Wavelet Application to Numerical PDEs

Bin Han

Department of Mathematical and Statistical Sciences University of Alberta, Edmonton, Canada

Present at 2021 International Undergraduate Summer Enrichment Program at UofA

$$
\text { July 12-August 13, } 2021
$$

Outline of Mini-course Talks

- Wavelet theory in the function setting.
- Multiresolution analysis.
- Riesz and biorthogonal wavelets in $L_{2}(\mathbb{R})$.
- Basics on Sobolev spaces.
- Basics on boundary value problems in PDEs.
- Wavelet applications to numerical PDEs.

Declaration: Some figures and graphs in this talk are from the book [Bin Han, Framelets and Wavelets: Algorithms, Analysis and Applications, Birkhäuser/Springer, 2017] and various other sources from Internet, or from published papers, or produced by matlab, maple, or C programming. [Details and sources of all graphs can be provided upon request of the audience.]

What Is a Wavelet in the Function Setting?

- Let $\phi=\left(\phi_{1}, \ldots, \phi_{r}\right)^{\top}$ and $\psi=\left(\psi_{1}, \ldots, \psi_{s}\right)^{\top}$ in $L_{2}(\mathbb{R})$.
- A system is derived from ϕ, ψ via dilates and integer shifts:

$$
\begin{aligned}
\operatorname{AS}(\phi ; \psi):= & \{\phi(\cdot-k): k \in \mathbb{Z}\} \cup \\
& \left\{\psi_{j ; k}:=2^{j / 2} \psi\left(2^{j} \cdot-k\right): j \in \mathbb{N} \cup\{0\}, k \in \mathbb{Z}\right\} .
\end{aligned}
$$

- $\{\phi ; \psi\}$ is called an orthogonal wavelet in $L_{2}(\mathbb{R})$ if $\mathrm{AS}(\phi ; \psi)$ is an orthonormal basis of $L_{2}(\mathbb{R})$.
- Wavelet representation:

$$
f=\sum_{k \in \mathbb{Z}}\langle f, \phi(\cdot-k)\rangle \phi(\cdot-k)+\sum_{j=0}^{\infty} \sum_{k \in \mathbb{Z}}\left\langle f, \psi_{j ; k}\right\rangle \psi_{j ; k}, \quad f \in L_{2}(\mathbb{R})
$$

where $\langle f, g\rangle:=\int_{\mathbb{R}} f(x) \overline{g(x)}^{\mathrm{T}} d x$ is the inner product.

- For $r=1,\{\phi ; \psi\}$ is called a scalar wavelet. For $r>1$ (i.e., ϕ is a vector function), $\{\phi ; \psi\}$ is called a multiwavelet.

Dilates and Shifts of Affine Systems

Multiresolution Analysis

Definition

A sequence $\left\{\mathscr{V}_{j}\right\}_{j \in \mathbb{Z}}$ of closed subspaces in $L_{2}(\mathbb{R})$ forms a (wavelet) multiresolution analysis (MRA) of $L_{2}(\mathbb{R})$ if
(1) $\mathscr{V}_{j}=\left\{f\left(2^{j} \cdot\right): f \in \mathscr{V}_{0}\right\}$ and $\mathscr{V}_{j} \subseteq \mathscr{V}_{j+1}$ for all integers $j \in \mathbb{Z}$;
(2) $\overline{\bigcup_{j \in \mathbb{Z}} \mathscr{V}_{j}}=L_{2}(\mathbb{R})$ (that is, $\cup_{j \in \mathbb{Z}} \mathscr{V}_{j}$ is dense in $L_{2}(\mathbb{R})$) and $\cap_{j \in \mathbb{Z}} \mathscr{V}_{j}=\{0\} ;$
(3) there exists a set Φ of functions in $L_{2}(\mathbb{R})$ such that $\{\phi(\cdot-k): k \in \mathbb{Z}, \phi \in \Phi\}$ is a Riesz basis for \mathscr{V}_{0}.

Note that the set Φ of functions in item (3) completely determines a multiresolution analysis by

$$
\mathscr{V}_{j}=\mathrm{S}_{2^{j}}\left(\Phi \mid L_{2}(\mathbb{R})\right):=\overline{\operatorname{span}\left\{\phi\left(2^{j} \cdot-k\right): k \in \mathbb{Z}, \phi \in \Phi\right\}}{ }^{L_{2}(\mathbb{R})}
$$

For scalar wavelets, Φ is a singleton and $\Phi=\phi$.

MRA of Orthogonal (Multi)Wavelets

- Let $\phi=\left(\phi^{1}, \ldots, \phi^{r}\right)^{\top}$ and $\psi=\left(\psi^{1}, \ldots, \psi^{s}\right)^{\top}$ in $L_{2}(\mathbb{R})$.
- $\{\phi ; \psi\}$ is called an orthogonal wavelet if $\operatorname{AS}(\phi ; \psi)$ is an orthonormal basis of $L_{2}(\mathbb{R})$, where as

$$
\begin{aligned}
& \operatorname{AS}(\phi ; \psi):=\left\{\phi^{\ell}(\cdot-k): k \in \mathbb{Z}, \ell=1, \ldots, r\right\} \\
& \quad \cup\left\{\psi_{2^{j} ; k}^{\ell}:=2^{j / 2} \psi^{\ell}\left(2^{j} \cdot-k\right): j \geqslant 0, k \in \mathbb{Z}, \ell=1, \ldots, s\right\}
\end{aligned}
$$

- Define $\mathscr{V}_{j}:=\mathrm{S}_{2^{j}}\left(\left\{\phi^{1}, \ldots, \phi^{r}\right\} \mid L_{2}(\mathbb{R})\right)$ and $\mathscr{W}_{j}:=\mathrm{S}_{2^{j}}\left(\left\{\psi^{1}, \ldots, \psi^{s}\right\} \mid L_{2}(\mathbb{R})\right)$ for $j \in \mathbb{Z}$.
- Then we have the space decomposition of $L_{2}(\mathbb{R})$:

$$
\mathscr{V}_{J+1}=\mathscr{V}_{J} \oplus \mathscr{W}_{J} \quad \text { and } \quad L_{2}(\mathbb{R})=\mathscr{V}_{J} \oplus_{j=J}^{\infty} \mathscr{W}_{j}=\oplus_{j \in \mathbb{Z}} \mathscr{W}_{j}, \forall J \in \mathbb{Z}
$$

where \oplus means the orthogonal sum of closed subspaces in $L_{2}(\mathbb{R})$.

Vanishing Moments and Sparsity

- A function ψ has m vanishing moments if $\widehat{\psi}(\xi)=\mathscr{O}\left(|\xi|^{m}\right)$ as $\xi \rightarrow 0$, i.e., $\widehat{\psi}(0)=\widehat{\psi}^{\prime}(0)=\cdots=\widehat{\psi}^{(m-1)}(0)=0$.
- If ψ has decay, then the above is equivalent to $\int_{\mathbb{R}} \psi(x) x^{j} d x=0$ for all $j=0, \ldots, m-1$.
- If $\widehat{\psi}(\xi):=\widehat{b}(\xi / 2) \widehat{\phi}(\xi / 2)$ and $\widehat{\phi}(0) \neq 0$, then ψ has m vanishing moments if and only if the filter b has m vanishing moments: $\widehat{b}(\xi)=\mathscr{O}\left(|\xi|^{m}\right)$ as $\xi \rightarrow 0$.
- Let $\{\phi ; \psi\}$ be an orthogonal wavelet in $L_{2}(\mathbb{R})$. Then every function $f \in L_{2}(\mathbb{R})$ can be represented as

$$
f=\sum_{k \in \mathbb{Z}}\langle f, \phi(\cdot-k)\rangle \phi(\cdot-k)+\sum_{j=0}^{\infty} \sum_{k \in \mathbb{Z}}\left\langle f, \psi_{2^{j} ; k}\right\rangle \psi_{2^{j} ; k} .
$$

- If $f \approx \mathrm{p}$ on the support of $\psi_{2^{j} ; k}$ and $\operatorname{deg}(\mathrm{p})<m$, then ψ has m vanishing moments implies $\left\langle f, \psi_{2^{j} ; k}\right\rangle \approx 0$.

Fast Wavelet Transform in Function Setting

Let $\{\phi ; \psi\}$ be an orthogonal wavelet in $L_{2}(\mathbb{R})$ with an orthogonal wavelet filter bank $\{a ; b\}$ such that

$$
\widehat{\phi}(2 \xi)=\widehat{a}(\xi) \widehat{\phi}(\xi), \quad \widehat{\psi}(2 \xi)=\widehat{b}(\xi) \widehat{\phi}(\xi) .
$$

Then every function $f \in L_{2}(\mathbb{R})$ can be represented as

$$
f=\sum_{k \in \mathbb{Z}}\left\langle f, \phi_{2^{J} ; k}\right\rangle \phi_{2^{J} ; k}+\sum_{j=J}^{\infty} \sum_{k \in \mathbb{Z}}\left\langle f, \psi_{2^{j} ; k}\right\rangle \psi_{2^{j} ; k} .
$$

Choose j large so that

$$
f \approx f_{j}:=\sum_{k \in \mathbb{Z}} v^{j}(k) \phi_{2 j ; k} \quad \text { with } \quad v^{j}(k):=\left\langle f, \phi_{2^{j} ; k}\right\rangle .
$$

On the other hand, we also have

$$
\left.f_{j}=f_{j-1}+\sum_{k \in \mathbb{Z}} w^{j-1}(k)\right\rangle \psi_{2^{j-1} ; k} \quad \text { with } \quad w^{j-1}(k):=\left\langle f, \psi_{2^{j-1} ; k}\right\rangle
$$

Fast Wavelet Transform in Function Setting...

Then the coefficients v^{j-1}, w^{j-1} can be computed from v^{j} as follows:

$$
v^{j-1}=\frac{\sqrt{2}}{2} \mathcal{T}_{a} v^{j}, \quad w^{j-1}=\frac{\sqrt{2}}{2} \mathcal{T}_{b} v^{j}
$$

which is exactly the same discrete wavelet decomposition in the discrete setting.
Conversely, we can obtained v^{j} from v^{j-1} and w^{j-1} by

$$
v^{j}=\frac{\sqrt{2}}{2} \mathcal{S}_{a} v^{j-1}+\frac{\sqrt{2}}{2} \mathcal{S}_{b} w^{j-1}
$$

which is exactly the same discrete wavelet reconstruction.

Explanation

Note $\widehat{\psi}(2 \xi)=\widehat{b}(\xi) \widehat{\phi}(\xi)$ is equivalent to

$$
\psi=2 \sum_{n \in \mathbb{Z}} b(n) \phi(2 \cdot-n)
$$

Then

$$
\begin{aligned}
\psi_{2^{j-1} ; k} & =2^{(j-1) / 2} \psi\left(2^{j-1} \cdot-k\right)=2^{(j+1) / 2} \sum_{n \in \mathbb{Z}} b(n) \phi\left(2^{j} \cdot-2 k-n\right) \\
& =\sqrt{2} \sum_{n \in \mathbb{Z}} b(n) \phi_{2^{j} ; 2 k+n} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
w^{j-1}(k) & =\left\langle f, \psi_{2^{j-1} ; k}\right\rangle=\sqrt{2} \sum_{n \in \mathbb{Z}} b(n)\left\langle f, \phi_{2^{j} ; 2 k+n}\right\rangle \\
& =\sqrt{2} \sum_{n \in \mathbb{Z}} \overline{b(n)} v^{j}(2 k+n)=\frac{\sqrt{2}}{2}\left[\mathcal{T}_{b} v^{j}\right](k) .
\end{aligned}
$$

Explanation...

Recall

$$
\psi_{2^{j-1} ; k}=\sqrt{2} \sum_{n \in \mathbb{Z}} b(n) \phi_{2^{j} ; 2 k+n} .
$$

Conversely,

$$
\begin{aligned}
\sum_{k \in \mathbb{Z}} w^{j-1}(k) \psi_{2^{j-1} ; k} & =\sum_{k \in \mathbb{Z}} \sqrt{2} \sum_{n \in \mathbb{Z}} w^{j-1}(k) b(n) \phi_{2^{j} ; 2 k+n} \\
& =\sqrt{2} \sum_{k \in \mathbb{Z}} \sum_{n^{\prime} \in \mathbb{Z}} w^{j-1}(k) b\left(2 k-n^{\prime}\right) \phi_{2 ; n^{\prime}} \\
& =\sum_{n^{\prime} \in \mathbb{Z}} \sqrt{2} \sum_{k \in \mathbb{Z}} b\left(2 k^{\prime}-n\right) w^{j-1}(k) \\
& =\sum_{n^{\prime} \in \mathbb{Z}} \frac{\sqrt{2}}{2}\left[\mathcal{S}_{b} w^{j-1}\right]\left(n^{\prime}\right)
\end{aligned}
$$

Explanation...

