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A Network as a Directed Graph

A directed graph G = (V ,E ,A)

Vertex set: V = {1, 2, · · · , n}
Directed edge: (i , j) from vertex i to j

Weights: A = (aij), aij 6= 0 ⇐⇒ (j , i) exists.

Given a nonnegative matrix, there corresponds a digraph GA, for which A
is the weight matrix.
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Dynamical Systems on Networks

Given a digraph G = (V ,E ), a dynamical system can be defined over G .

Vertex dynamics: u′i = fi (t, ui ), i = 1, · · · , n.
ui ∈ Rmi and fi : R× Rmi → Rmi .

Connections: gij : R× Rmi × Rmj → Rmi influence of j on i
gij ≡ 0 ⇐⇒ (j , i) does not exist.

Coupled system over G :

u′i = fi (t, ui ) +
n∑

j=1

gij(t, ui , uj), i = 1, 2, . . . , n.
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Examples of Dynamical Systems on Networks

• Coupled Oscillators:

ẍi + αẋi + fi (xi ) +
n∑

j=1

εij(ẋi − ẋj) = 0,

• Dispersal of a single species among n patches

x ′i = xi fi (xi ) +
n∑

j=1

dij(xj − αijxi ), i = 1, 2, . . . , n.

• An n-patch predator-prey model

x ′i = xi (ri − bixi − eiyi ) +
n∑

j=1

dij(xj − αijxi ),

y ′i = yi (−γi − δiyi + εixi ),

i = 1, 2, . . . , n.
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Examples of Dynamical Systems on Networks cont’ed

• Cellular Neural Network and Lattice Dynamical Systems
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Examples of Dynamical Systems on Networks cont’ed

• A Delayed Hopfield-Cohen-Grossberg Model of Neural
Networks

dui (t)

dt
= −ui (t) +

n∑
i=1

Jij f
(
uj(t − τ)

)
, 1 ≤ i ≤ n

• An Epidemic Model in Heterogeneous Populations

S ′i = Λi − dS
i Si −

n∑
j=1

βij fij(Si , Ij),

E ′i =
n∑

j=1

βij fij(Si , Ij)− (dE
i + εi )Ei , i = 1, 2, · · · , n.

I ′i = εiEi − (d I
i + γi )Ii .
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Research Questions

Assume: Independent vertex dynamics are simple or identical

Investigate: If, what, how complex dynamic behaviours emerge
through network interactions.

• Pattern formation

• Synchronization and clustering

• Phase transition and bifurcation

• Stability and control
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Global Stability in Network Dynamics

Given a coupled system over a digraph G :

u′i = fi (t, ui ) +
n∑

j=1

gij(t, ui , uj), i = 1, 2, . . . , n. (1)

Assume: Each vertex u′i = fi (t, ui ) is globally stable, as insured by a
global Lyapunov function Vi .

Question: Under what conditions on the underlying network and
coupling is the coupled system globally stable?

Of significance in disease control, stability of eco-systems, power
distribution grids etc.
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Main Result

Theorem [Z. Shuai and ML, 2009] Assume

(1) There exist Fij(t, ui , uj) such that

•
Vi (u) ≤

n∑
j=1

aijFij(t, ui , uj), t > 0, ui ∈ Di , uj ∈ Dj , j = 1, · · · , n.

(2)

(2) Along each directed cycle C of G ,∑
(r ,s)∈E(C)

Frs(t, ur , us) ≤ 0, t > 0, ur ∈ Dr , us ∈ Ds . (3)

Then there exist constants ci ≥ 0 such that V (u) =
∑n

i=1 ciVi (u)
satisfies

•
V (u) ≤ 0, u ∈ D1 × · · · × Dn.
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Kirchhoff Matrix-Tree Theorem

Let (G ,A) be a weighted digraph with weight matrix A = (aij).
The Laplacian matrix of graph G is

L =



∑
k 6=1 a1k −a12 · · · −a1n
−a21

∑
k 6=2 a2k · · · −a2n

...
...

. . .
...

