A Research Story: Compound Equations and Dynamics. Part I

James Muldowney, University of Alberta

July 16, 2021

Compound Matrices

$m \times n$ matrix:

$$
A=\left[a_{i}^{j}\right], 1 \leq i \leq m, 1 \leq j \leq n
$$

$p \times p$ minor:

$$
a_{r_{1} \ldots r_{p}}^{s_{1} \ldots s_{p}}=\operatorname{det}\left[a_{r_{i}}^{s_{j}}\right], 1 \leq i, j \leq p,
$$

minor of A determined by the rows r_{1}, \ldots, r_{p} and the columns s_{1}, \ldots, s_{p} examples:

$$
\begin{aligned}
& a_{11}^{12}=\left|\begin{array}{ll}
a_{1}^{1} & a_{1}^{2} \\
a_{1}^{1} & a_{1}^{2}
\end{array}\right|=0 \\
& a_{12}^{12}=\left|\begin{array}{ll}
a_{1}^{1} & a_{1}^{2} \\
a_{2}^{1} & a_{2}^{2}
\end{array}\right|, a_{13}^{12}=\left\lvert\, \begin{array}{ll}
a_{1}^{1} & a_{1}^{2} \\
a_{3}^{1} & a_{3}^{2}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& a_{122}^{123}=\left|\begin{array}{lll}
a_{1}^{1} & a_{1}^{2} & a_{1}^{3} \\
a_{2}^{1} & a_{2}^{2} & a_{2}^{3} \\
a_{2}^{1} & a_{2}^{2} & a_{2}^{3}
\end{array}\right|=0 \\
& a_{123}^{123}=\left|\begin{array}{lll}
a_{1}^{1} & a_{1}^{2} & a_{1}^{3} \\
a_{2}^{1} & a_{2}^{2} & a_{2}^{3} \\
a_{3}^{1} & a_{3}^{2} & a_{3}^{3}
\end{array}\right|, a_{123}^{124}=\left|\begin{array}{lll}
a_{1}^{1} & a_{1}^{2} & a_{1}^{4} \\
a_{2}^{1} & a_{2}^{2} & a_{2}^{4} \\
a_{3}^{1} & a_{3}^{2} & a_{3}^{4}
\end{array}\right|
\end{aligned}
$$

$m=n>p$, cofactor matrix:

$$
A_{r_{1} \ldots r_{p}}^{s_{1} \ldots s_{p}} \text { is the cofactor of } a_{r_{1} \ldots r_{p}}^{s_{1} \ldots s_{p}} \text {, }
$$

i.e. it is the signed minor determined by the rows complementary to rows r_{1}, \ldots, r_{p} and by the columns complementary to columns s_{1}, \ldots, s_{p} multiplied by $(-1)^{r_{1}+s_{1}+\ldots+r_{p}+s_{p}}$.

If $p=n$, define

$$
A_{12 \ldots n}^{12 \ldots n}=1 .
$$

3×3 matrix $A=\left[\begin{array}{lll}a_{1}^{1} & a_{1}^{2} & a_{1}^{3} \\ a_{2}^{1} & a_{2}^{2} & a_{2}^{3} \\ a_{3}^{1} & a_{3}^{2} & a_{3}^{3}\end{array}\right]:$

$$
\begin{gathered}
A_{1}^{1}=a_{23}^{23}=\left|\begin{array}{rr}
a_{2}^{2} & a_{2}^{3} \\
a_{3}^{2} & a_{3}^{3}
\end{array}\right|, A_{2}^{3}=-a_{13}^{12}=-\left|\begin{array}{ll}
a_{1}^{1} & a_{1}^{2} \\
a_{3}^{1} & a_{3}^{2}
\end{array}\right| \\
A_{12}^{12}=a_{3}^{3}, A_{13}^{12}=-a_{2}^{3} \text { and } A_{123}^{123}=1 .
\end{gathered}
$$

Note that in this case we have

$$
\operatorname{det} A=a_{i}^{1} A_{i}^{1}+a_{i}^{2} A_{i}^{2}+a_{i}^{3} A_{i}^{3}, i=1,2,3
$$

and

$$
0=a_{i}^{1} A_{r}^{1}+a_{i}^{2} A_{r}^{2}+a_{i}^{3} A_{r}^{3}, \text { if } i \neq r .
$$