Hence,

$$
\begin{aligned}
\sum_{k \in \mathbb{Z}} v^{j}(k) \phi_{2^{j} ; k} & =\sum_{k \in \mathbb{Z}} v^{j-1}(k) \phi_{2^{j-1} ; k}+\sum_{k \in \mathbb{Z}} w^{j-1}(k) \psi_{2^{j-1} ; k} \\
& =\sum_{n^{\prime} \in \mathbb{Z}}\left(\frac{\sqrt{2}}{2}\left[\mathcal{S}_{a} v^{j-1}\right]\left(n^{\prime}\right)+\frac{\sqrt{2}}{2}\left[\mathcal{S}_{b} w^{j-1}\right]\left(n^{\prime}\right)\right) \phi_{2^{j} ; n^{\prime}} \\
& =\sum_{k \in \mathbb{Z}}\left(\frac{\sqrt{2}}{2}\left[\mathcal{S}_{a} v^{j-1}\right](k)+\frac{\sqrt{2}}{2}\left[\mathcal{S}_{b} w^{j-1}\right](k)\right) \phi_{2^{j} ; k}
\end{aligned}
$$

Since $\{\phi(\cdot-k)\}_{k \in \mathbb{Z}}$ is an orthonormal system, we must have

$$
v^{j}(k)=\frac{\sqrt{2}}{2}\left[\mathcal{S}_{a} v^{j-1}\right](k)+\frac{\sqrt{2}}{2}\left[\mathcal{S}_{b} w^{j-1}\right](k)
$$

Construction of Orthogonal Scalar Wavelets

Theorem

Let $a, b \in I_{0}(\mathbb{Z})$ with $\widehat{a}(0)=1$. Define

$$
\widehat{\phi}(\xi):=\prod_{j=1}^{\infty} \widehat{a}\left(2^{-j} \xi\right), \quad \widehat{\psi}(\xi):=\widehat{b}(\xi / 2) \widehat{\phi}(\xi / 2)
$$

Then $\phi, \psi \in L_{2}(\mathbb{R})$ and $\{\phi ; \psi\}$ is an orthogonal wavelet in $L_{2}(\mathbb{R})$ if and only if

- $[\widehat{\phi}, \widehat{\phi}]=1$, i.e., $\{\phi(\cdot-k)\}_{k \in \mathbb{Z}}$ is an orthonormal system.
- $\{a ; b\}$ is an orthogonal wavelet filter bank:

$$
\left[\begin{array}{cc}
\widehat{a}(\xi) & \widehat{b}(\xi) \\
\hat{a}(\xi+\pi) & \hat{b}(\xi+\pi)
\end{array}\right] \overline{[c c}_{\hat{a}(\xi)} \begin{array}{cc}
\widehat{b}(\xi) \\
\widehat{a}(\xi+\pi) & \widehat{b}(\xi+\pi)
\end{array}{ }^{\top}=I_{2}
$$

Orthogonal Wavelet Filter Bank

Proposition

Let $a, b \in I_{0}(\mathbb{Z})$. Then $\{a ; b\}$ is an orthogonal wavelet filter bank:

$$
\left[\begin{array}{cc}
\widehat{a}(\xi) & \widehat{b}(\xi) \\
\widehat{a}(\xi+\pi) & \widehat{b}(\xi+\pi)
\end{array}\right]\left[\begin{array}{cc}
\widehat{a}(\xi) & \widehat{b}(\xi) \\
\widehat{a}(\xi+\pi) & \widehat{b}(\xi+\pi)
\end{array}\right]^{\star}=I_{2}
$$

if and only if a is an orthogonal low-pass filter:

$$
|\widehat{a}(\xi)|^{2}+|\widehat{a}(\xi+\pi)|^{2}=1
$$

and there exist $c \in \mathbb{T}$ and $n \in \mathbb{Z}$ such that

$$
\widehat{b}(\xi)=c e^{i(2 n-1) \xi} \overline{\widehat{a}(\xi+\pi)}
$$

For $c=1$ and $n=0, \widehat{b}(\xi)=e^{-i \xi \widehat{\hat{a}(\xi+\pi)} \text {. } . ~ . ~ . ~}$

Daubechies Orthogonal Wavelets

Define interpolatory filter $\widehat{a_{2 m}^{\prime}}(\xi):=\cos ^{2 m}(\xi / 2) \mathrm{P}_{m, m}\left(\sin ^{2}(\xi / 2)\right)$ with $\mathrm{P}_{m, m}(x):=\sum_{j=0}^{m-1}\binom{m+j-1}{j} x^{j}$. Since $\widehat{a_{2 m}^{l}}(\xi) \geqslant 0$, by Fejér-Riesz lemma, there exists $a_{m}^{D} \in I_{0}(\mathbb{Z})$ such that $\widehat{a_{m}^{D}}(0)=1$.

$$
\left|\widehat{a_{m}^{D}}(\xi)\right|^{2}=\widehat{a_{2 m}^{I}}(\xi):=\widehat{a_{2 m}^{I}}(\xi)=\cos ^{2 m}(\xi / 2) \mathrm{P}_{m, m}\left(\sin ^{2}(\xi / 2)\right)
$$

Define ϕ through $\widehat{\phi}(\xi):=\prod_{j=1}^{\infty} \widehat{a_{m}^{D}}\left(2^{-j} \xi\right)$. Then $[\widehat{\phi}, \widehat{\phi}]=1$ and $\left\{a_{m}^{D} ; b_{m}^{D}\right\}$ is an orthogonal wavelet filter bank with

$$
\widehat{b_{m}^{D}}(\xi):=e^{-i \xi \widehat{a_{m}^{D}}(\xi+\pi)}, \quad \widehat{\psi}(\xi):=\widehat{b_{m}^{D}}(\xi / 2) \widehat{\phi}(\xi / 2)
$$

Then $\{\phi ; \psi\}$ is a compactly supported orthogonal wavelet such that the low-pass filter a_{m}^{D} has order m sum rules and the high-pass filter b_{m}^{D} has m vanishing moments, called the Daubechies orthogonal wavelet of order m.

Daubechies Orthogonal Filters

$$
\begin{aligned}
a_{1}^{D}= & \left\{\frac{1}{2}, \frac{1}{2}\right\}_{[0,1]}, \\
a_{2}^{D}= & \left\{\frac{1+\sqrt{3}}{8}, \frac{3+\sqrt{3}}{8}, \frac{3-\sqrt{3}}{8}, \frac{1-\sqrt{3}}{8}\right\}_{[-1,2]} \\
a_{3}^{D}= & \left\{\frac{1+\sqrt{10}+\sqrt{5+2 \sqrt{10}}}{32}, \frac{5+\sqrt{10}+3 \sqrt{5+2 \sqrt{10}}}{32}, \frac{5-\sqrt{10}+\sqrt{5+2 \sqrt{10}}}{\mathbf{1 6}},\right. \\
& \left.\frac{5-\sqrt{10}-\sqrt{5+2 \sqrt{10}}}{16}, \frac{5+\sqrt{10}-3 \sqrt{5+2 \sqrt{10}}}{32}, \frac{1+\sqrt{10}-\sqrt{5+2 \sqrt{10}}}{32}\right\}_{[-2,3]}, \\
a_{4}^{D}= & \{-0.0535744507091,-0.0209554825625,0.351869534328, \\
& \underline{\mathbf{0 . 5 6 8 3 2 9 1 2 1 7 0 4}}, 0.210617267102,-0.0701588120893, \\
& -0.00891235072084,0.0227851729480\}_{[-3,4]} .
\end{aligned}
$$

Daubechies Orthogonal Wavelets

(a) Filter a_{1}^{D}

(d) Filter a_{2}^{D}

(b) $\phi^{a_{1}^{D}}$

(e) $\phi^{a_{2}^{D}}$

(c) $\psi^{a_{1}^{D}}$

(f) $\psi^{a_{2}^{D}}$

Plot Refinable Function ϕ and Wavelet Function ψ

$$
a=\left\{\frac{1+\sqrt{3}}{8}, \frac{3+\sqrt{3}}{8}, \frac{3-\sqrt{3}}{8}, \frac{1-\sqrt{3}}{8}\right\}, \quad b=\left\{-\frac{1-\sqrt{3}}{8}, \frac{3-\sqrt{3}}{8},-\frac{3+\sqrt{3}}{8}, \frac{1+\sqrt{3}}{8}\right\} .
$$

(g) a_{1}

(k) b_{1}

(h) a_{2}

(I) b_{2}

(i) a_{3}

(m) b_{3}

(j) a_{4}

(n) b_{4}

Daubechies Orthogonal Wavelets

(a) Filter a_{3}^{D}

(d) Filter a_{4}^{D}

(b) $\phi^{a_{3}^{D}}$

(e) $\phi^{a_{4}^{D}}$

(c) $\psi^{a_{3}^{D}}$

(f) $\psi^{a_{4}^{D}}$

Riesz (Multi)Wavelets in $L_{2}(\mathbb{R})$

- Let $\phi=\left(\phi_{1}, \ldots, \phi_{r}\right)^{\top}$ and $\psi=\left(\psi_{1}, \ldots, \psi_{s}\right)^{\top}$ in $L_{2}(\mathbb{R})$.
- $\{\phi ; \psi\}$ is a Riesz wavelet if $\operatorname{AS}(\phi ; \psi)$ is a Riesz basis in $L_{2}(\mathbb{R})$, that is, (1) there exists positive constants C_{1} and C_{2} such that

$$
C_{1} \sum_{h \in \mathrm{~A}(\phi ; \psi)}\left|c_{h}\right|^{2} \leqslant\left\|\sum_{h \in \mathrm{AS}} c_{h} h\right\|_{L_{2}(\mathbb{R})}^{2} \leqslant c_{2} \sum_{h \in \mathrm{AS}(\phi ; \psi)}\left|c_{h}\right|^{2},
$$

and the linear span of $\operatorname{AS}(\phi ; \psi)$ is dense in $L_{2}(\mathbb{R})$, where

$$
\begin{aligned}
& \operatorname{AS}(\phi ; \psi):=\{\phi(\cdot-k): k \in \mathbb{Z}\} \\
& \quad \cup\left\{\psi_{2 j ; k}:=2^{j^{/ 2}} \psi\left(2^{j} \cdot-k\right): j \geqslant 0, k \in \mathbb{Z}\right\} .
\end{aligned}
$$

- If $C_{1}=C_{2}=1$, then a Riesz wavelet becomes an orthogonal wavelet. That is, an orthogonal wavelet is a special case of Riesz wavelets.

Biorthogonal Wavelets in $L_{2}(\mathbb{R})$

- Let $\underset{\sim}{\phi}=\left({\underset{\sim}{\phi}}_{1}, \ldots,{\underset{\sim}{\phi}}_{r}\right)^{\top}$ and ${\underset{\sim}{\sim}}^{\psi}=\left({\underset{\sim}{\psi}}_{1}, \ldots, \psi_{\sim}\right)^{\top}$ in $L_{2}(\mathbb{R})$.
- Let $\tilde{\phi}=\left(\tilde{\phi}_{1}, \ldots, \tilde{\phi}_{r}\right)^{\top}$ and $\tilde{\psi}=\left(\tilde{\psi}_{1}, \ldots, \tilde{\psi}_{s}\right)^{\top}$ in $L_{2}(\mathbb{R})$.
- $(\{\tilde{\phi} ; \tilde{\psi}\},\{\phi ; \psi\})$ is a biorthogonal (multi)wavelet in $L_{2}(\mathbb{R})$ if
(1) Both $\{\tilde{\phi} ; \tilde{\psi}\}$ and $\{\phi ; \psi\}$ are Riesz wavelets in $L_{2}(\mathbb{R})$;
(2) $\mathrm{AS}(\tilde{\phi} ; \tilde{\psi})$ and $\mathrm{AS}(\phi ; \psi)$ are biorthogonal to each other:

$$
\langle h, \tilde{h}\rangle=1 \quad \text { and } \quad\langle h, g\rangle=0, \quad \forall g \in \mathrm{AS}(\phi ; \psi) \backslash\{h\} .
$$

- Every function $f \in L_{2}(\mathbb{R})$ has the wavelet representation:

$$
f=\sum_{k \in \mathbb{Z}}\langle f, \tilde{\phi}(\cdot-k)\rangle \phi(\cdot-k)+\sum_{j=0}^{\infty} \sum_{k \in \mathbb{Z}}\left\langle f, \tilde{\psi}_{2^{j} ; k}\right\rangle \psi_{2^{j} ; k} .
$$

- An orthogonal wavelet $\{\phi ; \psi\}$ is just a biorthogonal wavelet $(\{\phi ; \psi\},\{\phi ; \psi\})$ (i.e., its dual is itself.)
- Biorthogonal wavelets and multiwavelets are widely used in image processing and numerical solutions of PDEs.

