watermarks using syntactic transfor-
mations. Whereas the previous systems used one method
for watermark embedding, our system uses both syntactic
movement and morphological division/combination, and it
adaptively determines watermark bits to be embedded for
each sentence according to the characteristics of its
syntactic structure. Therefore, we reduced the failure rate
of watermark embedding and maximized the information‐
hiding capacity.

The more a system ensures high information‐hiding ca-
pacity, the less robust it may be to adversary attacks. To
ensure high robustness, all the watermarking processes
were performed based on syntactic dependency trees.
Therefore, our system becomes more robust by preventing
an attacker from finding out watermarking patterns from
surface forms of the sentences.

Given Tw, the adversary can compute syn_wm for each
sentence. The string {syn_wm(s)} includes the watermark.
For sentences not rewritten by the watermark embedding
process, their syn_wm value can be regarded as a random
bit. Therefore, given Tw, the adversary cannot tell what is
the watermark, which sentences carry the watermark, nor
can the attacker infer any information about the key K.

Our method can withstand printing and font changing,
all optical character recognitionQ2 techniques, retyping, and
moving/switching sentences. However, it is not resistant to
sentence insertion/deletion. We therefore need to add an
error correction code to cope with this kind of attack, in
future work.

We conclude that our natural language watermarking
based on syntactic dependency trees has satisfying perfor-
mance without semantic and stylistic distortion.

4. RELATED WORK

Atallah et al. [6,14] proposed a technique for information
hiding in natural language text. They established the basic
technique for embedding a resilient watermark in text by
combining a number of information assurance and security
techniques with the advanced methods and resources of
natural language processing. A semantics‐based scheme
significantly improves the information‐hiding capacity of

English text by modifying the granularity of meaning of
individual terms/sentences. However, this scheme is
suitable only for English, and it was merely conceptual.

In other studies, a technique of embedding secret data
is proposed, which has no major impact on the meaning of
a text, and operates by replacing words in the cover text
with synonyms [3–5]. However, there is deterioration in
documents in which importance is attached to delicate
nuance when synonyms have been substituted. In
addition, because of domain dependence, the selection of
suitable synonyms is not easy. Moreover, the method
needs a large synonymy dictionary and a huge collocation
database [15].

Grothoff et al. [16] suggested the insertion of plausible
mistakes, in addition to synonym substitution. However, this
approach does not ensure robustness, because the water-
marked sentences have mistakes, and thus, they can be de-
tected by attackers.

There are several other methods suggested for aggluti-
native languages. Meral et al. [1] proposed 21 syntactic
tools for Turkish text watermarking. However, they do not
have a sentence selection process based on syntactic trees,
and an authorized person has to estimate the applied
syntactic transformations to extract the watermark. Topkara
et al. [7] also proposed syntax‐based natural language
watermarking using syntactic sentence paraphrasing. They
insisted that the syntactic approach is useful for natural
language watermarking without semantic distortion. Kim
et al. [17] proposed the use of an adverbial displacement in
a sentence. That method shows good coverage and
naturalness of modified sentences, but information‐hiding
capacity is low.

We conclude that our extended method for text
watermarking based on syntactic trees is more effective.
Whereas the previous methods used only syntactic
structure for sentence transformation, we used it for the
overall process to ensure more robustness. We selected
sentences to be watermarked based on their syntactic trees,
and this ensures that sentence movement by attackers does
not damage the watermark. In the same way, an authorized
person extracts a watermark from syntactic dependency
trees. To ensure high capacity, we adaptively determined
the number of watermark bits to be embedded in each
sentence.

5. SUMMARY AND CONCLUSION

We proposed natural language watermarking for aggluti-
native languages, based on syntactic dependency trees. By
exploiting characteristics of agglutinative languages, we
embedded watermark into sentences using syntactic
constituent movement, as well as morphological divi-
sion/combination. The overall procedure consists of
several steps. First, we performed syntactic dependency
parsing of the original text. Next, we obtained clauses by
segmenting the syntactic tree. Then, we dynamically
determined the number of watermark bits to be embedded

Robust and adaptive‐capacity watermarking algorithm M.‐Y. Kim and R. Goebel

8 Security Comm. Networks (2011) © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

for each sentence based on its syntactic tree. Fourth, we
chose the sentences to be marked according to their secret
ranks. Then, we embedded a watermark bit by morpho-
logical division/combination, and syntactic constituent
movement. Finally, we obtained marked text from the
modified parse trees.

