Wavelet Application to Numerical PDEs

Bin Han

Department of Mathematical and Statistical Sciences University of Alberta, Edmonton, Canada

Present at 2021 International Undergraduate Summer Enrichment Program at UofA

July 12-August 13, 2021

Outline of Mini-course Talks

- Wavelet theory in the function setting.
- Multiresolution analysis.
- Riesz and biorthogonal wavelets in $L_2(\mathbb{R})$.
- Basics on Sobolev spaces.
- Basics on boundary value problems in PDEs.
- Wavelet applications to numerical PDEs.

Declaration: Some figures and graphs in this talk are from the book [Bin Han, Framelets and Wavelets: Algorithms, Analysis and Applications, Birkhäuser/Springer, 2017] and various other sources from Internet, or from published papers, or produced by matlab, maple, or C programming. [Details and sources of all graphs can be provided upon request of the audience.]

What Is a Wavelet in the Function Setting?

- Let $\phi = (\phi_1, \dots, \phi_r)^T$ and $\psi = (\psi_1, \dots, \psi_s)^T$ in $L_2(\mathbb{R})$.
- A system is derived from ϕ, ψ via dilates and integer shifts:

$$egin{aligned} \mathsf{AS}(\phi;\psi) &:= \{\phi(\cdot-k) \ : \ k\in\mathbb{Z}\}\cup\ \{\psi_{j;k} &:= 2^{j/2}\psi(2^j\cdot-k) \ : \ j\in\mathbb{N}\cup\{0\}, k\in\mathbb{Z}\}. \end{aligned}$$

- $\{\phi; \psi\}$ is called an orthogonal wavelet in $L_2(\mathbb{R})$ if AS $(\phi; \psi)$ is an orthonormal basis of $L_2(\mathbb{R})$.
- Wavelet representation:

$$f = \sum_{k \in \mathbb{Z}} \langle f, \phi(\cdot - k) \rangle \phi(\cdot - k) + \sum_{j=0}^{\infty} \sum_{k \in \mathbb{Z}} \langle f, \psi_{j;k} \rangle \psi_{j;k}, \quad f \in L_2(\mathbb{R}),$$

where $\langle f, g \rangle := \int_{\mathbb{R}} f(x) \overline{g(x)}^{\mathsf{T}} dx$ is the inner product. • For r = 1, $\{\phi; \psi\}$ is called a scalar wavelet. For r > 1 (i.e., ϕ is a vector function), $\{\phi; \psi\}$ is called a multiwavelet.

Dilates and Shifts of Affine Systems

Bin Han (University of Alberta)

Multiresolution Analysis

Definition

A sequence $\{\mathscr{V}_j\}_{j\in\mathbb{Z}}$ of closed subspaces in $L_2(\mathbb{R})$ forms a (wavelet) multiresolution analysis (MRA) of $L_2(\mathbb{R})$ if

$$\ \, {} \ \, \mathscr{V}_{j}=\{f(2^{j}\cdot) \ : \ f\in\mathscr{V}_{0}\} \ \, \text{and} \ \, \mathscr{V}_{j}\subseteq\mathscr{V}_{j+1} \ \, \text{for all integers} \ \, j\in\mathbb{Z};$$

2
$$\overline{\bigcup_{j\in\mathbb{Z}}\mathscr{V}_j} = L_2(\mathbb{R})$$
 (that is, $\bigcup_{j\in\mathbb{Z}}\mathscr{V}_j$ is dense in $L_2(\mathbb{R})$) and $\cap_{j\in\mathbb{Z}}\mathscr{V}_j = \{0\}$;

there exists a set Φ of functions in L₂(ℝ) such that {φ(· − k) : k ∈ ℤ, φ ∈ Φ} is a Riesz basis for 𝒴₀.

Note that the set Φ of functions in item (3) completely determines a multiresolution analysis by

$$\mathscr{V}_{j} = \mathtt{S}_{2^{j}}(\Phi|L_{2}(\mathbb{R})) := \overline{\mathtt{span}\{\phi(2^{j} \cdot -k) : k \in \mathbb{Z}, \phi \in \Phi\}}^{L_{2}(\mathbb{R})}$$

For scalar wavelets, Φ is a singleton and $\Phi = \phi$.

MRA of Orthogonal (Multi)Wavelets

- Let $\phi = (\phi^1, \dots, \phi^r)^\mathsf{T}$ and $\psi = (\psi^1, \dots, \psi^s)^\mathsf{T}$ in $L_2(\mathbb{R})$.
- {φ; ψ} is called an orthogonal wavelet if AS(φ; ψ) is an orthonormal basis of L₂(ℝ), where as

$$\mathsf{AS}(\phi;\psi) := \{ \phi^{\ell}(\cdot - k) : k \in \mathbb{Z}, \ell = 1, \dots, r \}$$
$$\cup \{ \psi^{\ell}_{2^{j};k} := 2^{j/2} \psi^{\ell} (2^{j} \cdot - k) : j \ge 0, k \in \mathbb{Z}, \ell = 1, \dots, s \}.$$

- Define $\mathscr{V}_j := S_{2^j}(\{\phi^1, \dots, \phi^r\} | L_2(\mathbb{R}))$ and $\mathscr{W}_j := S_{2^j}(\{\psi^1, \dots, \psi^s\} | L_2(\mathbb{R}))$ for $j \in \mathbb{Z}$.
- Then we have the space decomposition of $L_2(\mathbb{R})$:

$$\mathscr{V}_{J+1} = \mathscr{V}_J \oplus \mathscr{W}_J \quad \text{and} \quad L_2(\mathbb{R}) = \mathscr{V}_J \oplus_{j=J}^\infty \mathscr{W}_j = \oplus_{j \in \mathbb{Z}} \mathscr{W}_j, \; \forall \; J \in \mathbb{Z},$$