MRA of Biorthogonal Wavelets

- Let $(\{\tilde{\phi} ; \tilde{\psi}\},\{\phi ; \psi\})$ be a biorthogonal wavelet in $L_{2}(\mathbb{R})$.
- Define $\mathscr{V}_{j}:=\mathrm{S}_{2^{j}}\left(\phi \mid L_{2}(\mathbb{R})\right)$ and $\mathscr{W}_{j}:=\mathrm{S}_{2^{j}}\left(\psi \mid L_{2}(\mathbb{R})\right)$ for $j \in \mathbb{Z}$.
- Define $\tilde{\mathscr{V}}_{j}:=\mathrm{S}_{2^{j}}\left(\tilde{\phi} \mid L_{2}(\mathbb{R})\right)$ and $\tilde{\mathscr{W}}_{j}:=\mathrm{S}_{2^{j}}\left(\tilde{\psi} \mid L_{2}(\mathbb{R})\right)$ for $j \in \mathbb{Z}$.
- Then we have two intertwined MRAs: For $J \in \mathbb{Z}$,

$$
\begin{aligned}
& \mathscr{V}_{J+1}=\mathscr{V}_{J} \oplus \mathscr{W}_{J} \quad \text { and } \quad L_{2}(\mathbb{R})=\tilde{V}_{J} \oplus_{j=J}^{\infty} \mathscr{W}_{j}=\oplus_{j \in \mathbb{Z}} \mathscr{W}_{j}, \\
& \tilde{\mathscr{V}}_{J+1}=\tilde{\mathscr{V}}_{J} \oplus \tilde{\mathscr{W}}_{J} \quad \text { and } \quad L_{2}(\mathbb{R})=\tilde{\mathscr{V}}_{J} \oplus_{j=J}^{\infty} \mathscr{W}_{j}=\oplus_{j \in \mathbb{Z}} \mathscr{W}_{j}
\end{aligned}
$$

where \oplus means the direct sum of closed subspaces in $L_{2}(\mathbb{R})$ and

$$
\mathscr{W}_{j}=\mathscr{V}_{j+1} \cap \tilde{\mathscr{V}}_{j}^{\perp}, \quad \tilde{\mathscr{W}}_{j}=\tilde{\mathscr{V}}_{j+1} \cap \mathscr{V}_{j}^{\perp}, \quad j \in \mathbb{Z}
$$

- Wavelet coefficients $\left\langle f, \tilde{\psi}_{2^{j} ; k}\right\rangle$ can be computed through MRAs using filter banks by fast wavelet transform as in the case of orthogonal wavelets.

Construction of Scalar Biorthogonal Wavelets

Theorem: Let $\phi, \psi \in L_{2}(\mathbb{R})$ and $\tilde{\phi}, \tilde{\psi} \in L_{2}(\mathbb{R})$. Then $(\{\tilde{\phi} ; \tilde{\psi}\},\{\phi ; \psi\})$ is a biorthogonal wavelet in $L_{2}(\mathbb{R})$ if and only if
(1) There exist $a, b, \tilde{a}, \tilde{b} \in I_{2}(\mathbb{Z})$ such that

$$
\begin{array}{ll}
\widehat{\phi}(2 \xi)=\widehat{a}(\xi) \widehat{\phi}(\xi), & \widehat{\psi}(2 \xi)=\widehat{b}(\xi) \widehat{\phi}(\xi), \\
\widetilde{\tilde{\phi}}(2 \xi)=\widehat{\tilde{a}}(\xi) \tilde{\tilde{\phi}}(\xi), & \widehat{\tilde{\psi}}(2 \xi)=\widetilde{\tilde{b}}(\xi) \tilde{\tilde{\phi}}(\xi) .
\end{array}
$$

(2) $(\{\tilde{a} ; \tilde{b}\},\{a ; b\})$ is a biorthogonal wavelet filter bank;

$$
\left[\begin{array}{cc}
\widehat{\tilde{a}}(\xi) & \widehat{\tilde{b}}(\xi) \\
\widehat{\tilde{a}}(\xi+\pi) & \widetilde{\tilde{b}}(\xi+\pi)
\end{array}\right]\left[\begin{array}{cc}
\widehat{a}(\xi) & \widehat{b}(\xi) \\
\widehat{a}(\xi+\pi) & \widehat{b}(\xi+\pi)
\end{array}\right]^{\top}=I_{2} .
$$

- $[\hat{\phi}, \widehat{\phi}] \in L_{\infty}(\mathbb{R}),[\hat{\tilde{\phi}}, \widehat{\tilde{\phi}}] \in L_{\infty}(\mathbb{R})$, and $[\hat{\tilde{\phi}}, \widehat{\phi}]=1$, where

$$
\widehat{f}(\xi):=\int_{\mathbb{R}} f(x) e^{-i x \xi} d x, \quad[\widehat{f}, \widehat{g}](\xi):=\sum_{k \in \mathbb{Z}} \widehat{f}(\xi+2 \pi k) \overline{\widehat{g}(\xi+2 \pi k)} .
$$

Scalar Biorthogonal Wavelet Filter Bank

Proposition

Let $a, b, \tilde{a}, \tilde{b} \in I_{0}(\mathbb{Z})$. Then $(\{\tilde{a} ; \tilde{b}\},\{a ; b\})$ is a biorthogonal wavelet filter bank:

$$
\left[\begin{array}{cc}
\widehat{\tilde{a}}(\xi) & \widehat{\tilde{b}}(\xi) \\
\widehat{\tilde{a}}(\xi+\pi) & \tilde{\tilde{b}}(\xi+\pi)
\end{array}\right]_{\left[\begin{array}{cc}
\widehat{a}(\xi) & \widehat{b}(\xi) \\
\widehat{a}(\xi+\pi) & \widehat{b}(\xi+\pi)
\end{array}\right]^{\top}=I_{2}, ~}^{\text {and }}
$$

if (\tilde{a}, a) is a biorthogonal low-pass filter:

$$
\widehat{\tilde{a}}(\xi) \overline{\hat{a}(\xi)}+\widehat{\tilde{a}}(\xi+\pi) \overline{\hat{a}(\xi+\pi)}=1
$$

with the choice $\widehat{\tilde{b}}(\xi)=e^{i \xi} \overline{\bar{a}(\xi+\pi)}$ and $\widehat{b}(\xi)=e^{i \xi \overline{\tilde{a}}(\xi+\pi)}$.
If $\widehat{a}(0)=\sum_{k \in \mathbb{Z}} a(k)=1$, then $\widehat{\phi}(\xi):=\prod_{j=1}^{\infty} \widehat{a}\left(2^{-j} \xi\right)$ is well defined and satisfies $\widehat{\phi}(2 \xi)=\widehat{a}(\xi) \widehat{\phi}(\xi)$.

Example of Scalar Biorthogonal Wavelets

We can obtain a pair of biorthogonal wavelet filters by splitting the interplatory filter

$$
\overline{\widehat{\tilde{a}_{m}}(\xi)} \widehat{a_{m}}(\xi):=\widehat{a_{2 m}^{\prime}}(\xi)=\cos ^{2 m}(\xi / 2) \mathrm{P}_{m, m}\left(\sin ^{2}(\xi / 2)\right)
$$

as follows: $\mathrm{P}(x) \tilde{\mathrm{P}}(x)=\mathrm{P}_{m, m}(x)$ and

$$
\begin{array}{ll}
\widehat{a_{m}}(\xi)=2^{-m}\left(1+e^{-i \xi}\right)^{m} P\left(\sin ^{2}(\xi / 2)\right), & \widehat{b_{m}}(\xi):=e^{-i \xi} \overline{\widehat{\tilde{a}_{m}}(\xi+\pi)} \\
\widehat{\tilde{a}_{m}}(\xi)=2^{-m}\left(1+e^{-i \xi}\right)^{m} \tilde{P}\left(\sin ^{2}(\xi / 2)\right), & \widehat{\tilde{b}_{m}}(\xi):=e^{-i \xi} \overline{\widehat{a_{m}}(\xi+\pi)}
\end{array}
$$

For $m=2$, we have the LeGall biorthogonal wavelet filter bank:

$$
a_{2}=\left\{\frac{1}{4}, \underline{\frac{1}{2}}, \frac{1}{4}\right\}_{[-1,1]}
$$

and

$$
\tilde{a}_{2}=\left\{-\frac{1}{8}, \frac{1}{4}, \frac{3}{4}, \frac{1}{4},-\frac{1}{8}\right\}_{[-2,2]} .
$$

Examples of Biorthogonal Wavelets

(g) $\phi^{a_{2}}$

(i) $\phi^{\tilde{a}_{2}}$

(h) $\psi^{a_{2}, b_{2}}$

(j) $\psi^{\tilde{a}_{2}, \tilde{b}_{2}}$

The Most Famous Biorthogonal Wavelet

For $m=4$,

$$
\begin{aligned}
& a_{4}=\left\{-\frac{t}{64}, \frac{2-t}{32}, \frac{16+t}{64}, \frac{6+t}{16}, \frac{16+t}{64}, \frac{2-t}{32},-\frac{t}{64}\right\}_{[-3,3]}, \\
& \tilde{a}_{4}=\left\{\frac{t^{2}-4 t+10}{256}, \frac{t-4}{64}, \frac{-t^{2}+6 t-14}{64}, \frac{20-t}{64}, \frac{3 \mathbf{t}^{2}-\mathbf{2 0 t + 1 1 0}}{\mathbf{1 2 8}}, \frac{20-t}{64},\right. \\
&\left.\frac{-t^{2}+6 t-14}{64}, \frac{t-4}{64}, \frac{t^{2}-4 t+10}{256}\right\}_{[-4,4]},
\end{aligned}
$$

where $t \approx 2.92069$. The derived biorthogonal wavelet is called Daubechies $7 / 9$ filter and has very impressive performance in many applications.

Example of Biorthogonal Wavelets

(k) $\phi^{a_{4}}$

(m) $\phi^{\tilde{a}_{4}}$

(I) $\psi^{a_{4}, b_{4}}$

(n) $\psi^{\tilde{a}_{4}, \tilde{b}_{4}}$

B-spline Functions

- For $m \in \mathbb{N}$, the B-spline function B_{m} of order m is defined to be

$$
B_{1}:=\chi_{(0,1]} \quad \text { and } \quad B_{m}:=B_{m-1} * B_{1}=\int_{0}^{1} B_{m-1}(\cdot-t) d t .
$$

$-\operatorname{supp}\left(B_{m}\right)=[0, m]$ and $B_{m}(x)>0$ for all $x \in(0, m)$.

- $B_{m}=B_{m}(m-\cdot)$ and $B_{m} \in \mathscr{C}^{m-2}(\mathbb{R})$.
- $\left.B_{m}\right|_{(k, k+1)} \in \mathbb{P}_{m-1}$ for all $k \in \mathbb{Z}$.
- $\widehat{B_{m}}(\xi)=\left(\frac{1-e^{-i \xi}}{i \xi}\right)^{m}$ and B_{m} is refinable:

$$
B_{m}=2 \sum_{k \in \mathbb{Z}} a_{m}^{B}(k) B_{m}(2 \cdot-k),
$$

where a_{m}^{B} is the B-spline filter of order m :

$$
\widehat{a_{m}^{B}}(\xi):=2^{-m}\left(1+e^{-i \xi}\right)^{m} .
$$

- Note that $\widehat{B_{m}}(2 \xi)=\widehat{a_{m}^{B}}(\xi) \widehat{B_{m}}(\xi)$ and $\widehat{B_{m}}(\xi)=\prod_{j=1}^{\infty} \widehat{a_{m}^{B}}\left(2^{-j} \xi\right)$.

Graphs of B-spline Functions

(a) B_{1}

(d) B_{4}

(b) B_{2}

(e) B_{5}

(c) B_{3}

(f) B_{6}

B-spline Filters a_{m}^{B}

$$
\begin{aligned}
& a_{1}^{B}=\left\{\underline{\frac{1}{2}}, \frac{1}{2}\right\}_{[0,1]}, \\
& a_{2}^{B}=\left\{\underline{\frac{1}{4}}, \frac{1}{2}, \frac{1}{4}\right\}_{[0,2]}, \\
& a_{3}^{B}=\left\{\underline{\frac{1}{8}}, \frac{3}{8}, \frac{3}{8}, \frac{1}{8}\right\}_{[0,3]}, \\
& a_{4}^{B}=\left\{\underline{\frac{1}{16}}, \frac{1}{4}, \frac{3}{8}, \frac{1}{4}, \frac{1}{16}\right\}_{[0,4]}, \\
& a_{5}^{B}=\left\{\frac{1}{32}, \frac{5}{32}, \frac{5}{16}, \frac{5}{16}, \frac{15}{32}, \frac{1}{32}\right\}_{[0,5]}, \\
& a_{6}^{B}=\left\{\frac{\mathbf{1}}{\mathbf{6 4}}, \frac{3}{32}, \frac{15}{64}, \frac{5}{16}, \frac{15}{64}, \frac{3}{32}, \frac{1}{64}\right\}_{[0,6]} .
\end{aligned}
$$

Basics on Sobolev Spaces

- A function f on $I:=[a, b]$ is absolutely continuous if for every $\varepsilon>0$, there exists $\delta>0$ such that for all nonoverlapping $\left(a_{j}, b_{j}\right), j=1, \ldots, n$ in I such that

$$
\sum_{j=1}^{n}\left|f\left(b_{j}\right)-f\left(a_{j}\right)\right|<\varepsilon \quad \text { as long as } \quad \sum_{j=1}^{n}\left(b_{j}-a_{j}\right)<\delta
$$

- If f is absolutely continuous, then f^{\prime} exists almost everywhere and f is uniformly continuous.
- The Sobolev space $H^{m}(I)$ with $m \in \mathbb{N} \cup\{0\}$ consists of all functions f on I such that $f, f^{\prime}, \ldots, f^{(m-1)}$ are absolutely continuous on $I, f, f^{\prime}, \ldots, f^{(m-1)}, f^{(m)} \in L_{2}(I)$.
- Sobolev norm: $\|f\|_{H^{m}}^{2}:=\sum_{j=0}^{m}\left\|f^{(j)}\right\|_{L_{2}}^{2}$.
- Sobolev spaces $H^{m}(I)$ are widely used for studying and solving PDEs.

