Fundamental Equations of Dynamics

KINEMATICS

Particle Rectilinear Motion

Variable a	Constant $a = a_c$	
$a=\frac{dv}{dt}$	$v = v_0 + a_c t$	
$v = \frac{ds}{dt}$	$s = s_0 + v_0 t + \frac{1}{2} a_c t^2$	
a ds = v dv	$v^2 = v_0^2 + 2a_c(s - s_0)$	

Particle Curvilinear Motion

x, y, z Coordinates		r, θ , z Coordinates		
	$v_x = \dot{x}$	$a_x = \ddot{x}$	$v_r = \dot{r}$	$a_r = \ddot{r} - r\dot{\theta}^2$
	$v_y = \dot{y}$	$a_y = \ddot{y}$	$v_{m{ heta}} = r\dot{m{ heta}}$	$a_{\theta} = r\ddot{\theta} + 2\dot{r}\dot{\theta}$
	$v_z = \dot{z}$	$a_z = \ddot{z}$	$v_z = \dot{z}$	$a_z = \ddot{z}$
ı	h C			

$$v = \dot{s}$$
 $a_t = \dot{v} = v \frac{dv}{ds}$ $a_n = \frac{v^2}{\rho}$ $\rho = \frac{[1 + (dy/dx)^2]^{3/2}}{|d^2y/dx^2|}$

Relative Motion

$$\mathbf{v}_B = \mathbf{v}_A + \mathbf{v}_{B/A} \qquad \mathbf{a}_B = \mathbf{a}_A + \mathbf{a}_{B/A}$$

Rigid Body Motion About a Fixed Axis

1 5	·
Variable a	Constant $\mathbf{a} = \mathbf{a}_c$
$\alpha = \frac{d\omega}{dt}$	$\omega = \omega_0 + \alpha_c t$
$\omega = \frac{d\theta}{dt}$	$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha_c t^2$
$\omega d\omega = \alpha d\theta$	$\omega^2 = \omega_0^2 + 2\alpha_c(\theta - \theta_0)$
For Point P	
$s = \theta r$ $v = \omega r$ $a_t =$	$= \alpha r \qquad a_n = \omega^2 r$
I	

Relative General Plane Motion—Translating Axes

$$\mathbf{v}_B = \mathbf{v}_A + \mathbf{v}_{B/A(\text{pin})}$$
 $\mathbf{a}_B = \mathbf{a}_A + \mathbf{a}_{B/A(\text{pin})}$

Relative General Plane Motion-Trans. and Rot. Axis

$$\mathbf{v}_{B} = \mathbf{v}_{A} + \Omega \times \mathbf{r}_{B/A} + (\mathbf{v}_{B/A})_{xyz}$$

$$\mathbf{a}_{B} = \mathbf{a}_{A} + \dot{\Omega} \times \mathbf{r}_{B/A} + \Omega \times (\Omega \times \mathbf{r}_{B/A}) + 2\Omega \times (\mathbf{v}_{B/A})_{xyz} + (\mathbf{a}_{B/A})_{xyz}$$

KINETICS

Mass Moment of Inertia	$I=\int r^2dm$
Parallel-Axis Theorem	$I = I_G + md^2$
Radius of Gyration	$k = \sqrt{\frac{I}{m}}$

Equations of Motion

Particle	$\Sigma \mathbf{F} = m\mathbf{a}$
Rigid Body	$\Sigma F_x = m(a_G)_x$
(Plane Motion)	$\Sigma F_{y} = m(a_{G})_{y}$
	$\Sigma M_G = I_G \mathbf{a}$ or $\Sigma M_P = \Sigma (\mathcal{M}_k)_P$