6/1

where \oplus means the orthogonal sum of closed subspaces in $L_2(\mathbb{R}).$

Vanishing Moments and Sparsity

- A function ψ has *m* vanishing moments if $\widehat{\psi}(\xi) = \mathscr{O}(|\xi|^m)$ as $\xi \to 0$, i.e., $\widehat{\psi}(0) = \widehat{\psi}'(0) = \cdots = \widehat{\psi}^{(m-1)}(0) = 0$.
- If ψ has decay, then the above is equivalent to $\int_{\mathbb{R}} \psi(x) x^j dx = 0$ for all j = 0, ..., m 1.
- If ψ(ξ) := b(ξ/2)φ(ξ/2) and φ(0) ≠ 0, then ψ has m vanishing moments if and only if the filter b has m vanishing moments: b(ξ) = 𝒪(|ξ|^m) as ξ → 0.
- Let {φ; ψ} be an orthogonal wavelet in L₂(ℝ). Then every function f ∈ L₂(ℝ) can be represented as

$$f = \sum_{k \in \mathbb{Z}} \langle f, \phi(\cdot - k) \rangle \phi(\cdot - k) + \sum_{j=0}^{\infty} \sum_{k \in \mathbb{Z}} \langle f, \psi_{2^{j};k} \rangle \psi_{2^{j};k}.$$

 If f ≈ p on the support of ψ_{2^j;k} and deg(p) < m, then ψ has m vanishing moments implies (f, ψ_{2^j;k}) ≈ 0.

Fast Wavelet Transform in Function Setting

Let $\{\phi; \psi\}$ be an orthogonal wavelet in $L_2(\mathbb{R})$ with an orthogonal wavelet filter bank $\{a; b\}$ such that

$$\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi), \qquad \widehat{\psi}(2\xi) = \widehat{b}(\xi)\widehat{\phi}(\xi).$$

Then every function $f \in L_2(\mathbb{R})$ can be represented as

$$f = \sum_{k \in \mathbb{Z}} \langle f, \phi_{2^{J};k} \rangle \phi_{2^{J};k} + \sum_{j=J}^{\infty} \sum_{k \in \mathbb{Z}} \langle f, \psi_{2^{j};k} \rangle \psi_{2^{j};k}.$$

Choose *j* large so that

$$fpprox f_j:=\sum_{k\in\mathbb{Z}} {\sf v}^j(k)\phi_{2^j;k} \quad {
m with} \quad {\sf v}^j(k):=\langle f,\phi_{2^j;k}
angle.$$

On the other hand, we also have

$$f_j=f_{j-1}+\sum_{k\in\mathbb{Z}}w^{j-1}(k)
angle\psi_{2^{j-1};k}\quad ext{with}\quad w^{j-1}(k):=\langle f,\psi_{2^{j-1};k}
angle.$$

Then the coefficients v^{j-1} , w^{j-1} can be computed from v^j as follows:

$$\mathbf{v}^{j-1} = \frac{\sqrt{2}}{2} \mathcal{T}_{\mathbf{a}} \mathbf{v}^{j}, \quad \mathbf{w}^{j-1} = \frac{\sqrt{2}}{2} \mathcal{T}_{\mathbf{b}} \mathbf{v}^{j},$$

which is exactly the same discrete wavelet decomposition in the discrete setting.

Conversely, we can obtained v^j from v^{j-1} and w^{j-1} by

$$\mathbf{v}^{j} = \frac{\sqrt{2}}{2} \mathcal{S}_{a} \mathbf{v}^{j-1} + \frac{\sqrt{2}}{2} \mathcal{S}_{b} \mathbf{w}^{j-1},$$

which is exactly the same discrete wavelet reconstruction.

Explanation

Note
$$\widehat{\psi}(2\xi) = \widehat{b}(\xi)\widehat{\phi}(\xi)$$
 is equivalent to
 $\psi = 2\sum_{n\in\mathbb{Z}}b(n)\phi(2\cdot -n).$

Then

$$\psi_{2^{j-1};k} = 2^{(j-1)/2} \psi(2^{j-1} \cdot -k) = 2^{(j+1)/2} \sum_{n \in \mathbb{Z}} b(n) \phi(2^j \cdot -2k - n)$$

$$=\sqrt{2}\sum_{n\in\mathbb{Z}}b(n)\phi_{2^{j};2k+n}.$$

Therefore,

$$w^{j-1}(k) = \langle f, \psi_{2^{j-1};k} \rangle = \sqrt{2} \sum_{n \in \mathbb{Z}} b(n) \langle f, \phi_{2^{j};2k+n} \rangle$$
$$= \sqrt{2} \sum_{n \in \mathbb{Z}} \overline{b(n)} v^{j} (2k+n) = \frac{\sqrt{2}}{2} [\mathcal{T}_{b} v^{j}](k).$$

Explanation...

Recall

$$\psi_{2^{j-1};k}=\sqrt{2}\sum_{n\in\mathbb{Z}}b(n)\phi_{2^{j};2k+n}.$$

Conversely,

$$\begin{split} \sum_{k \in \mathbb{Z}} w^{j-1}(k) \psi_{2^{j-1};k} &= \sum_{k \in \mathbb{Z}} \sqrt{2} \sum_{n \in \mathbb{Z}} w^{j-1}(k) b(n) \phi_{2^{j};2k+n} \\ &= \sqrt{2} \sum_{k \in \mathbb{Z}} \sum_{n' \in \mathbb{Z}} w^{j-1}(k) b(2k-n') \phi_{2^{j};n'} \\ &= \sum_{n' \in \mathbb{Z}} \sqrt{2} \sum_{k \in \mathbb{Z}} b(2k'-n) w^{j-1}(k) \\ &= \sum_{n' \in \mathbb{Z}} \frac{\sqrt{2}}{2} [\mathcal{S}_{b} w^{j-1}](n') \end{split}$$

Explanation...