Basics on Boundary Value Problems (BVP)

- Poisson equation: $u^{\prime \prime}(x)=f(x)$ for $x \in(0,1)$ with boundary conditions $u(0)=\alpha$ (Dirichlet boundary condition) and $u^{\prime}(0)=\beta$ (Neumann boundary condition).
- Helmholtz equation: $u^{\prime \prime}+\kappa^{2} u=f$ on $(0,1)$ with boundary conditions $u(0)=\alpha$ and $u^{\prime}(1)-i k u(1)=0$ (Robin boundary conditions).
- A weak solution $u \in H^{1}(0,1)$ must satisfy

$$
\left\langle u^{\prime \prime}, v\right\rangle=\langle f, v\rangle, \quad \forall v \in H^{1}(0,1) .
$$

Using integration by parts and boundary conditions,

$$
\left\langle u^{\prime \prime}, v\right\rangle=\int_{0}^{1} u^{\prime \prime}(x) v(x) d x=\left.u^{\prime}(x) v(x)\right|_{x=0} ^{x=1}-\int_{0}^{1} u^{\prime}(x) v^{\prime}(x) d x
$$

- Hence, a weak solution u is given by

$$
\left\langle u^{\prime}, v^{\prime}\right\rangle=-\langle f, v\rangle-u^{\prime}(1) v(1)+u^{\prime}(0) v(0), \quad \forall v \in H^{1}(0,1) .
$$

Galerkin Scheme

- Poisson equation: $u^{\prime \prime}=f$ on $(0,1)$ with $u(0)=u(1)=0$.
- Let V_{h} be a finite dimensional subspace of $H^{1}(0,1)$ with suitable boundary conditions. For the above Poisson equation, we consider $H_{0}^{1}(0,1)$ by requiring $\phi(0)=\phi(1)=0$ for all $\phi \in V_{h}$.
- Galerkin scheme: Seek $u_{h} \in V_{h} \subseteq H_{0}^{1}(0,1)$ such that

$$
\left\langle u_{h}^{\prime}, v^{\prime}\right\rangle=\int_{0}^{1} u_{h}^{\prime} v^{\prime}=-\langle f, v\rangle, \quad \forall v \in V_{h}
$$

- Let $\left\{\phi_{1}, \ldots, \phi_{N}\right\}$ be a basis of V_{h}. Then we can write $u_{h}=\sum_{j=1}^{N} c_{j} \phi_{j} \in V_{h}$ such that $\left\{c_{1}, \ldots, c_{N}\right\}$ must satisfy

$$
\sum_{j=1}^{N} c_{j}\left\langle\phi_{j}^{\prime}, \phi_{k}^{\prime}\right\rangle=\left\langle f, \phi_{k}\right\rangle, \quad k=1, \ldots, N
$$

- Solve the linear system $A c=b$ for $c=\left(c_{1}, \ldots, c_{N}\right)^{T}$, where $A=\left(\left\langle\phi_{j}^{\prime}, \phi_{k}^{\prime}\right\rangle\right)_{1 \leqslant j, k \leqslant N}$, and $b=\left(-\left\langle f, \phi_{k}\right\rangle\right)_{1 \leqslant k \leqslant N}$.

Finite Element Method

- Let $N \in \mathbb{N}$ and $h:=\frac{1}{N}$.
- Consider partition

$$
0=x_{0}<x_{1}<\cdots<x_{N}=1
$$

with $x_{j}:=\frac{j}{N}$ for $j=0, \ldots, N$.

- Define a piecewise linear function ϕ_{j} with support $\left[x_{j-1}, x_{j+1}\right]$ such that $\phi_{j}\left(x_{j-1}\right)=\phi\left(x_{j+1}\right)=0$ and $\phi_{j}\left(x_{j}\right)=1$.
- The Finite Element Method uses the basis $\left\{\phi_{1}, \ldots, \phi_{N-1}\right\}$ which spans V_{h} (a spline space generated by the linear spline)
- Note that all basis elements $\phi_{j} \in H_{0}^{1}(0,1)$ and hence $V_{h} \subseteq H_{0}^{1}(0,1)$.

Collocation Scheme

- Poisson equation: $u^{\prime \prime}=f$ on $(0,1)$ with $u(0)=u(1)=0$.
- Let V_{h} be a finite dimensional subspace of $H^{1}(0,1) \cap C^{2}$ with suitable boundary conditions. For the above Poisson equation, we consider $H_{0}^{1}(0,1)$ by requiring $\phi(0)=\phi(1)=0$ for all $\phi \in V_{h}$.
- Let $\left\{\phi_{1}, \ldots, \phi_{N}\right\}$ be a basis of V_{h}. Then we seek $u_{h}=\sum_{j=1}^{N} c_{j} \phi_{j} \in V_{h}$ with coefficients c_{1}, \ldots, c_{N} to be determined.
- Collocation scheme: (1) suitably pick up N sampling points z_{1}, \ldots, z_{N} inside $[0,1]$. (2) obtain the linear system through

$$
\sum_{j=1}^{N} c_{j} \phi_{j}^{\prime \prime}\left(z_{k}\right)=f\left(z_{k}\right), \quad k=1, \ldots, N .
$$

- Solve the above linear equations to determine the coefficients c_{1}, \ldots, c_{N}.

Wavelet Method

- Let $\{\phi ; \psi\}$ be a Riesz wavelet for $H^{1}(\mathbb{R})$ such that ϕ, ψ belong to the Sobolev space $H^{1}(0,1)$.
- Adapt the Riesz wavelet $\{\phi ; \psi\}$ on the real line into the interval $[0,1]$ with prescribed boundary conditions to obtain a Riesz basis $\Phi_{0} \cup \cup_{j=0}^{\infty} \Psi_{j}$ for $H_{0}^{1}(0,1)$, where

$$
\Phi_{0}=\left\{\phi^{L}\right\} \cup\left\{\phi(\cdot-k): I_{\phi} \leqslant k \leqslant h_{\phi}\right\} \cup\left\{\phi^{R}\right\}
$$

and

$$
\Psi_{j}=\left\{\psi_{2 ; 0}^{L}\right\} \cup\left\{\psi_{2 j ; k}: I_{\psi} \leqslant k \leqslant 2^{j}-h_{\psi}\right\} \cup\left\{\psi_{2 ; 2 j-1}^{R}\right\} .
$$

- Take a large integer $J \in \mathbb{N}$ and consider $\left\{\eta_{j}\right\}_{j \in N_{J}}=\Phi_{0} \cup \cup_{j=0}^{J} \Psi_{j}$ which spans V_{h}.
- Now apply Galerkin scheme or collocation scheme.

Riesz Wavelets in Sobolev Spaces

- For $\tau \in \mathbb{R}$, the Sobolev space $H^{\tau}(\mathbb{R})$ consists of all tempered distributions f satisfying

$$
\|f\|_{H^{\tau}(\mathbb{R})}^{2}:=\frac{1}{2 \pi} \int_{\mathbb{R}}|\widehat{f}(\xi)|^{2}\left(1+|\xi|^{2}\right)^{\tau} d \xi<\infty,
$$

For $m \in \mathbb{N} \cup\{0\}, f \in H^{m}(\mathbb{R})$ if $f, f^{\prime}, \ldots, f^{(m)} \in L_{2}(\mathbb{R})$.

- For $\phi=\left(\phi_{1}, \ldots, \phi_{r}\right)^{\top}$ and $\psi=\left(\psi_{1}, \ldots, \psi_{r}\right)^{\top}$, we define

$$
\mathrm{AS}_{0}^{\tau}(\phi ; \psi)=\{\phi(\cdot-k): k \in \mathbb{Z}\} \cup\left\{2^{j\left(\frac{1}{2}-\tau\right)} \psi\left(2^{j} \cdot-k\right): k \in \mathbb{Z}\right\}_{j=0}^{\infty} .
$$

- $\{\phi ; \psi\}$ is a Riesz wavelet in the Sobolev space $H^{\tau}(\mathbb{R})$ if $\mathrm{AS}_{0}^{\tau}(\phi ; \psi)$ is Riesz basis for $H^{\tau}(\mathbb{R})$: the linear span of $\mathrm{AS}_{0}^{\tau}(\phi ; \psi)$ is dense in $H^{\tau}(\mathbb{R})$ and there exist $C_{1}, C_{2}>0$ such that

$$
C_{1} \sum_{h \in \mathrm{AS}_{0}^{\tau}(\phi ; \psi)}\left|c_{h}\right|^{2} \leqslant\left\|\sum_{h \in \mathrm{AS}_{0}^{\tau}(\phi ; \psi)} c_{h} h\right\|_{H^{\tau}(\mathbb{R})} \leqslant C_{2} \sum_{h \in \mathrm{AS}_{0}^{\tau}(\phi ; \psi)}\left|c_{h}\right|^{2}
$$

for all finitely supported sequences $\left\{c_{h}\right\}_{h \in \mathrm{AS}_{0}^{\tau}(\phi ; \psi)}$.

Derivative-Orthogonal Riesz Wavelets

- Let $m \in \mathbb{N} \cup\{0\}$ be a nonnegative integer.
- Let $\phi=\left(\phi_{1}, \ldots, \phi_{r}\right)^{\top}$ and $\psi=\left(\psi_{1}, \ldots, \psi_{r}\right)^{\top}$ in $H^{m}(\mathbb{R})$.
- We say that $\{\phi ; \psi\}$ is an mth-order derivative-orthogonal Riesz wavelet in the Sobolev space $H^{m}(\mathbb{R})$ if
(1) $\mathrm{AS}_{0}^{m}(\phi ; \psi)$ is a Riesz wavelet in $H^{m}(\mathbb{R})$;
(2) The m th-order derivatives are orthogonal between levels:

$$
\left\langle\psi^{(m)}, \phi^{(m)}(\cdot-k)\right\rangle=0, \quad \forall k \in \mathbb{Z}
$$

and

$$
\left\langle\psi^{(m)}\left(2^{j} \cdot-k\right), \psi^{(m)}\left(2^{j^{\prime}} \cdot-k^{\prime}\right)\right\rangle=0,
$$

for all $k, k^{\prime} \in \mathbb{Z}, j, j^{\prime} \in \mathbb{N}_{0}$ with $j \neq j^{\prime}$.
For $m=0$, they are called semi-orthogonal (or pre-) wavelets and well studied, e.g., [Chui-Wang,Jia-Micchelli,Shen-Riemanschneider] through a simple orthogonalization procedure.

Why Derivative-Orthogonal Riesz Wavelets?

- Differential equation with homogeneous boundary condition:

$$
u^{(2 m)}(x)+\alpha u(x)=f(x), \quad x \in I=[0,1] .
$$

- The Galerkin formulation of a weak solution $u \in H^{m}(I)$ is

$$
(-1)^{m}\left\langle u^{(m)}, v^{(m)}\right\rangle+\alpha\langle u, v\rangle=\langle f, v\rangle, \quad v \in H^{m}(I) .
$$

- Let S be a Riesz wavelet basis of $H^{m}(I)$ derived from m th-order derivative-orthogonal wavelet $\{\phi ; \psi\}$. Then $u=\sum_{h \in S} c_{h} h$ and

$$
\sum_{h \in S}\left((-1)^{m} A_{h, g}+\alpha B_{h, g}\right) c_{h}=\langle f, g\rangle, \quad g \in S
$$

with $A=\left(\left\langle h^{(m)}, g^{(m)}\right\rangle\right)_{h, g \in S}$ and $B=(\langle h, g\rangle)_{h, g \in S}$.
(1) The matrix A is sparse and is almost diagonal.
(2) The condition number of A dominates that of $(-1)^{m} A+\alpha B$ and is often very small (can be the optimal condition number 1).