−an1 −an2 · · · ∑
k 6=n ank

 .

Let ci be the cofactor of the i-th diagonal element of L.

Theorem [Kirchhoff (1847)] Assume n ≥ 2. Then

ci =
∑
T ∈Ti

w(T ), i = 1, 2, . . . , n, (4)

where Ti is the set of all spanning trees T of (G,A) rooted at vertex i ,
and w(T ) is the weight of T .
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Reordering of a Double Sum
Proposition [Tree-Cycle-Identity, Z. Shuai and ML 2009] Let ci be given
by the Matrix-Tree Theorem. Then the following identity holds.

n∑
i,j=1

ci aij Fij(xi , xj) =
∑
Q∈Q

w(Q)
∑

(r ,s)∈E(CQ)

Frs(xr , xs), (5)

where Fij(xi , xj), 1 ≤ i , j ≤ n, are arbitrary functions, Q is the set of all
spanning unicyclic graphs Q of (G,A), w(Q) is the weight of Q, and CQ
denotes the oriented cycle of Q.

Proof: Note w(T ) aij = w(Q),

where Q is the unicyclic graph
obtained by adding an arc (j , i) to
T .

i

j

aij
TT

QQ
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Proof of Main Theorem

•
V =

n∑
i=1

ci
•
Vi ≤

n∑
i,j=1

ciaijFij(t, ui , uj) (assumption (1))

=
∑
Q∈Q

w(Q)
∑

(r ,s)∈E(CQ)

Frs(t, ur , us) (Proposition)

≤ 0.

Our Theorem offers a systematic way to construct global Lyapunov
functions for the coupled system, using individual Lyapunov functions for
the vertex dynamics.

Is the theorem any good?
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Application I: A Network of Coupled Oscillators

ẍi + αẋi + fi (xi ) +
n∑

j=1

εij(ẋi − ẋj) = 0, (6)

or in systems

ẋi = yi ,

ẏi = −αiyi − fi (xi )−
n∑

j=1

εij(yi − yj).
(7)

Each vertex dynamics is given by a damped nonlinear oscillator

ẍi + αẋi + fi (xi ) = 0.

Assume that the damping αi ≥ 0 and the potential energy
Fi (xi ) =

∫ xi fi (s)ds has a strictly global minimum at xi = x∗i . Then
x = x∗i is globally stable (using the Lyapunov function)

Vi (xi , yi ) = Fi (xi ) +
y2
i

2
.
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Application I: A Network of Coupled Oscillators

Theorem Assume αk > 0 for some k and digraph G is strongly
connected. Then E∗(x∗1 , 0, x

∗
2 , 0, · · · , x∗n , 0) is globally asymptotically

stable in R2n.

Proof. Vi (xi , yi ) = Fi (xi ) +
y2
i

2

•
Vi = −αiy

2
i −

n∑
j=1

εij(yi − yj)yi

≤
n∑

j=1

εij [−
1

2
(yi − yj)

2 − 1

2
y2
i +

1

2
y2
j ]

≤
n∑

j=1

εijFij(yi , yj)

where

Fij(yi , yj) = −1

2
y2
i +

1

2
y2
j .
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Application II: A Single Species Model with Dispersal

x ′i = xi fi (xi ) +
n∑

j=1

dij(xj − αijxi ), i = 1, 2, . . . , n. (8)

Theorem [Z. Shuai and ML (2009)] Assume

(1) matrix (dij) is irreducible;

(2) f ′i (xi ) ≤ 0, xi > 0, i = 1, 2, . . . , n; ∃ k, f ′k (xk) 6≡ 0 in any open
interval of R+;

(3) system (8) is uniformly persistent;

(4) solutions of (8) are uniformly bounded.

Then system (8) has a globally asymptotically stable positive equilibrium
E∗.