Hence,

$$\begin{split} \sum_{k\in\mathbb{Z}} \mathsf{v}^{j}(k)\phi_{2^{j};k} &= \sum_{k\in\mathbb{Z}} \mathsf{v}^{j-1}(k)\phi_{2^{j-1};k} + \sum_{k\in\mathbb{Z}} \mathsf{w}^{j-1}(k)\psi_{2^{j-1};k} \\ &= \sum_{n'\in\mathbb{Z}} \left(\frac{\sqrt{2}}{2} [\mathcal{S}_{a}\mathsf{v}^{j-1}](n') + \frac{\sqrt{2}}{2} [\mathcal{S}_{b}\mathsf{w}^{j-1}](n')\right)\phi_{2^{j};n'} \\ &= \sum_{k\in\mathbb{Z}} \left(\frac{\sqrt{2}}{2} [\mathcal{S}_{a}\mathsf{v}^{j-1}](k) + \frac{\sqrt{2}}{2} [\mathcal{S}_{b}\mathsf{w}^{j-1}](k)\right)\phi_{2^{j};k}. \end{split}$$

Since $\{\phi(\cdot - k)\}_{k \in \mathbb{Z}}$ is an orthonormal system, we must have

$$v^{j}(k) = rac{\sqrt{2}}{2} [\mathcal{S}_{a} v^{j-1}](k) + rac{\sqrt{2}}{2} [\mathcal{S}_{b} w^{j-1}](k).$$

Construction of Orthogonal Scalar Wavelets

Theorem

Let
$$a,b\in \textit{I}_0(\mathbb{Z})$$
 with $\widehat{a}(0)=1.$ Define

$$\widehat{\phi}(\xi) := \prod_{j=1}^\infty \widehat{a}(2^{-j}\xi), \qquad \widehat{\psi}(\xi) := \widehat{b}(\xi/2)\widehat{\phi}(\xi/2).$$

Then $\phi, \psi \in L_2(\mathbb{R})$ and $\{\phi; \psi\}$ is an orthogonal wavelet in $L_2(\mathbb{R})$ if and only if

- $[\widehat{\phi}, \widehat{\phi}] = 1$, i.e., $\{\phi(\cdot k)\}_{k \in \mathbb{Z}}$ is an orthonormal system.
- {*a*; *b*} *is an orthogonal wavelet filter bank:*

$$egin{bmatrix} \widehat{a}(\xi) & \widehat{b}(\xi) \ \widehat{a}(\xi+\pi) & \widehat{b}(\xi+\pi) \end{bmatrix} \overline{egin{bmatrix} \widehat{a}(\xi) & \widehat{b}(\xi) \ \widehat{a}(\xi+\pi) & \widehat{b}(\xi+\pi) \end{bmatrix}}^{\mathsf{T}} = I_2.$$

Orthogonal Wavelet Filter Bank

Proposition

Let $a, b \in I_0(\mathbb{Z})$. Then $\{a; b\}$ is an orthogonal wavelet filter bank:

$$\begin{bmatrix} \widehat{a}(\xi) & \widehat{b}(\xi) \\ \widehat{a}(\xi+\pi) & \widehat{b}(\xi+\pi) \end{bmatrix} \begin{bmatrix} \widehat{a}(\xi) & \widehat{b}(\xi) \\ \widehat{a}(\xi+\pi) & \widehat{b}(\xi+\pi) \end{bmatrix}^{\star} = I_2$$

if and only if a is an orthogonal low-pass filter:

 $|\hat{a}(\xi)|^2 + |\hat{a}(\xi + \pi)|^2 = 1$

and there exist $c\in\mathbb{T}$ and $n\in\mathbb{Z}$ such that

$$\widehat{b}(\xi) = c e^{i(2n-1)\xi} \overline{\widehat{a}(\xi+\pi)}.$$

For c = 1 and n = 0, $\widehat{b}(\xi) = e^{-i\xi} \overline{\widehat{a}(\xi + \pi)}$.

Daubechies Orthogonal Wavelets

Define interpolatory filter $\widehat{a_{2m}^{l}}(\xi) := \cos^{2m}(\xi/2) P_{m,m}(\sin^{2}(\xi/2))$ with $P_{m,m}(x) := \sum_{j=0}^{m-1} {m+j-1 \choose j} x^{j}$. Since $\widehat{a_{2m}^{l}}(\xi) \ge 0$, by Fejér-Riesz lemma, there exists $a_{m}^{D} \in I_{0}(\mathbb{Z})$ such that $\widehat{a_{m}^{D}}(0) = 1$.

 $|\widehat{a_m^D}(\xi)|^2 = \widehat{a_{2m}^{\prime}}(\xi) := \widehat{a_{2m}^{\prime}}(\xi) = \cos^{2m}(\xi/2)\mathsf{P}_{m,m}(\sin^2(\xi/2)).$

Define ϕ through $\widehat{\phi}(\xi) := \prod_{j=1}^{\infty} \widehat{a_m^D}(2^{-j}\xi)$. Then $[\widehat{\phi}, \widehat{\phi}] = 1$ and $\{a_m^D; b_m^D\}$ is an orthogonal wavelet filter bank with

$$\widehat{b_m^D}(\xi) := e^{-i\xi} \overline{\widehat{a_m^D}(\xi + \pi)}, \quad \widehat{\psi}(\xi) := \widehat{b_m^D}(\xi/2) \widehat{\phi}(\xi/2).$$

Then $\{\phi; \psi\}$ is a compactly supported orthogonal wavelet such that the low-pass filter a_m^D has order m sum rules and the high-pass filter b_m^D has m vanishing moments, called the Daubechies orthogonal wavelet of order m.