Stable Integer Shifts of Vector Functions

- Let $\phi=\left(\phi_{1}, \ldots, \phi_{r}\right)^{\top}$ in $H^{m}(\mathbb{R})$ be compactly supported.
- We say that the integer shifts of ϕ are stable if

$$
\operatorname{span}\{\widehat{\phi}(\xi+2 \pi k): k \in \mathbb{Z}\}=\mathbb{C}^{r}, \quad \forall \xi \in \mathbb{R}
$$

- For $f=\left(f_{1}, \ldots, f_{r}\right)^{\top}$ and $g=\left(g_{1}, \ldots, g_{r}\right)^{\top}$, bracket product is

$$
[\widehat{f}, \widehat{g}](\xi):=\sum_{k \in \mathbb{Z}} \widehat{f}(\xi+2 \pi k) \overline{\hat{g}}(\xi+2 \pi k) \quad, \quad \xi \in \mathbb{R}
$$

- The integer shifts of ϕ in $H^{m}(\mathbb{R})$ are stable $[\widehat{\phi}, \widehat{\phi}](\xi)>0$ for all $\xi \in \mathbb{R}$ $\{\phi(\cdot-k): k \in \mathbb{Z}\}$ is a Riesz sequence in $H^{m}(\mathbb{R})$.
- Smoothness of a function is measured by

$$
\operatorname{sm}(\phi):=\sup \left\{\tau \in \mathbb{R}: \phi \in H^{\tau}(\mathbb{R})\right\}
$$

Semi-orthogonal (or Pre-) Wavelets

For $m=0, m$ th order derivative-orthogonal wavelets are called semi-orthogonal (or pre-) wavelets and well studied, e.g., [Chui-Wang,Jia-Micchelli,Shen-Riemanschneider] through

- $\phi \in L_{2}(\mathbb{R})$ has compact support and satisfies

$$
\widehat{\phi}(2 \xi)=\widehat{a}(\xi) \widehat{\phi}(\xi)
$$

where $\hat{a}(\xi):=\sum_{k \in \mathbb{Z}} a(k) e^{-i k \xi}$ is a 2π-periodic trigonometric polynomial and $\widehat{\phi}(\xi):=\int_{\mathbb{R}} \phi(x) e^{-i x \xi} d x$.

- Assume the integer shifts of ϕ are stable: $[\widehat{\phi}, \widehat{\phi}](\xi)>0$.
- Define $\widehat{\psi}(2 \xi):=e^{-i \xi} \overline{\widehat{a}(\xi+\pi)}[\widehat{\phi}, \widehat{\phi}](\xi+\pi) \widehat{\phi}(\xi)$.
- Then $\{\phi ; \psi\}$ is a semi-orthogonal wavelet in $L_{2}(\mathbb{R})$, that is,
$\mathrm{AS}_{0}^{0}(\phi ; \psi)=\{\phi(\cdot-k): k \in \mathbb{Z}\} \cup\left\{2^{j / 2} \psi\left(2^{j} \cdot-k\right): k \in \mathbb{Z}\right\}_{j=0}^{\infty}$
is almost an orthonormal basis for $L_{2}(\mathbb{R})$, except orthogonality among the same scale level j.

Sum Rules of a Matrix-valued Filter

- A filter $a \in\left(I_{0}(\mathbb{Z})\right)^{r \times r}$ has order m sum rules if there exists a matching filter $v \in\left(I_{0}(\mathbb{Z})\right)^{1 \times r}$ such that $\widehat{v}(0) \neq 0$ and

$$
\widehat{v}(2 \xi) \widehat{a}(\xi)=\widehat{v}(\xi)+\mathscr{O}\left(|\xi|^{m}\right), \quad \widehat{v}(2 \xi) \widehat{a}(\xi+\pi)=\mathscr{O}\left(|\xi|^{m}\right), \quad \xi \rightarrow 0
$$

- $f(\xi)=g(\xi)+\mathscr{O}\left(|\xi|^{m}\right), \xi \rightarrow 0 \Leftrightarrow f^{(j)}(0)=g^{(j)}(0), 0 \leqslant j<m$.
- $\operatorname{sr}(a)$ denotes the highest order of sum rules satisfied by a.
- For $\widehat{\phi}(2 \xi)=\widehat{a}(\xi) \widehat{\phi}(\xi)$ with stable integer shifts, TFAE
- The filter a has order m sum rules (i.e., $\operatorname{sr}(a) \geqslant m)$.
- All the polynomials of degree $<m$ are contained inside the shift-invariant space

$$
S_{j}(\phi):=\left\{\sum_{k \in \mathbb{Z}} v(k) \phi\left(2^{j} \cdot-k\right): \text { all sequences } v \text { on } \mathbb{Z}\right\}
$$

- The vector function ϕ has approximation order m :

$$
\inf _{g \in S_{j}(\phi) \cap L_{2}(\mathbb{R})}\|f-g\|_{L_{2}(\mathbb{R})} \leqslant C 2^{-j m}\|f\|_{H^{m}(\mathbb{R})}, \quad f \in H^{m}(\mathbb{R})
$$

Main Result: Existence

Theorem

Let $\phi=\left(\phi_{1}, \ldots, \phi_{r}\right)^{\top}$ be a compactly supported refinable vector function in $H^{m}(\mathbb{R})$ with $m \in \mathbb{N}_{0}$ such that $\widehat{\phi}(2 \xi)=\widehat{a}(\xi) \widehat{\phi}(\xi)$ for some $a \in\left(I_{0}(\mathbb{Z})\right)^{r \times r}$. Then there exists a finitely supported high-pass filter $b \in\left(I_{0}(\mathbb{Z})\right)^{r \times r}$ such that $\{\phi ; \psi\}$ with

$$
\widehat{\psi}(\xi):=\widehat{b}(\xi / 2) \widehat{\phi}(\xi / 2)
$$

is an mth-order derivative-orthogonal Riesz wavelet in the Sobolev space $H^{m}(\mathbb{R})$
(1) the integer shifts of ϕ are stable;
(2) the filter a has at least order $2 m$ sum rules (i.e., $\operatorname{sr}(a) \geqslant 2 m$).

Remark: The proof is quite complicated for $r>1$ and $m>0$.

Main Result: Construction

Theorem

Let $\phi=\left(\phi_{1}, \ldots, \phi_{r}\right)^{\top}$ be a compactly supported refinable vector function in $H^{m}(\mathbb{R})$ with $m \in \mathbb{N}_{0}$ such that $\widehat{\phi}(2 \xi)=\widehat{a}(\xi) \widehat{\phi}(\xi)$ for some $a \in\left(I_{0}(\mathbb{Z})\right)^{r \times r}$. Suppose that the integer shifts of ϕ are stable. For any $b \in\left(I_{0}(\mathbb{Z})\right)^{r \times r},\{\phi ; \psi\}$ with $\widehat{\psi}(\xi):=\widehat{b}(\xi / 2) \widehat{\phi}(\xi / 2)$ is an mth-order derivative-orthogonal Riesz wavelet in $H^{m}(\mathbb{R})$
$\widehat{b}(\xi)\left[\widehat{\phi^{(m)}}, \widehat{\phi^{(m)}}\right](\xi) \overline{\hat{a}}(\xi)^{\top}+\widehat{b}(\xi+\pi)\left[\widehat{\phi^{(m)}}, \widehat{\phi^{(m)}}\right](\xi+\pi) \overline{\hat{a}(\xi+\pi)}^{\top}=0$, $\operatorname{det}(\{\widehat{a} ; \widehat{b}\})(\xi):=\operatorname{det}\left(\left[\begin{array}{ll}\hat{a}(\xi) & \widehat{a}(\xi+\pi) \\ \widehat{b}(\xi) & \widehat{b}(\xi+\pi)\end{array}\right]\right) \neq 0, \quad \forall \xi \in \mathbb{R}$.

Moreover, $\operatorname{AS}_{0}^{\tau}(\phi ; \psi)$ is a Riesz basis in the Sobolev space $H^{\tau}(\mathbb{R})$ for all τ in the nonempty open interval $(2 m-\operatorname{sm}(\phi), \operatorname{sm}(\phi))$.

Construction for the Scalar Case $r=1$

Theorem

Let $m \in \mathbb{N}_{0}$ and $a \in I_{0}(\mathbb{Z})$ such that $\widehat{a}(\xi)=2^{-2 m}\left(1+e^{-i \xi}\right)^{2 m} \widehat{\breve{a}}(\xi)$ with $\breve{a} \in I_{0}(\mathbb{Z})$ and $\widehat{a}(0)=1$. Define $\widehat{\phi}(\xi):=\prod_{j=1}^{\infty} \widehat{a}\left(2^{-j} \xi\right)$ and $\widehat{\phi}(\xi):=\prod_{j=1}^{\infty} \widehat{\grave{a}}\left(2^{-j} \xi\right)$ with $\widehat{a}(\xi):=2^{-m}\left(1+e^{-i \xi}\right)^{m} \widehat{\breve{a}}(\xi)$. Suppose that $\phi \in H^{m}(\mathbb{R})$ and the integer shifts of ϕ are stable. Then for $b \in I_{0}(\mathbb{Z}),\{\phi ; \psi\}$ with $\widehat{\psi}(\xi):=\widehat{b}(\xi / 2) \widehat{\phi}(\xi / 2)$ is an mth-order derivative-orthogonal Riesz wavelet in $H^{m}(\mathbb{R})$

$$
\widehat{b}(\xi)=e^{i(m-1) \xi} \overline{\widehat{a}}(\xi+\pi)[\hat{\dot{\phi}}, \widehat{\dot{\phi}}](\xi+\pi) \widehat{\theta}(2 \xi) / \widehat{c}(2 \xi),
$$

where $\theta \in I_{0}(\mathbb{Z})$ satisfying $\widehat{\theta}(\xi) \neq 0 \forall \xi \in \mathbb{R}$ and $c \in I_{0}(\mathbb{Z})$ is

$$
\widehat{c}(2 \xi):=\operatorname{gcd}(\overline{\widehat{a}(\xi)}[\widehat{\dot{\phi}}, \widehat{\dot{\phi}}](\xi), \overline{\widehat{a}}(\xi+\pi)[\widehat{\dot{\phi}}, \widehat{\dot{\phi}}](\xi+\pi))
$$

Example of Refinable Functions: B-Splines

- For $n \in \mathbb{N}$, the B-spline function B_{n} of order n is defined to be

$$
B_{1}:=\chi_{(0,1]}, \quad B_{n}:=B_{n-1} * B_{1}=\int_{0}^{1} B_{n-1}(\cdot-t) d t
$$

- $B_{n}=B_{n}(n-\cdot)$ (symmetry), $\operatorname{sm}\left(B_{n}\right)=n-1 / 2$ and B_{n} is a piecewise polynomial: $\left.B_{n}\right|_{(k, k+1)} \in \mathbb{P}_{n-1}$ for all $k \in \mathbb{Z}$.
- $B_{n}=2 \sum_{k \in \mathbb{Z}} a(k) B_{n}(2 \cdot-k)$, i.e., $\widehat{B_{n}}(2 \xi)=\widehat{a}(\xi) \widehat{B_{n}}(\xi)$ with

$$
\widehat{a}(\xi):=2^{-n}\left(1+e^{-i \xi}\right)^{n} \quad \text { with } \quad \operatorname{sr}(a)=n .
$$

- A compactly supported m th-order derivative-orthogonal Riesz wavelet $\left\{B_{n} ; \psi\right\}$ in $H^{m}(\mathbb{R})$ can be derived from B_{n}

$$
n \geqslant \max (m+1,2 m)
$$

Example from B-Spline $B_{2}: m=1$

$$
a=\left\{\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right\}_{[-1,1]}, \quad b=\left\{\frac{1}{2}\right\}_{[1,1]} .
$$

$\operatorname{sr}(a)=2$ and $\phi=B_{2}(\cdot-1)$ is the centered piecewise linear spline B_{2} of order 2 satisfying $\widehat{\phi}(2 \xi)=\widehat{a}(\xi) \widehat{\phi}(\xi)$. The wavelet function $\psi=\phi(2 x)$. Then $\{\phi ; \psi\}$ is a first-order derivative-orthogonal Riesz wavelet in $H^{1}(\mathbb{R})$, which is closely linked to finite element methods.

Example from B-Spline $B_{4}: m=2$

$$
a=\left\{\frac{1}{16}, \frac{1}{4}, \frac{3}{8}, \frac{1}{4}, \frac{1}{16}\right\}_{[-2,2]}, \quad b=\left\{-\frac{1}{4}, 1,-\frac{1}{4}\right\}_{[0,2]}
$$

$\operatorname{sr}(a)=4$ and $\phi=B_{4}(\cdot-2)$ is the centered B -spline B_{4} of order 4 satisfying $\widehat{\phi}(2 \xi)=\widehat{a}(\xi) \widehat{\phi}(\xi)$. The wavelet function $\psi=\phi(2 x)-\frac{1}{2} \phi(2 x+1)-\frac{1}{2} \phi(2 x-1)$. Then $\{\phi ; \psi\}$ is a second-order derivative-orthogonal Riesz wavelet in $H^{2}(\mathbb{R})$.

Hermite Cubic Splines

The Hermite cubic splines are given by

$$
\phi_{1}=\left\{\begin{array}{ll}
(1-x)^{2}(1+2 x), & x \in[0,1], \\
(1+x)^{2}(1-2 x), & x \in[-1,0), \\
0, & \text { otherwise },
\end{array} \quad \phi_{2}= \begin{cases}(1-x)^{2} x, & x \in[0,1] \\
(1+x)^{2} x, & x \in[-1,0) \\
0, & \text { otherwise }\end{cases}\right.
$$

Then $\phi=\left(\phi_{1}, \phi_{2}\right)^{\top}$ in $H^{2}(\mathbb{R})$ satisfies the refinement equation $\widehat{\phi}(2 \xi)=\widehat{a}(\xi) \widehat{\phi}(\xi)$ with the filter $a \in\left(I_{0}(\mathbb{Z})\right)^{2 \times 2}$:

$$
a=\left\{\left[\begin{array}{cc}
\frac{1}{4} & \frac{3}{8} \\
-\frac{1}{16} & -\frac{1}{16}
\end{array}\right],\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{4}
\end{array}\right],\left[\begin{array}{cc}
\frac{1}{4} & -\frac{3}{8} \\
\frac{1}{16} & -\frac{1}{16}
\end{array}\right]\right\}_{[-1,1]} .
$$

The filter a has order 4 sum rules with $\operatorname{sr}(a)=4$ and ϕ has the Hermite interpolation property with $\operatorname{sm}(\phi)=5 / 2$: $\phi_{1}(k)=\boldsymbol{\delta}(k), \quad \phi_{1}^{\prime}(k)=0, \quad \phi_{2}(k)=0, \quad \phi_{2}^{\prime}(k)=\boldsymbol{\delta}(k), \quad \forall k \in \mathbb{Z}$, where $\boldsymbol{\delta}(0)=1$ and $\boldsymbol{\delta}(k)=0$ for $k \neq 0$.

Example from Hermite Cubic Splines: $m=1$

$$
b=\left\{\left[\begin{array}{cc}
\frac{2}{21} & 1 \\
\frac{1}{9} & 1
\end{array}\right],\left[\begin{array}{cc}
-\frac{4}{21} & 0 \\
0 & \frac{4}{3}
\end{array}\right],\left[\begin{array}{cc}
\frac{2}{21} & -1 \\
-\frac{1}{9} & 1
\end{array}\right]\right\}_{[-1,1]} .
$$

Then $\{\phi ; \psi\}$ with $\widehat{\psi}(\xi):=\widehat{b}(\xi / 2) \widehat{\phi}(\xi / 2)$ is a first-order derivative-orthogonal Riesz wavelet in $H^{1}(\mathbb{R})$, which is used in [Jia-Liu, Adv. Comput. Math., (2006)] for Sturm-Liouville equations.

Example from Hermite Cubic Splines: $m=2$

$$
b=\left\{\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right]\right\}_{[1,1]} .
$$

Then $\{\phi ; \psi\}$ with $\psi=\phi(2 \cdot)$ is a second-order derivative-orthogonal Riesz wavelet in $H^{2}(\mathbb{R})$.

Example from Hermite Quadratic Splines: $m=1$

$$
\begin{aligned}
& a=\left\{\left[\begin{array}{cc}
\frac{1}{4} & \frac{1}{2} \\
-\frac{1}{16} & -\frac{1}{8}
\end{array}\right],\left[\begin{array}{ll}
\frac{1}{2} & 0 \\
0 & \frac{1}{4}
\end{array}\right],\left[\begin{array}{cc}
\frac{1}{4} & -\frac{1}{2} \\
\frac{1}{16} & -\frac{1}{8}
\end{array}\right]\right\}_{[-1,1]}, \\
& b=\left\{\left[\begin{array}{cc}
\frac{1}{6} & 1 \\
\frac{1}{6} & 1
\end{array}\right],\left[\begin{array}{cc}
-\frac{1}{3} & 0 \\
0 & 2
\end{array}\right],\left[\begin{array}{cc}
\frac{1}{6} & -1 \\
-\frac{1}{6} & 1
\end{array}\right]\right\}_{[-1,1]} .
\end{aligned}
$$

Then $\operatorname{sr}(a)=3, \operatorname{sm}(\phi)=2.5$ and $\{\phi ; \psi\}$ is a first-order derivative-orthogonal Riesz wavelet in $H^{1}(\mathbb{R})$.

Example from Hermite Linear Splines: $m=1$

$$
\begin{aligned}
& a=\left\{\left[\begin{array}{cc}
\frac{1}{4} & \frac{3}{4} \\
-\frac{1}{12} & -\frac{1}{4}
\end{array}\right],\left[\begin{array}{ll}
\frac{1}{2} & 0 \\
0 & \frac{1}{4}
\end{array}\right],\left[\begin{array}{cc}
\frac{1}{4} & -\frac{3}{4} \\
\frac{1}{12} & -\frac{1}{4}
\end{array}\right]\right\}_{[-1,1]}, \\
& b=\left\{\left[\begin{array}{cc}
\frac{1}{6} & 0 \\
0 & \frac{\sqrt{2}}{4}
\end{array}\right]\right\}_{[0,0]} .
\end{aligned}
$$

Then $\operatorname{sr}(a)=2, \operatorname{sm}(\phi)=1.5$ and $\{\phi ; \psi\}$ is a first-order derivative-orthogonal Riesz wavelet in $H^{1}(\mathbb{R})$.

Wavelets on $[0,1]$ with Very Simple Structure

- Let $n>1$ be the scale/resolution level.
- Let $g_{1}=\phi^{L}(2 \cdot), g_{2}=\phi_{1}(2 \cdot-1), g_{3}=\phi_{2}(2 \cdot-1), g_{4}=\phi^{R}(2 \cdot)$.
- For $1<j \leqslant n$, the boundary wavelets at level j are given by

$$
g_{2^{j}+1}:=2^{j(1 / 2-m)} \psi^{L}\left(2^{j} \cdot\right), \quad g_{2^{j}+2^{j}}:=2^{j(1 / 2-m)} \psi^{R}\left(2^{j} \cdot-2^{j}\right)
$$

with only one boundary wavelet at each endpoint:

$$
\begin{array}{ll}
\phi^{L} \in\left\{\left.\phi_{1}\right|_{[0,1]},\left.\phi_{2}\right|_{[0,1]}\right\}, & \phi^{R} \in\left\{\left.\phi_{1}(\cdot-1)\right|_{[0,1]},\left.\phi_{2}(\cdot-1)\right|_{[0,1]}\right\} \\
\psi^{L} \in\left\{\left.\psi_{1}\right|_{[0,1]},\left.\psi_{2}\right|_{[0,1]}\right\}, & \psi^{R} \in\left\{\left.\psi_{1}(\cdot-1)\right|_{[0,1]},\left.\psi_{2}(\cdot-1)\right|_{[0,1]}\right\}
\end{array}
$$

- For $k=1, \ldots, 2^{j}-1$, the inner wavelets at level j are

$$
g_{2^{j}+(2 k-1)}:=2^{j(1 / 2-m)} \psi_{1}\left(2^{j} \cdot-k\right), \quad g_{2^{j}+2 k}:=2^{j(1 / 2-m)} \psi_{2}\left(2^{j} \cdot-k\right) .
$$

- Normalize $\left\{g_{k}\right\}_{k=1}^{2^{n+1}}$ so that $\left\|g_{k}^{(m)}\right\|_{L_{2}(\mathbb{R})}=1$ for $k=1, \ldots, 2^{n+1}$.

Example: 1D Sturm-Liouville Equations

- Consider the following differential equation:

$$
\left\{\begin{array}{l}
-u^{\prime \prime}+\alpha u=f \quad \text { on } \quad(0,1) \\
u^{\prime}(0)=100\left(1-e^{-1}\right), \quad u(1)=200 e^{-1}-100
\end{array}\right.
$$

where $\alpha=5$ and $f(x)=-100 e^{-x}-500\left(1-e^{-x}\right)-500 e^{-1} x$.
The exact solution is $u(x)=100\left(1-e^{-x}\right)-100 e^{-1} x$.

- Its corresponding Galerkin formulation is

$$
\sum_{k=1}^{2^{n+1}} A_{j, k} c_{k}=\left\langle g_{j}, f\right\rangle, \quad j=1, \ldots, 2^{n+1}
$$

with the coefficient matrix $A_{j, k}:=\left\langle g_{j}^{\prime}, g_{k}^{\prime}\right\rangle+\alpha\left\langle g_{j}, g_{k}\right\rangle$.

- According to boundary conditions, the boundary elements are

$$
\begin{aligned}
\phi^{L}:=\left.\phi_{2}\right|_{[0,1]}, & \phi^{R}:=\left.\phi_{1}(\cdot-1)\right|_{[0,1]} \\
\psi^{L}:=\left.\psi_{2}\right|_{[0,1]}, & \psi^{R}:=\left.\psi_{1}(\cdot-1)\right|_{[0,1]}
\end{aligned}
$$

Boundary Elements and Numerical Performance

Use the first-order derivative-orthogonal Riesz wavelet derived from Hermite quadratic splines with $m=1$.

$\left\|e_{n}\right\|_{L_{2}} \quad \log _{2} \frac{\left\|e_{n-1}\right\| L_{2}}{\left\|e_{n}\right\|_{L_{2}}}$

5	128	15	3.2106	$4.2213 \mathrm{e}-07$	$1.8141 \mathrm{e}-07$	-
6	256	15	3.2106	$5.2757 \mathrm{e}-08$	$2.2607 \mathrm{e}-08$	3.0044
7	512	15	3.2106	$6.5944 \mathrm{e}-09$	$2.8215 \mathrm{e}-09$	3.0022
8	1024	15	3.2106	$8.2365 \mathrm{e}-10$	$3.5242 \mathrm{e}-10$	3.0011
9	2048	16	3.2106	$1.1561 \mathrm{e}-10$	$4.6097 \mathrm{e}-11$	2.9346

Table: Size of linear system, conjugate gradient iterations, condition

Example: 1D Sturm-Liouville Equations

- Consider the following differential equation:

$$
\left\{\begin{array}{c}
-u^{\prime \prime}=f \quad \text { on }(0,1) \\
u^{\prime}(0)=0, \quad u(1)=0
\end{array}\right.
$$

where $f(x)=x \ln (x+1)$. The exact solution is $u(x)=$ $\left(5 x^{3}-12 x^{2}-12 x+19-24 \ln (2)-6(x-2)(x+1)^{2} \ln (x+1)\right) / 36$.

- Its corresponding Galerkin formulation is

$$
\sum_{k=1}^{2^{n+1}} A_{j, k} c_{k}=\left\langle g_{j}, f\right\rangle, \quad j=1, \ldots, 2^{n+1}
$$

with the coefficient matrix $A_{j, k}:=\left\langle g_{j}^{\prime}, g_{k}^{\prime}\right\rangle$.

- According to boundary conditions, the boundary elements are

$$
\begin{array}{ll}
\phi^{L}:=\left.\phi_{1}\right|_{[0,1]}, & \phi^{R}:=\left.\phi_{2}(\cdot-1)\right|_{[0,1]} \\
\psi^{L}:=\left.\psi_{1}\right|_{[0,1]}, & \psi^{R}:=\left.\psi_{2}(\cdot-1)\right|_{[0,1]}
\end{array}
$$

Boundary Elements and Numerical Performance

Use the first-order derivative-orthogonal Riesz wavelet derived from Hermite linear solines with $m=1$.

| | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | |

Table: Size of linear system, no iteration is needed, condition number κ of the matrices A (A is the identity matrix), errors, and convergence rates.

Example: 1D Biharmonic Equations

- Consider the following differential equation:

$$
\left\{\begin{array}{l}
u^{(4)}-\alpha u=f \quad \text { on }(0,1) \\
u(0)=0, \quad u^{\prime}(0)=0, \quad u(1)=0, \quad u^{\prime}(1)=0
\end{array}\right.
$$

where $\alpha=11$ and $f(x)=-4 \pi^{4} \cos (2 \pi x)-\frac{11}{4}(1-\cos (2 x))$.
The exact solution is $u(x)=\frac{1}{4}(1-\cos (2 \pi x))$.

- Its corresponding Galerkin formulation is

$$
\sum_{k=1}^{2^{n+2}} B_{j, k} c_{k}=\left\langle g_{j}, f\right\rangle, \quad j=1, \ldots, 2^{n+2}-2
$$

with the coefficient matrix $B_{j, k}:=\left\langle g_{j}^{\prime \prime}, g_{k}^{\prime \prime}\right\rangle+\alpha\left\langle g_{j}, g_{k}\right\rangle$.