The experimental results showed that the coverage of
our method is 96.15% and the ratio of information‐hiding
capacity is 1:5.41, which outperforms previous systems.
We also achieved an information‐hiding capacity with
2.84 bits/sentence, which is the highest amongst existing
watermarking systems. After watermarking, the natural-
ness of marked sentences was reduced in short news
sentences. For the whole collection of news sentences,
although the morphological division/combination did not
cause any unnaturalness in short sentences, the movement
of adverbial sometimes caused unnaturalness. However,
for longer sentences, we found that the naturalness of
marked sentences was even higher than original sentences.
By using syntactic structures, our method achieves the
highest capacity compared with previous systems and is
resistant to sentence movement, retyping, printing, and
font changes.

We conclude that our syntactic tree‐based method is
useful in watermarking of agglutinative languages. Other
types of languages, such as Indo‐European languages, also
share similar characteristics to which our method can
apply. For example, some constituents can move freely in
limited boundaries. By using those characteristics, we can
attempt to demonstrate the effectiveness of our method to
other languages. In addition, we need to explore how to
maintain robustness in sentence addition/deletion by
attackers and to improve the error correction codes.

REFERENCES

1. Meral HM, Sevinc E, Unkar E, Sankur B, Ozsoy AS,
Gungor T. Syntactic tools for text watermarking. In
Proceedings of the SPIE International Conference
on Security, Steganography, and Watermarking of
Multimedia Contents, Vol. 6505, Delp EJ, III, Wong
PW (eds). SPIE: Bellingham, WA, 2007Q3 .

2. Cox I, Miller ML, Bloom JA, Kaufman M. Digital
Watermarking. Morgan Kaufmann Publishers Inc.:
San Francisco, CA, 2002.

3. Topkara M, Taskiran CM, Delp EJ. Natural language
watermarking. In Proceedings of the SPIE Interna-
tional Conference on Security, Steganography and
Watermarking of Multimedia Contents, Vol. 5681.
Delp EJ, III, Wong PW (eds). SPIE: Bellingham, WA,
2005; 441–452.

4. Taskiran CM, Topkara M, Delp EJ. Attacks on
linguistic steganography systems using text analysis.
In Proceedings of the SPIE International Conference
on Security, Steganography and Watermarking of

Multimedia Contents. Delp EJ, III, Wong PW (eds).
SPIE: Bellingham, WA, 2006; 313–336.

5. Topkara U, Topkara M, Atallah MJ. The hiding
virtues of ambiguity: quantifiably resilient water-
marking of natural language text through synonym
substitutions. Proceedings of the ACM Multimedia
and Security Conference. ACM: New York, NY,
2006.

6. Atallah MJ, Raskin V, Crogan M, Hempelmann C,
Kerschbaum F, Mohamed D, Naik S. Natural
language watermarking: design, analysis, and proof‐
of‐concept implementation. Proceedings of the 4th
International Information Hiding Workshop, Pittsburgh,
Pennsylvania, 25–27 April 2001.

7. Topkara M, Topkara U, Atallah MJ. Words are not
enough: sentence level natural language watermark-
ing. Proceedings of 4th ACM International Proceed-
ings of ACM Workshop on Content Protection and
Security (in conjuction with ACMMultimedia). ACM:
New York, NY, 2006.

8. Kim MY, Kang SJ, Lee JH. Resolving ambiguity in
inter‐chunk dependency parsing. In Proceedings of
NLPRS, 2001; 263–270.

9. Kwon JI. The study of Korean grammar. Bak‐I‐Jeong,
1994. Q4

10. Chiang YL, Chang LP, Hsieh WT, Chen WC. Natural
language watermarking using semantic substitution
for Chinese text. Lecture Notes in Computer Science
2004; 129–140.