Bin Han (University of Alberta) Wavelet Application to Numerical PDEs July 20/23/26, 2021

$$\begin{split} &\boldsymbol{a}_{1}^{D} = \{\frac{1}{2}, \frac{1}{2}\}_{[0,1]}, \\ &\boldsymbol{a}_{2}^{D} = \{\frac{1+\sqrt{3}}{8}, \frac{3+\sqrt{3}}{8}, \frac{3-\sqrt{3}}{8}, \frac{1-\sqrt{3}}{8}\}_{[-1,2]} \\ &\boldsymbol{a}_{3}^{D} = \{\frac{1+\sqrt{10}+\sqrt{5+2\sqrt{10}}}{32}, \frac{5+\sqrt{10}+3\sqrt{5+2\sqrt{10}}}{32}, \frac{5-\sqrt{10}+\sqrt{5+2\sqrt{10}}}{16}, \\ & \quad \frac{5-\sqrt{10}-\sqrt{5+2\sqrt{10}}}{16}, \frac{5+\sqrt{10}-3\sqrt{5+2\sqrt{10}}}{32}, \frac{1+\sqrt{10}-\sqrt{5+2\sqrt{10}}}{32}\}_{[-2,3]}, \\ &\boldsymbol{a}_{4}^{D} = \{-0.0535744507091, -0.0209554825625, 0.351869534328, \\ & \quad \frac{0.568329121704}{2}, 0.210617267102, -0.0701588120893, \\ & \quad -0.00891235072084, 0.0227851729480\}_{[-3,4]}. \end{split}$$

Daubechies Orthogonal Wavelets

Bin Han (University of Alberta)

Wavelet Application to Numerical PDEs

Plot Refinable Function ϕ and Wavelet Function ψ

Bin Han (University of Alberta)

Wavelet Application to Numerical PDEs

July 20/23/26, 2021

Daubechies Orthogonal Wavelets

Bin Han (University of Alberta)

Wavelet Application to Numerical PDEs

Riesz (Multi)Wavelets in $L_2(\mathbb{R})$

- Let $\phi = (\phi_1, \dots, \phi_r)^\mathsf{T}$ and $\psi = (\psi_1, \dots, \psi_s)^\mathsf{T}$ in $L_2(\mathbb{R})$.
- {φ; ψ} is a Riesz wavelet if AS(φ; ψ) is a Riesz basis in L₂(ℝ), that is, (1) there exists positive constants C₁ and C₂ such that

$$C_1 \sum_{h \in \mathsf{AS}(\phi;\psi)} |c_h|^2 \leqslant \Big\| \sum_{h \in \mathsf{AS}} c_h h \Big\|_{L_2(\mathbb{R})}^2 \leqslant C_2 \sum_{h \in \mathsf{AS}(\phi;\psi)} |c_h|^2,$$

and the linear span of AS(ϕ ; ψ) is dense in $L_2(\mathbb{R})$, where

$$\begin{split} \mathsf{AS}(\phi;\psi) &:= \{\phi(\cdot - k) \ : \ k \in \mathbb{Z}\} \\ &\cup \{\psi_{2^{j};k} := 2^{j/2}\psi(2^{j} \cdot - k) \ : \ j \geqslant 0, k \in \mathbb{Z}\}. \end{split}$$

• If $C_1 = C_2 = 1$, then a Riesz wavelet becomes an orthogonal wavelet. That is, an orthogonal wavelet is a special case of Riesz wavelets.

Biorthogonal Wavelets in $L_2(\mathbb{R})$

• Every function $f \in L_2(\mathbb{R})$ has the wavelet representation:

$$f = \sum_{k \in \mathbb{Z}} \langle f, \tilde{\phi}(\cdot - k) \rangle \phi(\cdot - k) + \sum_{j=0}^{\infty} \sum_{k \in \mathbb{Z}} \langle f, \tilde{\psi}_{2^{j};k} \rangle \psi_{2^{j};k}.$$

- An orthogonal wavelet $\{\phi; \psi\}$ is just a biorthogonal wavelet $(\{\phi; \psi\}, \{\phi; \psi\})$ (i.e., its dual is itself.)
- Biorthogonal wavelets and multiwavelets are widely used in image processing and numerical solutions of PDEs.

MRA of Biorthogonal Wavelets

- Let $({\tilde{\phi}; \tilde{\psi}}, {\phi; \psi})$ be a biorthogonal wavelet in $L_2(\mathbb{R})$.
- Define $\mathscr{V}_j := S_{2^j}(\phi|L_2(\mathbb{R}))$ and $\mathscr{W}_j := S_{2^j}(\psi|L_2(\mathbb{R}))$ for $j \in \mathbb{Z}$.
- Define $\widetilde{\mathscr{V}_j} := S_{2^j}(\widetilde{\phi}|L_2(\mathbb{R}))$ and $\widetilde{\mathscr{W}_j} := S_{2^j}(\widetilde{\psi}|L_2(\mathbb{R}))$ for $j \in \mathbb{Z}$.
- Then we have two intertwined MRAs: For $J \in \mathbb{Z}$,