$n \times n$ matrix A : Laplace expansion

$$
\begin{array}{rlr}
\text { by rows } \operatorname{det} A & =\sum_{j=1}^{n} a_{i}^{j} A_{i}^{j}, & i=1,2, \cdots, n \\
\text { by columns } \operatorname{det} A & =\sum_{i=1}^{n} a_{i}^{j} A_{i}^{j}, & j=1,2, \cdots, n
\end{array}
$$

If A is a $n \times n$ matrix and $1 \leq k \leq n$, then the Laplace expansions by minors are:

$$
\begin{aligned}
\operatorname{det} A & =\sum_{1 \leq s_{1}<\ldots<s_{k} \leq n} a_{r_{1} \ldots r_{k}}^{s_{1} \ldots s_{k}} A_{r_{1} \ldots r_{k}}^{s_{1} \ldots s_{k}}, \text { if } 1 \leq r_{1}<\ldots<r_{k} \leq n \\
\operatorname{det} A & =\sum_{1 \leq r_{1}<\ldots<r_{k} \leq n} a_{r_{1} \ldots r_{k}}^{s_{1} \ldots s_{k}} A_{r_{1} \ldots r_{k}}^{s_{1} \ldots s_{k}}, \text { if } 1 \leq s_{1}<\ldots<s_{k} \leq n
\end{aligned}
$$

Note: $0=\sum_{(s)} a_{r_{1} \ldots r_{k}}^{s_{1} \ldots s_{k}} A_{t_{1} \ldots t_{k}}^{s_{1} \ldots s_{k}}$, if $(r) \neq(t)$, and $0=\sum_{(r)} a_{r_{1} \ldots r_{k}}^{s_{1} \ldots s_{k}} A_{r_{1} \ldots r_{k}}^{t_{1} \ldots t_{k}}$, if $(s) \neq(t)$.
$n \times n$ matrix A : Cofactor matrix of A :

$$
\operatorname{cof} A=\left[A_{i}^{j}\right], i, j=1, \ldots, n
$$

adjugate (or classical adjoint) matrix of A :

$$
\operatorname{adj} A=(\operatorname{cof} A)^{T}
$$

Properties:

$$
\begin{gathered}
A(\operatorname{adj} A)=(\operatorname{adj} A) A=(\operatorname{det} A) I \\
A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A \\
\operatorname{det}(\operatorname{cof} A)=\operatorname{det}(\operatorname{adj} A)=(\operatorname{det} A)^{n-1}
\end{gathered}
$$

Multiplicative Compounds

$n \times m$ matrix $A, 1 \leq k \leq \min \{n, m\}$
k-th multiplicative compound is the $\binom{n}{k} \times\binom{ m}{k}$ matrix

$$
A^{(k)}=\left[a_{r_{1} \ldots r_{k}}^{s_{1} \ldots s_{k}}\right]=\left[\begin{array}{c}
(s) \\
a_{(r)}
\end{array}\right]
$$

The entry in the r-th row and the s-th column of $A^{(k)}$ is $a_{r_{1} \ldots r_{k}}^{s_{1} \ldots s_{k}}=a_{(r)}^{(s)}$, where $(r)=\left(r_{1}, \ldots, r_{k}\right)$ is the r-th member of the lexicographic ordering of the integers $1 \leq r_{1}<r_{2}<\ldots<r_{k} \leq m$ and $(s)=\left(s_{1}, \ldots s_{k}\right)$ is the s-th member in the lexicographic (dictionary) ordering of all k-tuples of the integers $1 \leq s_{1}<s_{2}<\ldots<s_{k} \leq n$:

$$
\begin{aligned}
1 & \leq r_{1}<r_{2}<r_{3} \leq 5 \\
(1) & =(123), \quad(2)=(124), \quad(3)=(125), \quad(4)=(134), \quad(5)=(135), \\
(6) & =(145), \quad(7)=(234), \quad(8)=(235), \quad(9)=(245), \quad(10)=(345)
\end{aligned}
$$

Example:

$$
A=\left[\begin{array}{ll}
a_{1}^{1} & a_{1}^{2} \\
a_{2}^{1} & a_{2}^{2} \\
: & : \\
a_{m}^{1} & a_{m}^{2}
\end{array}\right]_{m \times 2}, A^{(2)}=\left[\begin{array}{l}
a_{12}^{12} \\
a_{13}^{12} \\
\vdots \\
a_{m-1, m}^{12}
\end{array}\right]_{\binom{m}{2} \times 1}
$$

Binet-Cauchy Theorem:

$$
A B=C \Rightarrow A^{(k)} B^{(k)}=C^{(k)}
$$

Sylvester's Theorem:

$$
\operatorname{det} A^{(k)}=(\operatorname{det} A)^{\binom{n-1}{k-1}}
$$

Linear Differential Equations

$$
\begin{equation*}
\dot{x}=A(t) x \tag{L}
\end{equation*}
$$

$t \in[0, \infty), x \in \mathbb{R}^{n}, t \rightarrow A(t)_{n \times n}$ continuous.