 $T = \frac{1}{2}mv^2$

Principle of Work and Energy

$$T_1 + U_{1-2} = T_2$$

Kinetic Energy

Particle

	- 2
Rigid Body (Plane Motion)	$T = \frac{1}{2}mv_G^2 + \frac{1}{2}I_G\omega^2$
Work	
Variable force	$U_F = \int F \cos \theta \ ds$
Constant force	$U_F = (F_c \cos \theta) \Delta s$
Weight	$U_W = -W \Delta y$
Spring	$U_s = -(\frac{1}{2} k s_2^2 - \frac{1}{2} k s_1^2)$
Couple moment	$U_{M} = M \Delta \theta$

Power and Efficiency

$$P = \frac{dU}{dt} = \mathbf{F} \cdot \mathbf{v} \quad \epsilon = \frac{P_{\text{out}}}{P_{\text{in}}} = \frac{U_{\text{out}}}{U_{\text{in}}}$$
Conservation of Energy Theorem

$$T_1 + V_1 = T_2 + V_2$$

Potential Energy

$$V = V_g + V_e$$
, where $V_g = \pm Wy$, $V_e = +\frac{1}{2} ks^2$

Principle of Linear Impulse and Momentum

Particle	$m\mathbf{v}_1 + \sum \int \mathbf{F} dt = m\mathbf{v}_2$
Rigid Body	$m(\mathbf{v}_G)_1 + \sum \int \mathbf{F} dt = m(\mathbf{v}_G)_2$

Conservation of Linear Momentum

$$\Sigma(\text{syst. } m\mathbf{v})_1 = \Sigma(\text{syst. } m\mathbf{v})_2$$

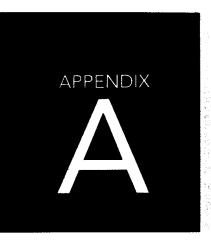
Coefficient of Restitution
$$e = \frac{(v_B)_2 - (v_A)_2}{(v_A)_1 - (v_B)_1}$$

Principle of Angular Impulse and Momentum

Particle	$(\mathbf{H}_O)_1 + \Sigma \int \mathbf{M}_O dt = (\mathbf{H}_O)_2$
	where $H_O = (d)(mv)$
Rigid Body (Plane motion)	$(\mathbf{H}_G)_1 + \sum \int \mathbf{M}_G dt = (\mathbf{H}_G)_2$ where $H_G = I_G \omega$ $(\mathbf{H}_O)_1 + \sum \int \mathbf{M}_O dt = (\mathbf{H}_O)_2$ where $H_O = I_O \omega$

Conservation of Angular Momentum

 $\Sigma(\text{syst. }\mathbf{H})_1 = \Sigma(\text{syst. }\mathbf{H})_2$



Mathematical Expressions

Quadratic Formula

If
$$ax^2 + bx + c = 0$$
, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Hyperbolic Functions

$$\sinh x = \frac{e^x - e^{-x}}{2}, \cosh x = \frac{e^x + e^{-x}}{2}, \tanh x = \frac{\sinh x}{\cosh x}$$

Trigonometric Identities

$$\sin \theta = \frac{A}{C}, \csc \theta = \frac{C}{A}$$

$$\cos \theta = \frac{B}{C}, \sec \theta = \frac{C}{B}$$

$$\tan \theta = \frac{A}{B}, \cot \theta = \frac{B}{A}$$

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\sin \theta + \cos \theta - 1$$

$$\sin(\theta \pm \phi) = \sin \theta \cos \phi \pm \cos \theta \sin \phi$$

$$\sin 2\theta = 2\sin\theta\cos\theta$$

$$\cos(\theta \pm \phi) = \cos\theta\cos\phi \mp \sin\theta\sin\phi$$

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$\cos \theta = \pm \sqrt{\frac{1 + \cos 2\theta}{2}}, \sin \theta = \pm \sqrt{\frac{1 - \cos 2\theta}{2}}$$

$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$

$$1 + \tan^2 \theta = \sec^2 \theta \qquad 1 + \cot^2 \theta = \csc^2 \theta$$

Power-Series Expansions

$$\sin x = x - \frac{x^3}{3!} + \cdots$$
 $\sinh x = x + \frac{x^3}{3!} + \cdots$
 $\cos x = 1 - \frac{x^2}{2!} + \cdots$ $\cosh x = 1 + \frac{x^2}{2!} + \cdots$