$$\begin{split} \mathscr{V}_{J+1} &= \mathscr{V}_{J} \oplus \mathscr{W}_{J} \quad \text{and} \quad L_{2}(\mathbb{R}) = \mathscr{V}_{J} \oplus_{j=J}^{\infty} \mathscr{W}_{j} = \oplus_{j \in \mathbb{Z}} \mathscr{W}_{j}, \\ \widetilde{\mathscr{V}}_{J+1} &= \widetilde{\mathscr{V}_{J}} \oplus \widetilde{\mathscr{W}_{J}} \quad \text{and} \quad L_{2}(\mathbb{R}) = \widetilde{\mathscr{V}_{J}} \oplus_{j=J}^{\infty} \mathscr{W}_{j} = \oplus_{j \in \mathbb{Z}} \mathscr{W}_{j} \end{split}$$

where \oplus means the direct sum of closed subspaces in $L_2(\mathbb{R})$ and

$$\mathscr{W}_j = \mathscr{V}_{j+1} \cap \widetilde{\mathscr{V}_j}^{\perp}, \quad \widetilde{\mathscr{W}_j} = \widetilde{\mathscr{V}_{j+1}} \cap \mathscr{V}_j^{\perp}, \qquad j \in \mathbb{Z}.$$

22 / 1

Wavelet coefficients \$\langle f, \tilde{\mathcal{\math\}\mathcal{\mathcal{\mathca\}\mathca\}\mathcal{\mathcal{\mathc

Construction of Scalar Biorthogonal Wavelets

Theorem: Let $\phi, \psi \in L_2(\mathbb{R})$ and $\tilde{\phi}, \tilde{\psi} \in L_2(\mathbb{R})$. Then $(\{\tilde{\phi}; \tilde{\psi}\}, \{\phi; \psi\})$ is a biorthogonal wavelet in $L_2(\mathbb{R})$ if and only if

• There exist $a, b, \tilde{a}, \tilde{b} \in I_2(\mathbb{Z})$ such that

$$\begin{split} \widehat{\phi}(2\xi) &= \widehat{a}(\xi)\widehat{\phi}(\xi), \qquad \widehat{\psi}(2\xi) = \widehat{b}(\xi)\widehat{\phi}(\xi), \\ \widehat{\phi}(2\xi) &= \widehat{\widetilde{a}}(\xi)\widehat{\widetilde{\phi}}(\xi), \qquad \widehat{\widetilde{\psi}}(2\xi) = \widehat{\widetilde{b}}(\xi)\widehat{\widetilde{\phi}}(\xi). \end{split}$$

({ã; b̃}, {a; b}) is a biorthogonal wavelet filter bank: $\begin{bmatrix} \widehat{a}(\xi) & \widehat{b}(\xi) \\ \widehat{a}(\xi + \pi) & \widehat{b}(\xi + \pi) \end{bmatrix} \begin{bmatrix} \widehat{a}(\xi) & \widehat{b}(\xi) \\ \widehat{a}(\xi + \pi) & \widehat{b}(\xi + \pi) \end{bmatrix}^{\mathsf{T}} = l_2.$ [\$\overline{\phi}, \$\overline{\phi}] \in L_\overline(\mathbf{R}, \$\overline{\phi}]\$] \in L_\overline(\mathbf{R}, \$\overline{\phi}]\$] = 1, where \$\overline{f}(\xi) := \int_\mathbf{R} f(x) e^{-ix\xi} dx, \$\$ [\$\overline{f}, \$\overline{\phi}]\$](\xi) := \sum_{k \in \mathbb{Z}} \$\overline{f}(\xi + 2\pi k) \overline{\beta}(\xi + 2\pi k).\$\$

Scalar Biorthogonal Wavelet Filter Bank

Proposition

Let $a, b, \tilde{a}, \tilde{b} \in I_0(\mathbb{Z})$. Then $(\{\tilde{a}; \tilde{b}\}, \{a; b\})$ is a biorthogonal wavelet filter bank:

if (\tilde{a}, a) is a biorthogonal low-pass filter:

$$\widehat{\widetilde{a}}(\xi)\overline{\widehat{a}(\xi)} + \widehat{\widetilde{a}}(\xi + \pi)\overline{\widehat{a}(\xi + \pi)} = 1$$

with the choice $\widehat{\widetilde{b}}(\xi) = e^{i\xi}\overline{\widetilde{a}(\xi + \pi)}$ and $\widehat{b}(\xi) = e^{i\xi}\overline{\widetilde{a}(\xi + \pi)}$.

If $\widehat{a}(0) = \sum_{k \in \mathbb{Z}} a(k) = 1$, then $\widehat{\phi}(\xi) := \prod_{j=1}^{\infty} \widehat{a}(2^{-j}\xi)$ is well defined and satisfies $\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi)$.

Example of Scalar Biorthogonal Wavelets

We can obtain a pair of biorthogonal wavelet filters by splitting the interplatory filter

 $\begin{aligned} \widehat{\widetilde{a}_m(\xi)} \widehat{a_m}(\xi) &:= \widehat{a_{2m}^l}(\xi) = \cos^{2m}(\xi/2) \mathsf{P}_{m,m}(\sin^2(\xi/2)) \\ \text{as follows: } \mathsf{P}(x) \widetilde{\mathsf{P}}(x) = \mathsf{P}_{m,m}(x) \text{ and} \\ \widehat{a_m}(\xi) &= 2^{-m}(1 + e^{-i\xi})^m \mathsf{P}(\sin^2(\xi/2)), \qquad \widehat{b_m}(\xi) := e^{-i\xi} \overline{\widetilde{a_m}(\xi + \pi)}, \\ \widehat{\widetilde{a}_m}(\xi) &= 2^{-m}(1 + e^{-i\xi})^m \widetilde{\mathsf{P}}(\sin^2(\xi/2)), \qquad \widehat{\widetilde{b}_m}(\xi) := e^{-i\xi} \overline{\widehat{a_m}(\xi + \pi)}. \end{aligned}$

For m = 2, we have the LeGall biorthogonal wavelet filter bank:

$$a_2 = \{\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\}_{[-1,1]}$$

and

$$\tilde{a}_2 = \{-\frac{1}{8}, \frac{1}{4}, \frac{3}{4}, \frac{1}{4}, -\frac{1}{8}\}_{[-2,2]}.$$

Examples of Biorthogonal Wavelets

Bin Han (University of Alberta)

Wavelet Application to Numerical PDEs

July 20/23/26, 2021

For m = 4,

$$\begin{aligned} &\boldsymbol{a}_{4} = \{-\frac{t}{64}, \frac{2-t}{32}, \frac{16+t}{64}, \frac{6+t}{16}, \frac{16+t}{64}, \frac{2-t}{32}, -\frac{t}{64}\}_{[-3,3]}, \\ & \tilde{\boldsymbol{a}}_{4} = \{\frac{t^{2}-4t+10}{256}, \frac{t-4}{64}, \frac{-t^{2}+6t-14}{64}, \frac{20-t}{64}, \frac{3t^{2}-20t+110}{128}, \frac{20-t}{64}, \frac{-t^{2}+6t-14}{64}, \frac{t^{2}-4t+10}{256}\}_{[-4,4]}, \end{aligned}$$

where $t \approx 2.92069$. The derived biorthogonal wavelet is called Daubechies 7/9 filter and has very impressive performance in many applications.

Example of Biorthogonal Wavelets

Bin Han (University of Alberta)

Wavelet Application to Numerical PDEs

B-spline Functions

• For $m \in \mathbb{N}$, the B-spline function B_m of order m is defined to be

$$B_1 := \chi_{(0,1]}$$
 and $B_m := B_{m-1} * B_1 = \int_0^1 B_{m-1}(\cdot - t) dt.$

•
$$supp(B_m) = [0, m]$$
 and $B_m(x) > 0$ for all $x \in (0, m)$.

•
$$B_m = B_m(m-\cdot)$$
 and $B_m \in \mathscr{C}^{m-2}(\mathbb{R})$

•
$$B_m|_{(k,k+1)} \in \mathbb{P}_{m-1}$$
 for all $k \in \mathbb{Z}$.

• $B_m(\xi) = (\frac{1-e^{-i\xi}}{i\xi})^m$ and B_m is refinable:

$$B_m = 2\sum_{k\in\mathbb{Z}}a_m^B(k)B_m(2\cdot-k),$$

where a_m^B is the B-spline filter of order *m*:

$$\widehat{a_m^B}(\xi) := 2^{-m}(1+e^{-i\xi})^m.$$

• Note that $\widehat{B}_m(2\xi) = \widehat{a_m^B}(\xi)\widehat{B}_m(\xi)$ and $\widehat{B}_m(\xi) = \prod_{j=1}^{\infty} \widehat{a_m^B}(2^{-j}\xi)$. Bin Han (University of Alberta) Wavelet Application to Numerical PDEs July 20/23/26, 2021 29/1

Graphs of B-spline Functions

$$\begin{aligned} \mathbf{a}_{1}^{B} &= \{\frac{1}{2}, \frac{1}{2}\}_{[0,1]}, \\ \mathbf{a}_{2}^{B} &= \{\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\}_{[0,2]}, \\ \mathbf{a}_{3}^{B} &= \{\frac{1}{8}, \frac{3}{8}, \frac{3}{8}, \frac{1}{8}\}_{[0,3]}, \\ \mathbf{a}_{4}^{B} &= \{\frac{1}{16}, \frac{1}{4}, \frac{3}{8}, \frac{1}{4}, \frac{1}{16}\}_{[0,4]}, \\ \mathbf{a}_{5}^{B} &= \{\frac{1}{32}, \frac{5}{32}, \frac{5}{16}, \frac{5}{16}, \frac{15}{32}, \frac{1}{32}\}_{[0,5]}, \\ \mathbf{a}_{6}^{B} &= \{\frac{1}{64}, \frac{3}{32}, \frac{15}{64}, \frac{5}{16}, \frac{15}{64}, \frac{3}{32}, \frac{1}{64}\}_{[0,6]} \end{aligned}$$

•

Basics on Sobolev Spaces

A function f on I := [a, b] is absolutely continuous if for every ε > 0, there exists δ > 0 such that for all nonoverlapping (a_j, b_j), j = 1,..., n in I such that

$$\sum_{j=1}^n |f(b_j) - f(a_j)| < \varepsilon \quad \text{as long as} \quad \sum_{j=1}^n (b_j - a_j) < \delta.$$

- If f is absolutely continuous, then f' exists almost everywhere and f is uniformly continuous.
- The Sobolev space $H^m(I)$ with $m \in \mathbb{N} \cup \{0\}$ consists of all functions f on I such that $f, f', \ldots, f^{(m-1)}$ are absolutely continuous on $I, f, f', \ldots, f^{(m-1)}, f^{(m)} \in L_2(I)$.
- Sobolev norm: $\|f\|_{H^m}^2 := \sum_{j=0}^m \|f^{(j)}\|_{L_2}^2$.
- Sobolev spaces H^m(I) are widely used for studying and solving PDEs.

Basics on Boundary Value Problems (BVP)

- Poisson equation: u"(x) = f(x) for x ∈ (0, 1) with boundary conditions u(0) = α (Dirichlet boundary condition) and u'(0) = β (Neumann boundary condition).
- Helmholtz equation: u" + κ²u = f on (0, 1) with boundary conditions u(0) = α and u'(1) iku(1) = 0 (Robin boundary conditions).
- A weak solution $u \in H^1(0,1)$ must satisfy

$$\langle u'', v \rangle = \langle f, v \rangle, \qquad \forall v \in H^1(0, 1).$$

Using integration by parts and boundary conditions,

$$\langle u'',v\rangle = \int_0^1 u''(x)v(x)dx = u'(x)v(x)|_{x=0}^{x=1} - \int_0^1 u'(x)v'(x)dx.$$

• Hence, a weak solution *u* is given by

$$\langle u',v'
angle = -\langle f,v
angle - u'(1)v(1) + u'(0)v(0), \quad \forall \ v \in H^1(0,1).$$

Galerkin Scheme

• Poisson equation: u'' = f on (0, 1) with u(0) = u(1) = 0.

- Let V_h be a finite dimensional subspace of H¹(0, 1) with suitable boundary conditions. For the above Poisson equation, we consider H¹₀(0, 1) by requiring φ(0) = φ(1) = 0 for all φ ∈ V_h.
- Galerkin scheme: Seek $u_h \in V_h \subseteq H^1_0(0,1)$ such that

$$\langle u'_h, v' \rangle = \int_0^1 u'_h v' = -\langle f, v \rangle, \qquad \forall v \in V_h.$$

• Let $\{\phi_1, \dots, \phi_N\}$ be a basis of V_h . Then we can write $u_h = \sum_{j=1}^N c_j \phi_j \in V_h$ such that $\{c_1, \dots, c_N\}$ must satisfy $\sum_{i=1}^N c_j \langle \phi'_j, \phi'_k \rangle = \langle f, \phi_k \rangle, \qquad k = 1, \dots, N.$

• Solve the linear system Ac = b for $c = (c_1, \ldots, c_N)^T$, where $A = (\langle \phi'_j, \phi'_k \rangle)_{1 \leq j,k \leq N}$, and $b = (-\langle f, \phi_k \rangle)_{1 \leq k \leq N}$.

Finite Element Method

- Let $N \in \mathbb{N}$ and $h := \frac{1}{N}$.
- Consider partition

$$0 = x_0 < x_1 < \cdots < x_N = 1$$

with $x_j := \frac{j}{N}$ for $j = 0, \ldots, N$.

- Define a piecewise linear function ϕ_j with support $[x_{j-1}, x_{j+1}]$ such that $\phi_j(x_{j-1}) = \phi(x_{j+1}) = 0$ and $\phi_j(x_j) = 1$.
- The Finite Element Method uses the basis {φ₁,..., φ_{N-1}} which spans V_h (a spline space generated by the linear spline)
- Note that all basis elements $\phi_j \in H_0^1(0, 1)$ and hence $V_h \subseteq H_0^1(0, 1)$.

Collocation Scheme

- Poisson equation: u'' = f on (0, 1) with u(0) = u(1) = 0.
- Let V_h be a finite dimensional subspace of H¹(0,1) ∩ C² with suitable boundary conditions. For the above Poisson equation, we consider H¹₀(0,1) by requiring φ(0) = φ(1) = 0 for all φ ∈ V_h.
- Let $\{\phi_1, \ldots, \phi_N\}$ be a basis of V_h . Then we seek $u_h = \sum_{j=1}^N c_j \phi_j \in V_h$ with coefficients c_1, \ldots, c_N to be determined.
- Collocation scheme: (1) suitably pick up N sampling points z_1, \ldots, z_N inside [0, 1]. (2) obtain the linear system through

$$\sum_{j=1}^N c_j \phi_j''(z_k) = f(z_k), \qquad k = 1, \ldots, N.$$

• Solve the above linear equations to determine the coefficients c_1, \ldots, c_N .
Wavelet Method

- Let {φ; ψ} be a Riesz wavelet for H¹(ℝ) such that φ, ψ belong to the Sobolev space H¹(0, 1).
- Adapt the Riesz wavelet {φ; ψ} on the real line into the interval [0, 1] with prescribed boundary conditions to obtain a Riesz basis Φ₀ ∪ ∪[∞]_{i=0}Ψ_j for H¹₀(0, 1), where

$$\Phi_0 = \{\phi^L\} \cup \{\phi(\cdot - k) : h_\phi \leqslant k \leqslant h_\phi\} \cup \{\phi^R\}$$

and

$$\Psi_{j} = \{\psi_{2^{j};0}^{L}\} \cup \{\psi_{2^{j};k} : I_{\psi} \leq k \leq 2^{j} - h_{\psi}\} \cup \{\psi_{2^{j};2^{j}-1}^{R}\}.$$

- Take a large integer $J \in \mathbb{N}$ and consider $\{\eta_j\}_{j \in N_J} = \Phi_0 \cup \bigcup_{j=0}^J \Psi_j$ which spans V_h .
- Now apply Galerkin scheme or collocation scheme.