11. Stutsman R, Atallah MJ, Grothoff C, Grothoff K. Lost
in just the translation. Proceedings of the Annual
Symposium on Applied Computing (SAC). ACM: New
York, NY, 2006; 338–345.

12. Meral HM, Sankur B, Ozsoy AS, Gungor T, Sevinc E.
Natural language watermarking via morphosyntactic
alterations. Computer Speech & Language 2009;
23:107–125.

13. Murphy B, Vogel C. The syntax of concealment:
reliable methods for plain text information hiding.
In Proceedings of the SPIE International Conference
on Security, Steganography and Watermarking
of Multimedia Contents, Vol. 6505, Delp EJ, III,
Wong PW (eds). SPIE: Bellingham, WA, 2007;
6505Y.1–6505Y.12

14. Atallah M, Raskin V, Hempelmann CF, Karahan M,
Sion R, Triezenberg KE, Topkara U. Natural language
watermarking and tamperproofing. In Lecture Notes in
Computer Science, Proceedings of the 5th International
Information Hiding Workshop. Springer: Berlin/
Heidelberg, 2002; 7–9.

15. Takizawa O, Makino K, Matsumoto T, Nakagawa H,
Murase I. Method of hiding information in aggluti-
native language documents using adjustment to new

Robust and adaptive‐capacity watermarking algorithmM.‐Y. Kim and R. Goebel

9Security Comm. Networks (2011) © 2010 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

colorful
줄 긋기

colorful
대체 텍스트
Bak-I-Jeong:Seoul Korea

line positions. Knowledge‐based and Intelligent
Engineering Systems 2005; 3: 1039–1048.

16. Grothoff C, Grothoff K, Alkhutova L, Stutsman R,
Atallah M. Translation‐based steganography. Pro-
ceedings of Information Hiding Workshop (IH 2005),
Barcelona, Spain, 2005.

17. Kim MY. Natural language watermarking for
korean using adverbial displacement. International
Workshop on Interactive Multimedia and Intelligent
Services in Mobile and Ubiquitous Computing
(IMIS). IEEE Computer Society: Washington, DC,
2008.

Robust and adaptive‐capacity watermarking algorithm M.‐Y. Kim and R. Goebel

10 Security Comm. Networks (2011) © 2011 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Author Query Form

Journal: Security and Communication Networks

Article: sec_336

Dear Author,

During the copyediting of your paper, the following queries arose. Please respond to these by annotating your
proofs with the necessary changes/additions.
• If you intend to annotate your proof electronically, please refer to the E-annotation guidelines.
• If you intend to annotate your proof by means of hard-copy mark-up, please refer to the proof mark-up
symbols guidelines. If manually writing corrections on your proof and returning it by fax, do not write too
close to the edge of the paper. Please remember that illegible mark-ups may delay publication.

Whether you opt for hard-copy or electronic annotation of your proofs, we recommend that you provide
additional clarification of answers to queries by entering your answers on the query sheet, in addition to the
text mark-up.

Query No. Query Remark

Q1 AUTHOR: Please provide a suitable figure (abstract diagram or
illustration selected from the manuscript or an additional eye‐catching’
figure) and a short ‘GTOC’ abstract (maximum 80 words or 3
sentences) summarising the key findings presented in the paper for
Table of Content (TOC) entry.

Q2 AUTHOR: ‘Optical character recognition’. Is this the correct definition
for ‘OCR’? Please change if incorrect.

Q3 AUTHOR: Please check and confirm that References 1, 3, 4, 6, 13, and
14 have been presented correctly.

Q4 AUTHOR: If Reference 9 is a book, please provide publisher name
and publisher location. (Author. Book Title. Publisher name: Publisher
location, Publication year.).