Derivatives

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$\frac{d}{dx}(\cot u) = -\csc^2 u \frac{du}{dx}$$

$$\frac{d}{dx}(\sec u) = \tan u \sec u \frac{du}{dx}$$

$$\frac{d}{dx}(\csc u) = -\csc u \cot u \frac{du}{dx}$$

$$\frac{d}{dx}(\sin u) = \cos u \frac{du}{dx}$$

$$\frac{d}{dx}(\cos u) = -\sin u \frac{du}{dx}$$

$$\frac{d}{dr}(\tan u) = \sec^2 u \frac{du}{dr}$$

$$\frac{d}{dx}(\sinh u) = \cosh u \frac{du}{dx}$$

$$\frac{d}{dx}(\cosh u) = \sinh u \frac{du}{dx}$$

Integrals

$$\int x^{n} dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$$

$$\int \frac{dx}{a+bx} = \frac{1}{b} \ln(a+bx) + C$$

$$\int \frac{dx}{a+bx^{2}} = \frac{1}{2\sqrt{-ba}} \ln\left[\frac{a+x\sqrt{-ab}}{a-x\sqrt{-ab}}\right] + C, ab < 0$$

$$\int \frac{x dx}{a+bx^{2}} = \frac{1}{2b} \ln(bx^{2}+a) + C,$$

$$\int \frac{x^{2} dx}{a+bx^{2}} = \frac{x}{b} - \frac{a}{b\sqrt{ab}} \tan^{-1} \frac{x\sqrt{ab}}{a} + C, ab > 0$$

$$\int \frac{dx}{a^{2}-x^{2}} = \frac{1}{2a} \ln\left[\frac{a+x}{a-x}\right] + C, a^{2} > x^{2}$$

$$\int \sqrt{a+bx} dx = \frac{2}{3b} \sqrt{(a+bx)^{3}} + C$$

$$\int x\sqrt{a+bx} dx = \frac{-2(2a-3bx)\sqrt{(a+bx)^{3}}}{15b^{2}} + C$$

$$\int x^{2}\sqrt{a+bx} dx = \frac{2(8a^{2}-12abx+15b^{2}x^{2})\sqrt{(a+bx)^{3}}}{105b^{3}} + C$$

$$\int \sqrt{a^{2}-x^{2}} dx = \frac{1}{2} \left[x\sqrt{a^{2}-x^{2}} + a^{2}\sin^{-1}\frac{x}{a}\right] + C, a > 0$$

$$\int x\sqrt{x^{2}\pm a^{2}} dx = \frac{1}{3}\sqrt{(x^{2}\pm a^{2})^{3}} + C$$

$$\int x^{2}\sqrt{a^{2}-x^{2}} dx = \frac{1}{2} \left[x\sqrt{x^{2}\pm a^{2}}\right] + C + (a^{2}-x^{2})^{3}$$

$$+ \frac{a^{2}}{8} \left(x\sqrt{a^{2}-x^{2}} + a^{2}\sin^{-1}\frac{x}{a}\right) + C, a > 0$$

$$\int \sqrt{x^{2}\pm a^{2}} dx = \frac{1}{2} \left[x\sqrt{x^{2}\pm a^{2}} \pm a^{2}\ln(x+\sqrt{x^{2}\pm a^{2}})\right] + C$$

$$\int x\sqrt{a^{2}-x^{2}} dx = -\frac{1}{3}\sqrt{(a^{2}-x^{2})^{3}} + C$$

$$\int x^{2}\sqrt{x^{2}\pm a^{2}} dx = \frac{x}{4}\sqrt{(x^{2}\pm a^{2})^{3}} \mp \frac{a^{2}}{8}x\sqrt{x^{2}\pm a^{2}}$$