Note: Lu and Tacheuchi (1993) proved the result under the assumption
f ′i (xi ) < 0, xi > 0 for all i , using the theory of monotone dynamical
systems.
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Application III: An n-Patch Predator-Prey Model

x ′i = xi (ri − bixi − eiyi ) +
n∑

j=1

dij(xj − αijxi ),

y ′i = yi (−γi − δiyi + εixi ),

i = 1, 2, . . . , n. (9)

Theorem [Z. Shuai and ML (2009)] Assume that (dij) is irreducible, and
that ∃ k such that bkδk > 0. Then the positive equilibrium E∗, whenever
it exists, is unique and globally asymptotically stable in the positive cone
R2n

+ .

Kuang and Tacheuchi (1994) proved the two-patch case.

Vi (xi , yi ) = εi (xi − x∗i ln xi ) + ei (yi − y∗i ln yi )
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Application IV: A Multi-group Delayed Epidemic Model

S ′i = Λi − dS
i Si −

n∑
j=1

βijSi Ij(t − τj),

I ′i =
n∑

j=1

βijSi Ij(t − τj)− (d I
i + γi )Ii ,

i = 1, 2, · · · , n. (10)

Theorem [Z. Shuai and ML (2009)] Assume that B = (βij) is irreducible.
If R0 > 1, then the unique endemic equilibrium P∗ for system (10) is

globally asymptotically stable in
◦
Θ.

When n = 1, C. McCluskey proved the global stability with Lyapunov
function

Vi = (Si − S∗i + S∗i ln
Si
S∗i

) + (Ii − I ∗i − I ∗i ln
Ii
I ∗i

)+

n∑
j=1

βjiS
∗
i

∫ τj

0

(
Ij(t − r)− I ∗j − I ∗j ln

Ij(t − r)

I ∗j

)
dr .



A Network of Autonomous Robotic Agents HPC Control Protocol Main Result

Application IV: A Multi-group Delayed Epidemic Model

S ′i = Λi − dS
i Si −

n∑
j=1

βijSi Ij(t − τj),

I ′i =
n∑

j=1

βijSi Ij(t − τj)− (d I
i + γi )Ii ,

i = 1, 2, · · · , n. (10)

Theorem [Z. Shuai and ML (2009)] Assume that B = (βij) is irreducible.
If R0 > 1, then the unique endemic equilibrium P∗ for system (10) is

globally asymptotically stable in
◦
Θ.

When n = 1, C. McCluskey proved the global stability with Lyapunov
function

Vi = (Si − S∗i + S∗i ln
Si
S∗i

) + (Ii − I ∗i − I ∗i ln
Ii
I ∗i

)+

n∑
j=1

βjiS
∗
i

∫ τj

0

(
Ij(t − r)− I ∗j − I ∗j ln

Ij(t − r)

I ∗j

)
dr .



A Network of Autonomous Robotic Agents HPC Control Protocol Main Result

Application IV: A Multi-group Delayed Epidemic Model

S ′i = Λi − dS
i Si −

n∑
j=1

βijSi Ij(t − τj),

I ′i =
n∑

j=1

βijSi Ij(t − τj)− (d I
i + γi )Ii ,

i = 1, 2, · · · , n. (10)

Theorem [Z. Shuai and ML (2009)] Assume that B = (βij) is irreducible.
If R0 > 1, then the unique endemic equilibrium P∗ for system (10) is

globally asymptotically stable in
◦
Θ.

When n = 1, C. McCluskey proved the global stability with Lyapunov
function

Vi = (Si − S∗i + S∗i ln
Si
S∗i

) + (Ii − I ∗i − I ∗i ln
Ii
I ∗i

)+

n∑
j=1

βjiS
∗
i

∫ τj

0

(
Ij(t − r)− I ∗j − I ∗j ln

Ij(t − r)

I ∗j

)
dr .



A Network of Autonomous Robotic Agents HPC Control Protocol Main Result

A video on Youtube
https://www.youtube.com/watch?v=QmWD76jwjbQ

GRASP Lab, University of Pennsylvania

https://www.youtube.com/watch?v=QmWD76jwjbQ
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Each robotic agent has position vector ri = (xi , yi ) ∈ R2 and velocity
vector vi = ṙi = (ẋi , ẏi ).