Q5 AUTHOR: Figures 1,2,5 & 7 contains overlapping data. Please correct
and resupply the figure. Please check required artwork specifications at
http://www.blackwellpublishing.com/authors/digill.asp

Q6 AUTHOR: Please check the suitability of the suggested short title.

colorful
노트
Figure 1 is suitable for the abstract diagram. A short 'GTOC' abstract is as follows:We present a robust and adaptive-capacity watermarking algorithm for agglutinative languages. All processes, including the selection of sentences to be watermarked, watermark embedding, and watermark extraction, are based on syntactic dependency trees. We show that it is more robust to use syntactic dependency trees than the surface forms of sentences in text watermarking.

colorful
노트
That is correct.

colorful
노트
I confirm that the references have been presented correctly.

colorful
노트
Kwon JI. The study of Korean grammar. Bak-I-Jeong: Seoul Korea, 1994

colorful
노트
I corrected the four figures, and attached them in the email.

colorful
노트
The short title is good.

Page 1 of 3

USING E-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION
Required Software
Adobe Acrobat Professional or Acrobat Reader (version 7.0 or above) is required to e-annotate PDFs.
Acrobat 8 Reader is a free download: http://www.adobe.com/products/acrobat/readstep2.html
Once you have Acrobat Reader 8 on your PC and open the proof, you will see the Commenting Toolbar (if it
does not appear automatically go to Tools>Commenting>Commenting Toolbar). The Commenting Toolbar
looks like this:

If you experience problems annotating files in Adobe Acrobat Reader 9 then you may need to change a
preference setting in order to edit.
In the “Documents” category under “Edit – Preferences”, please select the category ‘Documents’ and
change the setting “PDF/A mode:” to “Never”.

Note Tool — For making notes at specific points in the text
Marks a point on the paper where a note or question needs to be addressed.

Replacement text tool — For deleting one word/section of text and replacing it
Strikes red line through text and opens up a replacement text box.

Cross out text tool — For deleting text when there is nothing to replace selection
Strikes through text in a red line.

How to use it:
1. Right click into area of either inserted

text or relevance to note
2. Select Add Note and a yellow speech

bubble symbol and text box will appear
3. Type comment into the text box
4. Click the X in the top right hand corner

of the note box to close.

How to use it:
1. Select cursor from toolbar
2. Highlight word or sentence
3. Right click
4. Select Replace Text (Comment) option
5. Type replacement text in blue box
6. Click outside of the blue box to close

How to use it:
1. Select cursor from toolbar
2. Highlight word or sentence
3. Right click
4. Select Cross Out Text

http://www.adobe.com/products/acrobat/readstep2.html�

Page 2 of 3

Approved tool — For approving a proof and that no corrections at all are required.

Highlight tool — For highlighting selection that should be changed to bold or italic.
Highlights text in yellow and opens up a text box.

Attach File Tool — For inserting large amounts of text or replacement figures as a files.
Inserts symbol and speech bubble where a file has been inserted.

Pencil tool — For circling parts of figures or making freeform marks
Creates freeform shapes with a pencil tool. Particularly with graphics within the proof it may be useful to use
the Drawing Markups toolbar. These tools allow you to draw circles, lines and comment on these marks.

How to use it:
1. Click on the Stamp Tool in the toolbar
2. Select the Approved rubber stamp from

the ‘standard business’ selection
3. Click on the text where you want to rubber

stamp to appear (usually first page)

How to use it:
1. Select Highlighter Tool from the

commenting toolbar
2. Highlight the desired text
3. Add a note detailing the required change

How to use it:
1. Select Tools > Drawing Markups > Pencil Tool
2. Draw with the cursor
3. Multiple pieces of pencil annotation can be grouped together
4. Once finished, move the cursor over the shape until an arrowhead appears

and right click
5. Select Open Pop-Up Note and type in a details of required change
6. Click the X in the top right hand corner of the note box to close.

How to use it:
1. Click on paperclip icon in the commenting toolbar
2. Click where you want to insert the attachment
3. Select the saved file from your PC/network
4. Select appearance of icon (paperclip, graph, attachment or

tag) and close

Page 3 of 3

Help
For further information on how to annotate proofs click on the Help button to activate a list of instructions:

