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Proof: ∇× F⃗ = 0⃗ ⇐⇒ F⃗ is conservative

The gradient operator is defined as
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1. Assume the vector field F⃗ is conservative. Therefore, F⃗ = ∇f for some function f

in R3. Take the curl of F⃗ :
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Since f is the potential function of some conservative vector field,
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As such, Equation 3 reduces to

∇× F⃗ = 0⃗ (4)

Therefore, if F⃗ is a conservative vector field, then the curl of F⃗ is 0⃗.

2. Assume ∇× F⃗ = 0⃗ for some vector-valued function F⃗ (x, y, z) ∈ R3, x, y, z ∈ R
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“Proof”: x ∈ R =⇒ x = x

Assume x ∈ R.
Note: a feature of R is that ∃!x ∈ R(x = x)
Thusly, x = x
QED ■

Proof 3

This proof is left to the reader as an excercise in futility.
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