- According to boundary conditions, the boundary elements are

$$
\begin{array}{ll}
\phi^{L}:=\emptyset, & \phi^{R}:=\emptyset \\
\psi^{L}:=\emptyset, & \psi^{R}:=\emptyset
\end{array}
$$

Boundary Elements and Numerical Performance

Use the second-order derivative-orthogonal Riesz wavelet derived from Hermite cubic splines with $m=2$.

Level	Size	Iteration	κ	$\left\\|e_{n}\right\\|_{L_{\infty}}$	$\left\\|e_{n}\right\\|_{L_{2}}$	$\log _{2} \frac{\left\\|e_{n-1}\right\\| L_{L_{2}}}{\left\\|e_{n}\right\\| L_{2}}$	$\left\\|e_{n}\right\\|_{H^{1}}$	$\log _{2} \frac{\left\\|e_{n-1}\right\\| \\|_{H_{1}}}{\left\\|e_{n}\right\\|_{H_{1}}}$
2	14	4	1.0225	$2.2655 \mathrm{e}-04$	$1.1050 \mathrm{e}-04$	-	$3.0679 \mathrm{e}-03$	-
3	30	4	1.0225	$1.5147 \mathrm{e}-05$	$6.9610 \mathrm{e}-06$	3.9886	$3.8598 \mathrm{e}-04$	2.9907
4	62	4	1.0225	$9.6244 \mathrm{e}-07$	$4.3628 \mathrm{e}-07$	3.9971	$4.8325 \mathrm{e}-05$	2.9977
5	126	4	1.0225	$6.0411 \mathrm{e}-08$	$2.7653 \mathrm{e}-08$	3.9993	$6.0431 \mathrm{e}-06$	2.9994
6	254	4	1.0225	$3.9699 \mathrm{e}-09$	$2.1493 \mathrm{e}-09$	4.0000	$7.5554 \mathrm{e}-07$	2.9999
7	510	4	1.0225	$1.1049 \mathrm{e}-09$	$6.8832 \mathrm{e}-10$	4.0650	$9.4808 \mathrm{e}-08$	3.0000

Table: Size of linear system, conjugate gradient iteration, condition number κ of the matrices B, errors, and convergence rates.

Example: 1D Biharmonic Equations

- Consider the following differential equation:

$$
\left\{\begin{array}{l}
u^{(4)}=f \quad \text { on }(0,1) \\
u(0)=16, \quad u^{\prime}(0)=-64, \quad u(1)=0, \quad u^{\prime}(1)=0
\end{array}\right.
$$

where $f(x)=24\left(15 x^{2}-50 x+41\right)$. The exact solution is $u(x)=(x-2)^{4}(x-1)^{2}$.

- Its corresponding Galerkin formulation is

$$
\sum_{k=1}^{2^{n+2}} B_{j, k} c_{k}=\left\langle g_{j}, f\right\rangle-u(0) \chi_{\{2,3\}}(j)\left\langle g_{j}^{\prime \prime}, g_{1}^{\prime \prime}\right\rangle-u^{\prime}(0) \chi_{\{2,3\}}(j)\left\langle g_{j}^{\prime \prime}, g_{4}^{\prime \prime}\right\rangle
$$

with the coefficient matrix $B_{j, k}:=\left\langle g_{j}^{\prime \prime}, g_{k}^{\prime \prime}\right\rangle$.

- According to boundary conditions, the boundary elements are

$$
\begin{aligned}
\phi^{L} & :=\left.\phi_{1}\right|_{[0,1]} \\
\psi^{L} & :=\emptyset
\end{aligned}
$$

$$
\phi^{R}:=\left.\phi_{2}\right|_{[0,1]},
$$

$$
\psi^{R}:=\emptyset
$$

Boundary Elements and Numerical Performance

Use the second-order derivative-orthogonal Riesz wavelet derived from Hermite cubic splines with $m=2$.

Level	Size	κ	$\left\\|e_{n}\right\\|_{L_{\infty}}$	$\left\\|e_{n}\right\\|_{L_{2}}$	$\log _{2} \frac{\left\\|e_{n-1}\right\\|_{L_{2}}}{\left\\|e_{n}\right\\|_{L_{2}}}$	$\left\\|e_{n}\right\\|_{H_{1}}$	$\log _{2} \frac{\left\\|e_{n-1}\right\\|_{H_{1}}}{\left\\|e_{n}\right\\|_{H_{1}}}$
5	126	1	$1.5129 \mathrm{e}-07$	$5.5402 \mathrm{e}-08$	-	$1.2283 \mathrm{e}-05$	-
6	254	1	$9.5006 \mathrm{e}-09$	$3.4413 \mathrm{e}-09$	4.0089	$1.5354 \mathrm{e}-06$	3.0000
7	510	1	$5.9521 \mathrm{e}-10$	$2.1642 \mathrm{e}-10$	3.9910	$1.9193 \mathrm{e}-07$	3.0000
8	1022	1	$3.7247 \mathrm{e}-11$	$1.3528 \mathrm{e}-11$	3.9998	$2.4004 \mathrm{e}-08$	2.9992
9	2046	1	$2.3306 \mathrm{e}-12$	$8.4696 \mathrm{e}-13$	3.9975	$3.1070 \mathrm{e}-09$	2.9497

Table: Size of linear system, no iteration is needed, condition number κ of the matrices B (B is the identity matrix), errors, and convergence rates.

General Construction of Wavelets on $[0,1]$

Theorem

Let $\Phi=\left\{\phi^{1}, \ldots, \phi^{r}\right\}, \Psi=\left\{\psi^{1}, \ldots, \psi^{s}\right\}$, and $\tilde{\Phi}=\left\{\tilde{\phi}^{1}, \ldots, \tilde{\phi}^{r}\right\}$, $\tilde{\Psi}=\left\{\tilde{\psi}^{1}, \ldots, \tilde{\psi}^{s}\right\}$ be sets of compactly supported functions in $L_{2}(\mathbb{R})$: $\phi^{\ell}\left(c_{\ell}^{\phi}-\cdot\right)=\epsilon_{\ell}^{\phi} \phi^{\ell}, \quad \tilde{\phi}^{\ell}\left(c_{\ell}^{\phi}-\cdot\right)=\epsilon_{\ell}^{\phi} \tilde{\phi}^{\ell} \quad$ with $\quad c_{\ell}^{\phi} \in \mathbb{Z}, \epsilon_{\ell}^{\phi} \in\{-1,1\}$, $\psi^{\ell}\left(c_{\ell}^{\psi}-\cdot\right)=\epsilon_{\ell}^{\psi} \psi^{\ell}, \tilde{\psi}^{\ell}\left(c_{\ell}^{\psi}-\cdot\right)=\epsilon_{\ell}^{\psi} \tilde{\psi}^{\ell} \quad$ with $\quad c_{\ell}^{\psi} \in \mathbb{Z}, \epsilon_{\ell}^{\psi} \in\{-1,1\}$.

For $\epsilon \in\{-1,1\}$ and $c \in \mathbb{Z}$, define $\mathcal{I}:=\left[\frac{c}{2}, \frac{c}{2}+1\right]$. For $j \in \mathbb{N}_{0}$,

$$
\begin{array}{ll}
d_{j, \ell}^{\phi}:=\left\lfloor 2^{j-1} c-2^{-1} c_{\ell}^{\phi}\right\rfloor, & d_{j, \ell}^{\psi}:=\left\lfloor 2^{j-1} c-2^{-1} c_{\ell}^{\psi}\right\rfloor \\
o_{j, \ell}^{\phi}:=\operatorname{odd}\left(2^{j} c-c_{\ell}^{\phi}\right), & o_{j, \ell}^{\psi}:=\operatorname{odd}\left(2^{j} c-c_{\ell}^{\psi}\right),
\end{array}
$$

where $\operatorname{odd}(m):=1$ if m is odd and $\operatorname{odd}(m):=0$ if m is even. Let $\chi_{\mathcal{I}}$ denote the characteristic function of the interval \mathcal{I}.

General Construction of Wavelets on $[0,1] \ldots$

Theorem

For $j \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}$, define Ψ_{j}^{ℓ} to be

$$
\text { where } F_{c, \epsilon}(f):=\sum_{k \in \mathbb{Z}}(f(\cdot-2 k)+\epsilon f(c+2 k-\cdot)) \text {, and define } \tilde{\Psi}_{j}^{\ell} \text {, }
$$ $\Phi_{j}^{\ell}, \tilde{\Phi}_{j}^{\ell}$ similarly. For $J \in \mathbb{N}_{0}$, define

$\mathscr{B}_{J}:=\left(\cup_{\ell=1}^{r} \Phi_{J}^{\ell}\right) \cup \cup_{j=J}^{\infty}\left(\cup_{\ell=1}^{s} \psi_{j}^{\ell}\right), \quad \tilde{\mathscr{B}}_{J}:=\left(\cup_{\ell=1}^{r} \tilde{\Phi}_{J}^{\ell}\right) \cup \cup_{j=J}^{\infty}\left(\cup_{\ell=1}^{s} \tilde{\Psi}_{j}^{\ell}\right)$.
If $(\{\tilde{\Phi} ; \tilde{\Psi}\},\{\Phi ; \Psi\})$ is a biorthogonal wavelet in $L_{2}(\mathbb{R})$, then $\left(\mathscr{B}_{J}, \mathscr{B}_{J}\right)$ is a pair of biorthogonal bases for $L_{2}(\mathcal{I})$ for all $J \in \mathbb{N}_{0}$. Moreover, \mathscr{B}_{J} and $\tilde{\mathscr{B}}_{J}$ are Riesz bases for $L_{2}(\mathcal{I})$.

$$
\begin{aligned}
& \left\{\left\{F_{c, \epsilon}\left(\psi_{2 ; k}^{\ell}\right) \chi_{I}: k=d_{j, \ell}^{\psi}+1, \ldots, d_{j, \ell}^{\psi}+2^{j}\right\}, \quad o_{j, \ell}^{\psi}=1,\right. \\
& \left\{F_{c, \epsilon}\left(\psi_{2 j ; k}^{\ell}\right) \chi_{\mathcal{I}}: k=d_{j, \ell}^{\psi}+1, \ldots, d_{j, \ell}^{\psi}+2^{j}-1\right\}, \quad o_{j, \ell}^{\psi}=0, \epsilon_{\ell}^{\psi}=-\epsilon, \\
& \left\{F_{c, \epsilon}\left(\psi_{2 ; k}^{\ell}\right) \chi_{\mathcal{I}}: k=d_{j, \ell}^{\psi}+1, \ldots, d_{j, \ell}^{\psi}+2^{j}-1\right\} \\
& \cup\left\{\frac{1}{\sqrt{2}} F_{c, \epsilon}\left(\psi_{2 j ; d_{j, \ell}^{\psi}}^{\ell}\right) \chi_{\mathcal{I}}, \frac{1}{\sqrt{2}} F_{c, \epsilon}\left(\psi_{2 j ; d_{j, \ell}^{\psi}+2 j}^{\ell}\right) \chi_{\mathcal{I}}\right\}, \quad o_{j, \ell}^{\psi}=0, \epsilon_{\ell}^{\psi}=\epsilon,
\end{aligned}
$$

Wavelets on $[0,1]$ with Simple Structure

Let $\phi, \tilde{\phi}, \psi, \tilde{\psi}$ be compactly supported vector functions in $L_{2}(\mathbb{R})$ with symmetry and all the symmetry centers satisfy

$$
c_{1}^{\phi}=\cdots=c_{r}^{\phi}=c_{1}^{\psi}=\cdots=c_{s}^{\psi}=0 .
$$

In addition we assume that

$$
\text { all the elements/entries in } \phi \text { and } \psi \text { vanish outside }[-1,1] \text {. }
$$

Take $c=0$. Since $d_{j, \ell}^{\phi}=d_{j, \ell}^{\psi}=o_{j, \ell}^{\phi}=o_{j, \ell}^{\psi}=0, \Psi_{j}^{\ell}$ becomes
$\begin{cases}\left\{\psi_{2 ; k}^{\ell}: k=1, \ldots, 2^{j}-1\right\}, & \epsilon_{\ell}^{\psi}=-\epsilon, \\ \left\{\psi_{2 ; k}^{\ell}: k=1, \ldots, 2^{j}-1\right\} \cup\left\{\sqrt{2} \psi_{2 ; 0}^{\ell} \chi_{[0,1]}, \sqrt{2} \psi_{2 ; ; 2}^{\ell} \chi_{[0,1]}\right\}, & \epsilon_{\ell}^{\psi}=\epsilon .\end{cases}$
(i) If $\epsilon=-1$ and all entries in ϕ, ψ are continuous, then $h(0)=h(1)=0$ for all $h \in \mathscr{B}_{J}$ (Dirichlet boundary condition).
(ii) If $\epsilon=1$ and all entries in ϕ, ψ are in $\mathscr{C}^{1}(\mathbb{R})$, then $h^{\prime}(0)=h^{\prime}(1)=0$ for all $h \in \mathscr{B}_{J}$ (von Neumann boundary).