The system’s evolution is governed by Newton’s equation

ṙi = vi ,

v̇i = ui ,
i = 1, · · · , n. (11)

Here

• ui , i = 1, · · · , n, define the control protocol

• Formation control is achieved through communications among
agents

• Network represents the communication graph (topology)

• A complete communication graph is too costly.
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Hierarchical Potential Clustering (HPC) Protocol

Proposed by J. Maidens and ML:

1) Divide the agents into clusters

2) Assign a leader to each cluster

3) Implement an artificial potential scheme (with a complete graph)
within each cluster

4) Implement a velocity consensus scheme among the cluster leaders.
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HPC Protocol: control within a cluster i

For j 6= 1, (i.e. rij is not a leader in cluster i)

uij = −∇rijPij −
∑
k

(θij − θik)||vij ||
||rij − rik ||

n̂(ij),

where

Pij =

ni∑
k=1

P ik
ij

controls distance of agents in the
cluster and

θij = tan−1
( ẏij
ẋij

)
is the heading of agent (i , j).

P
(d
)

d = ||rij − rik||

Figure: Potential function P ik
ij .
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HPC Protocol: control among leaders

For j = 1, (i.e., ri1 is the leader in cluster i), we add additional force to
control there heading

ui1 = −∇ri1Pi1 −
∑
k

(θi1 − θik)||vi1||
||ri1 − rik ||

n̂(i1)

+
∑
h∈Ni

bih(vh1 − vi1)

where matrix B = (bij) is any nonnegative irreducible matrix. The
correspond communication graph GB among leaders is strongly
connected.
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Formation Stabilization Problem

Definition A control protocol is said to solve the formation stabilization
problem if solutions of (11) converge asymptotically to a state such that

(a) the relative positions of each agent (i , j) within a cluster are such
that a local minimum of the total vertex potential Pij is achieved,

(b) the headings of any two agents (i , j) and (h, k) satisfy θij = θhk .
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Main Result

Theorem (J. Maidens and ML, 2013)

Given any clustering scheme, the HPC protocol solves the formation
stabilization problem provided that the leader communication graph GB is
strongly connected.

An example graph that is strongly connected:
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Main Result

Theorem (J. Maidens and ML, 2013)

Given any clustering scheme, the HPC protocol solves the formation
stabilization problem provided that the leader communication graph GB is
strongly connected.

An example graph that is not strongly connected:
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Simulations

• Clustering without control protocol
• Video 1

• Clustering without leader control
• Video 2
• Video 3

• Clustering with leader control
• Video 4
• Video 5
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Synchronization

Synchronization of metronomes: a video

https://www.youtube.com/watch?v=Aaxw4zbULMs

https://www.youtube.com/watch?v=Aaxw4zbULMs
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Coupled Oscillators Revisited

Consider a system of coupled oscillators:

ẍi + fi (xi ) +
n∑

j=1

εij(ẋi − ẋj) = 0,

Assume that fi (xi ) and Fi (xi ) =
∫ x

i
fi (t)dt satisfy

(C1) fi (xi )xi > 0, xi 6= 0, i = 1, 2, · · · , n,
(C2) Fi (xi )→∞ as |xi | → ∞, i = 1, 2, · · · , n.

Both (C1) and (C2) are satisfied for fi (xi ) = x3i .
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Global Synchronization

Definition: System (29) is said to achieve global synchronization if, for
every solution x(t) of system (29) and all 1 ≤ i , j ≤ n,

ẋi (t)− ẋj(t) = 0.

Question: Under what conditions of matrix A = (aij) does the system
(29) achieves global synchronization?
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A Theorem

Theorem (P. Du and ML 2015)
In system (29), suppose that the direct graph GA is strongly connected,
and assumptions (C1) and (C2) are satisfied. Then system (29) achieves
global synchronization.

For the proof, considering the equivalent system

ẋi = yi

ẏi = −fi (xi ) +
n∑

j=1

εij(yj − yi )

Using Lyapunov functions:

Vi =
1

2
y2
i + Fi (xi ),

and

V =
n∑

i=1

ciVi .
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