A solution $x(t)$ of (L) is uniquely determined by its value $x\left(t_{0}\right)$ at any point $t_{0} \in[0, \infty)$.
$X(t)_{n \times m}$ is a solution matrix of (L) if $\dot{X}(t)=A(t) X(t)$
$X(t)$ is a fundamental matrix of (L) if it is $n \times n$, non-singular and

$$
\dot{X}(t)=A(t) X(t)
$$

The columns of a fundamental matrix span the solution space of (L) : $x(t)$ is a solution of $(L) \Longleftrightarrow$ there exists $c \in \mathbb{R}^{n}$ such that

$$
x(t)=X(t) c
$$

Equivalently, the columns of $X(t)$ are solutions of (L) which span the solution space of (L).

In particular, each column of $X(t)$ is a solution of (L).
Suppose that $X(t)$ is a fundamental matrix of (L), then a $n \times n$ matrix $Y(t)$ is a fundamental matrix of (L) if and only if there is a constant non-singular matrix C such that $Y(t)=X(t) C$.

Any continuously differentiable $n \times n$ matrix $X(t)$ is a fundamental matrix for some linear differential equation $(L) \Longleftrightarrow X(t)$ is non-singular:

$$
\begin{aligned}
A(t) & =\dot{X}(t) X^{-1}(t) \\
\dot{X}(t) & =A(t) X(t)
\end{aligned}
$$

Compound Differential Equations

Recall, from Sylvester's Theorem, $\operatorname{det} X(t)^{(k)}=(\operatorname{det} X(t))^{\binom{n-1}{k-1}}$ so that $\operatorname{det} X(t) \neq 0 \Rightarrow \operatorname{det} X^{(k)}(t) \neq 0$. So $Y(t)=X^{(k)}(t)=\left[x_{r_{1} \ldots r_{k}}^{s_{1} \ldots s_{k}}(t)\right]$ is a fundamental matrix for a $\binom{n}{k}$-dimensional equation. The coefficient matrix in this equation is denoted $A^{[k]}$

$$
\begin{equation*}
\dot{y}=A^{[k]}(t) y \tag{k}
\end{equation*}
$$

the k-th compound equation of (L). Note that $A^{[1]}=A, A^{[n]}=\operatorname{tr} A$

$$
\begin{gather*}
\dot{y}=A(t) y \tag{1}\\
\dot{y}=\operatorname{tr} A(t) y \tag{n}
\end{gather*}
$$

In the case $k=n, X^{(n)}(t)=\operatorname{det} X(t)$, and (n) is the famous Abel-Jacobi scalar equation which gives

$$
\operatorname{det} X(t)=\operatorname{det} X\left(t_{0}\right) \exp \left(\int_{t_{0}}^{t} \operatorname{tr} A(s) d s\right)
$$

If $X(t)$ is a $n \times m$ solution matrix of (L), then $Y(t)=X^{(k)}(t)$ is a $\binom{n}{k} \times\binom{ m}{k}$ solution matrix of (k)

Example:

$$
X=\left[\begin{array}{ll}
x_{1}^{1} & x_{1}^{2} \\
x_{2}^{1} & x_{2}^{2} \\
: & : \\
x_{m}^{1} & x_{m}^{2}
\end{array}\right]_{m \times 2}, x^{(2)}=\left[\begin{array}{l}
x_{12}^{12} \\
x_{13}^{12} \\
: \\
x_{m-1, m}^{12}
\end{array}\right]_{\binom{m}{2} \times 1}
$$

Additive Compounds

$A=\left[a_{i}^{j}\right], 1 \leq i, j \leq m=n$
$C=A^{[k]}, 1 \leq k \leq m=n$ is called the k-th additive compound A

$$
c_{r}^{s}= \begin{cases}a_{r_{1}}^{r_{1}}+\cdots+a_{r_{k}}^{r_{k}}, & \left\{\begin{array}{l}
\text { if }(r)=(s) \\
(-1)^{i+j} a_{r_{i}}^{s_{j}},
\end{array}\right. \\
\left\{\begin{array}{l}
\text { if exactly one entry } r_{i} \text { in }(r) \\
\text { does not occur in }(s) \text { and } s_{j} \\
\text { does not occur in (r) }
\end{array}\right. \\
0, & \left\{\begin{array}{r}
\text { if }(r) \text { differs from (s) in two }
\end{array}\right. \\
\text { or more entries }\end{cases}
$$