Tight Framelet from Hermite Linear Splines

A tight framelet $\{\phi ; \psi\}$ is given by

$$
\widehat{\phi}(2 \xi)=\widehat{a}(\xi) \widehat{\phi}(\xi), \quad \widehat{\psi}(2 \xi)=\widehat{b}(\xi) \widehat{\phi}(\xi)
$$

through a tight framelet filter bank $\{a ; b\}$:

$$
\begin{gathered}
a=\left\{\left[\begin{array}{cc}
\frac{1}{4} & \frac{\sqrt{7}}{14} \\
-\frac{\sqrt{7}}{8} & -\frac{1}{4}
\end{array}\right],\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{4}
\end{array}\right],\left[\begin{array}{cc}
\frac{1}{4} & -\frac{\sqrt{7}}{14} \\
\frac{\sqrt{7}}{8} & -\frac{1}{4}
\end{array}\right]\right\}_{[-1,1]}, \\
b=\left\{\left[\begin{array}{cc}
\frac{1}{4} & \frac{\sqrt{7}}{14} \\
\frac{1}{8} & \frac{\sqrt{7}}{28} \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
-\frac{1}{2} & 0 \\
0 & \frac{\sqrt{7}}{4} \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
\frac{1}{4} & -\frac{\sqrt{7}}{14} \\
-\frac{1}{8} & \frac{\sqrt{7}}{28} \\
0 & \frac{\sqrt{42}}{14}
\end{array}\right]\right\}_{[-1,1]} .
\end{gathered}
$$

Then $\{\phi ; \psi\}$ generates a tight frame in $L_{2}(\mathbb{R})$ and has symmetry property.

Tight Framelet in $L_{2}([0,1])$ from Linear Splines

(a) $\phi=\left(\phi^{1}, \phi^{2}\right)^{\top}$

(c) ϕ^{L}, ϕ^{R}

(b) $\psi=\left(\psi^{1}, \psi^{2}, \psi^{3}\right)^{\top}$

(d) ψ^{L}, ψ^{R}

Tight Framelet from Hermite Quadratic Splines

A tight framelet $\{\phi ; \psi\}$ is given by

$$
\widehat{\phi}(2 \xi)=\widehat{a}(\xi) \widehat{\phi}(\xi), \quad \widehat{\psi}(2 \xi)=\widehat{b}(\xi) \widehat{\phi}(\xi)
$$

through a tight framelet filter bank $\{a ; b\}$:

$$
\begin{gathered}
a=\left\{\left[\begin{array}{cc}
\frac{1}{4} & \frac{\sqrt{7}}{28} \\
-\frac{\sqrt{7}}{8} & -\frac{1}{8}
\end{array}\right],\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{4}
\end{array}\right],\left[\begin{array}{cc}
\frac{1}{4} & -\frac{\sqrt{7}}{28} \\
\frac{\sqrt{7}}{8} & -\frac{1}{8}
\end{array}\right]\right\}_{[-1,1]}, \\
\left.b=\left\{\begin{array}{cc}
\frac{1}{4} & \frac{\sqrt{7}}{28} \\
\frac{1}{8} & \frac{\sqrt{7}}{56} \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
-\frac{1}{2} & 0 \\
0 & \frac{\sqrt{7}}{4} \\
0 & 0
\end{array}\right],\left[\begin{array}{cc}
\frac{1}{4} & -\frac{\sqrt{7}}{28} \\
-\frac{1}{8} & \frac{\sqrt{7}}{56} \\
0 & \frac{\sqrt{21}}{7}
\end{array}\right]\right\}_{[-1,1]} .
\end{gathered}
$$

Then $\{\phi ; \psi\}$ generates a tight frame in $L_{2}(\mathbb{R})$ and has symmetry property.

Tight Framelet in $L_{2}([0,1])$ from Quadratic Splines

(a) $\phi=\left(\phi^{1}, \phi^{2}\right)^{\top}$

(c) ϕ^{L}, ϕ^{R}

(b) $\psi=\left(\psi^{1}, \psi^{2}, \psi^{3}\right)^{\top}$

(d) ψ^{L}, ψ^{R}

Riesz Wavelet from Hermite Cubic Splines

A Riesz wavelet $\{\phi ; \psi\}$ is given by

$$
\widehat{\phi}(2 \xi)=\widehat{a}(\xi) \widehat{\phi}(\xi), \quad \widehat{\psi}(2 \xi)=\widehat{b}(\xi) \widehat{\phi}(\xi)
$$

through a filter bank $\{a ; b\}$ (part of a biorthogonal wavelet filter bank ($\{a ; b\},\{\tilde{a} ; \tilde{b}\})$:

$$
\begin{aligned}
& a=\left\{\left[\begin{array}{cc}
\frac{1}{4} & \frac{3}{8} \\
-\frac{1}{16} & -\frac{1}{16}
\end{array}\right],\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{4}
\end{array}\right],\left[\begin{array}{cc}
\frac{1}{4} & -\frac{3}{8} \\
\frac{1}{16} & -\frac{1}{16}
\end{array}\right]\right\}_{[-1,1]}, \\
& b=\left\{\left[\begin{array}{cc}
-\frac{1}{4} & -\frac{23}{24} \\
\frac{1}{16} & \frac{91}{176}
\end{array}\right],\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{37}{44}
\end{array}\right],\left[\begin{array}{cc}
-\frac{1}{4} & \frac{23}{24} \\
-\frac{1}{16} & \frac{91}{176}
\end{array}\right]\right\}_{[-1,1]},
\end{aligned}
$$

Then $\{\phi ; \psi\}$ generates a Riesz wavelet in $L_{2}(\mathbb{R})$ and has symmetry property.

Riesz Wavelet in $L_{2}([0,1])$ from Cubic Splines

(a) $\phi=\left(\phi^{1}, \phi^{2}\right)^{\top}$

(c) ϕ^{L}, ϕ^{R}

(b) $\psi=\left(\psi^{1}, \psi^{2}\right)^{\top}$

(d) ψ^{L}, ψ^{R}

Riesz Wavelet from B_{2} Spline

A Riesz wavelet $\{\phi ; \psi\}$ is given by

$$
\widehat{\phi}(2 \xi)=\widehat{a}(\xi) \widehat{\phi}(\xi), \quad \widehat{\psi}(2 \xi)=\widehat{b}(\xi) \widehat{\phi}(\xi)
$$

through a filter bank $\{a ; b\}$ (part of a biorthogonal wavelet filter bank ($\{a ; b\},\{\tilde{a} ; \tilde{b}\})$:

$$
\begin{aligned}
& a=\left\{\left[\begin{array}{ll}
0 & \frac{1}{4} \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
\frac{1}{2} & \frac{1}{4} \\
0 & \frac{1}{4}
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
\frac{1}{2} & \frac{1}{4}
\end{array}\right]\right\}_{[-1,1]}, \\
& b=\left\{\left[\begin{array}{cc}
\frac{1}{4} & -\frac{1}{2} \\
-\frac{1}{3} & \frac{1}{2}
\end{array}\right],\left[\begin{array}{cc}
0 & \frac{1}{2} \\
-\frac{1}{3} & \frac{1}{2}
\end{array}\right],\left[\begin{array}{cc}
-\frac{1}{4} & 0 \\
-\frac{1}{3} & 0
\end{array}\right]\right\}_{[-1,1]},
\end{aligned}
$$

Then $\{\phi ; \psi\}$ generates a Riesz wavelet in $L_{2}(\mathbb{R})$ and has symmetry property.

Riesz Wavelet in $L_{2}([0,1])$ from B_{2} Spline

(a) $\phi=\left(\phi^{1}, \phi^{2}\right)^{\top}$

(c) ϕ^{L}, ϕ^{R}

(b) $\psi=\left(\psi^{1}, \psi^{2}\right)^{\top}$

(d) ψ^{L}, ψ^{R}

Orthogonal Multiwavelet

An orthogonal wavelet $\{\phi ; \psi\}$ (Gernimo-Hardin-Massopust) is given by

$$
\widehat{\phi}(2 \xi)=\widehat{a}(\xi) \widehat{\phi}(\xi), \quad \widehat{\psi}(2 \xi)=\widehat{b}(\xi) \widehat{\phi}(\xi)
$$

through a filter bank $\{a ; b\}$ (part of a biorthogonal wavelet filter bank ($\{a ; b\},\{\tilde{a} ; \tilde{b}\}$):

$$
\begin{gathered}
a=\left\{\left[\begin{array}{cc}
\frac{3}{5} & \frac{4 \sqrt{2}}{5} \\
-\frac{\sqrt{2}}{20} & -\frac{3}{10}
\end{array}\right],\left[\begin{array}{cc}
\frac{3}{5} & 0 \\
\frac{9 \sqrt{2}}{20} & 1
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
\frac{9 \sqrt{2}}{20} & -\frac{3}{10}
\end{array}\right],\left[\begin{array}{cc}
0 & 0 \\
-\frac{\sqrt{2}}{20} & 0
\end{array}\right]\right\}_{[0,3]}, \\
b=\left\{\left[\begin{array}{cc}
-\frac{\sqrt{2}}{20} & -\frac{3}{10} \\
\frac{1}{10} & \frac{3 \sqrt{2}}{10}
\end{array}\right],\left[\begin{array}{cc}
\frac{9 \sqrt{2}}{20} & -1 \\
-\frac{9}{10} & 0
\end{array}\right],\left[\begin{array}{cc}
\frac{9 \sqrt{2}}{20} & -\frac{3}{10} \\
\frac{9}{10} & -\frac{3 \sqrt{2}}{10}
\end{array}\right],\left[\begin{array}{cc}
-\frac{\sqrt{2}}{20} & 0 \\
-\frac{1}{10} & 0
\end{array}\right]\right\}_{[0,3]} .
\end{gathered}
$$

Then $\{\phi ; \psi\}$ generates an orthogonal wavelet in $L_{2}(\mathbb{R})$ and has symmetry property.

Orthogonal Multiwavelet in $L_{2}([0,1])$

(a) $\phi=\left(\phi^{1}, \phi^{2}\right)^{\top}$

(c) ϕ^{L}, ϕ^{R}

(b) $\psi=\left(\psi^{1}, \psi^{2}\right)^{\top}$

(d) ψ^{L}, ψ^{R}

Orthogonal Multiwavelet

An orthogonal wavelet $\{\phi ; \psi\}$ is given by

$$
\widehat{\phi}(2 \xi)=\widehat{a}(\xi) \widehat{\phi}(\xi), \quad \widehat{\psi}(2 \xi)=\widehat{b}(\xi) \widehat{\phi}(\xi)
$$

through a filter bank $\{a ; b\}$ (part of a biorthogonal wavelet filter bank ($\{a ; b\},\{\tilde{a} ; \tilde{b}\})$:

$$
\begin{gathered}
a=\left\{\left[\begin{array}{cc}
\frac{1}{4} & \frac{1}{4} \\
\frac{-\sqrt{7}}{8} & \frac{-\sqrt{7}}{8}
\end{array}\right],\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{1}{4}
\end{array}\right],\left[\begin{array}{cc}
\frac{1}{4} & -\frac{1}{4} \\
\frac{\sqrt{7}}{8} & -\frac{\sqrt{7}}{8}
\end{array}\right]\right\}_{[-1,1]}, \\
b=\left\{\left[\begin{array}{cc}
-\frac{1}{4} & -\frac{1}{4} \\
\frac{1}{8} & \frac{1}{8}
\end{array}\right],\left[\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{\sqrt{7}}{4}
\end{array}\right],\left[\begin{array}{cc}
-\frac{1}{4} & \frac{1}{4} \\
-\frac{1}{8} & \frac{1}{8}
\end{array}\right]\right\}_{[-1,1]} .
\end{gathered}
$$

Then $\{\phi ; \psi\}$ generates an orthogonal wavelet in $L_{2}(\mathbb{R})$ and has symmetry property.

Orthogonal Multiwavelet in $L_{2}([0,1])$

(a) $\phi=\left(\phi^{1}, \phi^{2}\right)^{\top}$

(c) ϕ^{L}, ϕ^{R}

(b) $\psi=\left(\psi^{1}, \psi^{2}\right)^{\top}$

(d) ψ^{L}, ψ^{R}

Summary

- Riesz wavelets with short support and high vanishing moments are often used in wavelet application to numerical PDEs.
- To have short support and high vanishing moments, people often adopt Riesz multiwavelets derived from biorthogonal multiwavelets using matrix-valued filter banks.
- Wavelets on the real line have to be adapted into bounded intervals with prescribed boundary conditions.
- Then either Galerkin scheme or collocation method is used by using wavelet bases.
- Advantages of wavelet applications to PDEs:
(1) Uniformly bounded condition numbers.
(2) Sparse coefficient matrices for efficient computing.
(3) Adaptive wavelet numerical method can handle singularities in solutions of PDEs.
- Shortcomings: Not that easy to design wavelets with prescribed boundary conditions for general domains.