$$-\frac{a^{4}}{8}\ln(x+\sqrt{x^{2}\pm a^{2}}) + C$$

$$\int \frac{dx}{\sqrt{a+bx}} = \frac{2\sqrt{a+bx}}{b} + C$$

$$\int \frac{x \, dx}{\sqrt{x^2 \pm a^2}} = \sqrt{x^2 \pm a^2} + C$$

$$\int \frac{dx}{\sqrt{a+bx+cx^2}} = \frac{1}{\sqrt{c}} \ln \left[\sqrt{a+bx+cx^2} + x\sqrt{c} + \frac{b}{2\sqrt{c}} \right] + C, c > 0$$

$$= \frac{1}{\sqrt{-c}} \sin^{-1} \left(\frac{-2cx-b}{\sqrt{b^2-4ac}} \right) + C, c > 0$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int \cos x \, dx = \sin x + C$$

$$\int x \cos(ax) \, dx = \frac{1}{a^2} \cos(ax) + \frac{x}{a} \sin(ax) + C$$

$$\int x^2 \cos(ax) \, dx = \frac{2x}{a^2} \cos(ax)$$

$$+ \frac{a^2x^2 - 2}{a^3} \sin(ax) + C$$

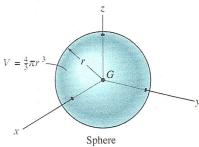
$$\int e^{ax} \, dx = \frac{1}{a} e^{ax} + C$$

$$\int x e^{ax} \, dx = \frac{e^{ax}}{a^2} (ax - 1) + C$$

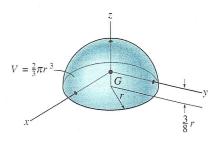
$$\int \sinh x \, dx = \cosh x + C$$

$$0 \int \cosh x \, dx = \sinh x + C$$

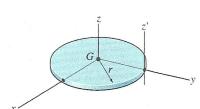
Center of Gravity and Mass Moment of Inertia of Homogeneous Solids



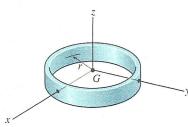
$$I_{xx} = I_{yy} = I_{zz} = \frac{2}{5} mr^2$$



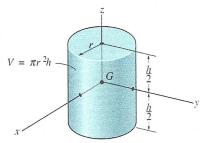
 $Hemisphere \\ I_{xx} = I_{yy} = 0.259 mr^2 \quad I_{zz} = \frac{2}{5} mr^2$



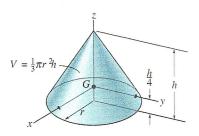
Thin Circular disk $I_{xx}=I_{yy}=\tfrac{1}{4}\,mr^2\quad I_{zz}=\tfrac{1}{2}mr^2\quad I_{z'z'}=\tfrac{3}{2}\,mr^2$



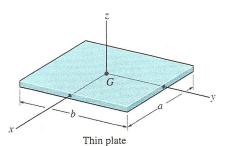
Thin ring $I_{xx} = I_{yy} = \frac{1}{2} mr^2 \qquad I_{zz} = mr^2$



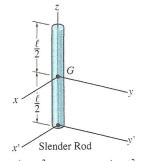
 ${\rm Cylinder}$ $I_{xx} = I_{yy} = {\textstyle \frac{1}{12}} \, m (3r^2 + h^2) \quad I_{zz} = {\textstyle \frac{1}{2}} \, mr^2$



Cone $I_{xx} = I_{yy} = \frac{3}{80} m (4r^2 + h^2) \ I_{zz} = \frac{3}{10} m r^2$



 $I_{xx} = \frac{1}{12} mb^2$ $I_{yy} = \frac{1}{12} ma^2$ $I_{zz} = \frac{1}{12} m(a^2 + b^2)$



 $I_{xx} = I_{yy} = \, \tfrac{1}{12} \, m \ell^2 \ \ I_{x'x'} = \, I_{y'y'} = \, \tfrac{1}{3} \, m \, \ell^2 \ \ I_{z'z'} = 0$