Additivity:

$$
(A+B)^{[k]}=A^{[k]}+B^{[k]}
$$

Examples:

$$
n=2:
$$

$$
\begin{aligned}
& A^{[1]}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=A \\
& A^{[2]}=a_{11}+a_{22}=\operatorname{tr} A
\end{aligned}
$$

$$
n=3:
$$

$$
\begin{aligned}
& A^{[1]}=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=A \\
& A^{[2]}=\left[\begin{array}{ccc}
a_{11}+a_{22} & a_{23} & -a_{13} \\
a_{32} & a_{11}+a_{33} & a_{12} \\
-a_{31} & a_{21} & a_{22}+a_{33}
\end{array}\right] \\
& A^{[3]}=a_{11}+a_{22}+a_{33}=\operatorname{tr} A
\end{aligned}
$$

$$
n=4:
$$

$A^{[2]}=\left[\begin{array}{cccccc}a_{11}+a_{22} & a_{23} & a_{24} & -a_{13} & -a_{14} & 0 \\ a_{32} & a_{11}+a_{33} & a_{34} & a_{12} & 0 & -a_{14} \\ a_{42} & a_{43} & a_{11}+a_{44} & 0 & a_{12} & a_{13} \\ -a_{31} & a_{21} & 0 & a_{22}+a_{33} & a_{34} & -a_{24} \\ -a_{41} & 0 & a_{21} & a_{43} & a_{22}+a_{44} & a_{23} \\ 0 & -a_{41} & a_{31} & -a_{42} & a_{32} & a_{33}+a_{44}\end{array}\right]$

$$
A^{[3]}=\left[\begin{array}{cccc}
a_{11}+a_{22}+a_{33} & a_{34} & -a_{24} & a_{14} \\
a_{43} & a_{11}+a_{22}+a_{44} & a_{23} & -a_{13} \\
-a_{42} & a_{32} & a_{11}+a_{33}+a_{44} & a_{12} \\
a_{41} & -a_{31} & a_{21} & a_{22}+a_{33}+a_{44}
\end{array}\right]
$$

$$
A^{[4]}=a_{11}+a_{22}+a_{33}+a_{44}=\operatorname{tr} A
$$

Geometrical Interpretation

Solutions $x^{1}(t), x^{2}(t)$ of (L) with $n=3$ may be interpreted as oriented line segments in \mathbb{R}^{3} whose projections on a basis e^{1}, e^{2}, e^{3} are $\left[\begin{array}{l}x_{1}^{1}(t) \\ x_{2}^{1}(t) \\ x_{3}^{1}(t)\end{array}\right]$,$\left[\begin{array}{l}x_{1}^{2}(t) \\ x_{2}^{2}(t) \\ x_{3}^{2}(t)\end{array}\right]$ and whose evolution in time is governed by (L). If
$X(t)=\left[\begin{array}{ll}x_{1}^{1}(t) & x_{1}^{2}(t) \\ x_{2}^{1}(t) & x_{2}^{2}(t) \\ x_{3}^{1}(t) & x_{3}^{2}(t)\end{array}\right]$, then $X^{(2)}(t)=\left[\begin{array}{c}x_{12}^{12} \\ x_{13}^{12} \\ x_{23}^{12}\end{array}\right]$ satisfies (2) and
may be considered as an oriented 2-dimensional parallelogram in \mathbb{R}^{3} whose projection onto the $\left(e^{i}, e^{j}\right)$ coordinate plane, $i<j$, is a parallelogram with area $x_{i j}^{12}$.

If $x^{1}(t), \cdots, x^{k}(t)$ are considered as an ordered set of oriented line segments in \mathbb{R}^{n} changing with time, then $y(t)=x_{r_{1} r_{2} \cdots r_{k}}^{12 \cdots k}(t)$ may be interpreted as the projection of the corresponding k-dimensional oriented parallelopiped in \mathbb{R}^{n} onto the k-dimensional coordinate subspace spanned by $e_{r_{1}}, \cdots, e_{r_{k}}$.

$$
\begin{gathered}
(\exp A)^{(k)}=\exp \left(A^{[k]}\right) \\
\left.\frac{d}{d t}(I+t A)^{(k)}\right|_{t=0}=A^{[k]}
\end{gathered}
$$

The last expression is sometimes taken as the definition of $A^{[k]}$