Riesz Wavelets in Sobolev Spaces

• For $\tau \in \mathbb{R}$, the Sobolev space $H^{\tau}(\mathbb{R})$ consists of all tempered distributions f satisfying

$$\|f\|^2_{H^{ au}(\mathbb{R})} := rac{1}{2\pi} \int_{\mathbb{R}} |\widehat{f}(\xi)|^2 (1+|\xi|^2)^{ au} d\xi < \infty,$$

For $m \in \mathbb{N} \cup \{0\}$, $f \in H^m(\mathbb{R})$ if $f, f', \ldots, f^{(m)} \in L_2(\mathbb{R})$. • For $\phi = (\phi_1, \dots, \phi_r)^T$ and $\psi = (\psi_1, \dots, \psi_r)^T$, we define

 $\mathsf{AS}_{0}^{\tau}(\phi;\psi) = \{\phi(\cdot-k) : k \in \mathbb{Z}\} \cup \{2^{j(\frac{1}{2}-\tau)}\psi(2^{j}\cdot-k) : k \in \mathbb{Z}\}_{i=0}^{\infty}.$

• $\{\phi; \psi\}$ is a Riesz wavelet in the Sobolev space $H^{\tau}(\mathbb{R})$ if $AS_0^{\tau}(\phi;\psi)$ is Riesz basis for $H^{\tau}(\mathbb{R})$: the linear span of $AS_0^{\tau}(\phi;\psi)$ is dense in $H^{\tau}(\mathbb{R})$ and there exist $C_1, C_2 > 0$ such that

$$C_1 \sum_{h \in \mathsf{AS}_0^{\tau}(\phi;\psi)} |c_h|^2 \leqslant \Big\| \sum_{h \in \mathsf{AS}_0^{\tau}(\phi;\psi)} c_h h \Big\|_{H^{\tau}(\mathbb{R})} \leqslant C_2 \sum_{h \in \mathsf{AS}_0^{\tau}(\phi;\psi)} |c_h|^2$$

for all finitely supported sequences $\{c_h\}_{h \in AS_h^{\tau}(\phi;\psi)}$.

Derivative-Orthogonal Riesz Wavelets

- Let $m \in \mathbb{N} \cup \{0\}$ be a nonnegative integer.
- Let $\phi = (\phi_1, \dots, \phi_r)^{\mathsf{T}}$ and $\psi = (\psi_1, \dots, \psi_r)^{\mathsf{T}}$ in $H^m(\mathbb{R})$.
- We say that {φ; ψ} is an *m*th-order derivative-orthogonal Riesz wavelet in the Sobolev space H^m(ℝ) if
 - $AS_0^m(\phi; \psi)$ is a Riesz wavelet in $H^m(\mathbb{R})$;
 - 2 The mth-order derivatives are orthogonal between levels:

$$\langle \psi^{(m)}, \phi^{(m)}(\cdot - k) \rangle = 0, \qquad \forall \, k \in \mathbb{Z},$$

and

$$\langle \psi^{(m)}(2^j \cdot -k), \psi^{(m)}(2^{j'} \cdot -k') \rangle = 0,$$

for all $k, k' \in \mathbb{Z}, j, j' \in \mathbb{N}_0$ with $j \neq j'$.

For m = 0, they are called semi-orthogonal (or pre-) wavelets and well studied, e.g., [Chui-Wang, Jia-Micchelli, Shen-Riemanschneider] through a simple orthogonalization procedure.

.

Why Derivative-Orthogonal Riesz Wavelets?

• Differential equation with homogeneous boundary condition:

$$u^{(2m)}(x) + \alpha u(x) = f(x), \quad x \in I = [0, 1].$$

• The Galerkin formulation of a weak solution $u \in H^m(I)$ is

$$(-1)^m \langle u^{(m)}, v^{(m)} \rangle + \alpha \langle u, v \rangle = \langle f, v \rangle, \quad v \in H^m(I).$$

• Let S be a Riesz wavelet basis of $H^m(I)$ derived from mth-order derivative-orthogonal wavelet $\{\phi; \psi\}$. Then $u = \sum_{h \in S} c_h h$ and

$$\sum_{h\in S} \left((-1)^m A_{h,g} + \alpha B_{h,g} \right) c_h = \langle f,g \rangle, \qquad g \in S$$

with $A = (\langle h^{(m)}, g^{(m)} \rangle)_{h,g \in S}$ and $B = (\langle h, g \rangle)_{h,g \in S}$.

(1) The matrix A is sparse and is almost diagonal.

(2) The condition number of A dominates that of $(-1)^m A + \alpha B$ and is often very small (can be the optimal condition number 1)

Stable Integer Shifts of Vector Functions

- Let $\phi = (\phi_1, \dots, \phi_r)^T$ in $H^m(\mathbb{R})$ be compactly supported.
- $\bullet\,$ We say that the integer shifts of ϕ are stable if

$${
m span}\{\widehat{\phi}(\xi+2\pi k) \ : \ k\in\mathbb{Z}\}=\mathbb{C}^r, \qquad orall \xi\in\mathbb{R}.$$

• For $f = (f_1, \ldots, f_r)^{\mathsf{T}}$ and $g = (g_1, \ldots, g_r)^{\mathsf{T}}$, bracket product is

$$[\widehat{f},\widehat{g}](\xi) := \sum_{k\in\mathbb{Z}} \widehat{f}(\xi+2\pi k) \overline{\widehat{g}(\xi+2\pi k)}^{\mathsf{T}}, \quad \xi\in\mathbb{R}.$$

- The integer shifts of ϕ in $H^m(\mathbb{R})$ are stable $\iff [\widehat{\phi}, \widehat{\phi}](\xi) > 0$ for all $\xi \in \mathbb{R} \iff \{\phi(\cdot k) : k \in \mathbb{Z}\}$ is a Riesz sequence in $H^m(\mathbb{R})$.
- Smoothness of a function is measured by

$$\mathsf{sm}(\phi) := \mathsf{sup}\{ au \in \mathbb{R} \ : \ \phi \in H^{ au}(\mathbb{R})\}.$$

Semi-orthogonal (or Pre-) Wavelets

For m = 0, *m*th order derivative-orthogonal wavelets are called semi-orthogonal (or pre-) wavelets and well studied, e.g., [Chui-Wang,Jia-Micchelli,Shen-Riemanschneider] through

• $\phi \in L_2(\mathbb{R})$ has compact support and satisfies

$$\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi)$$

where $\widehat{a}(\xi) := \sum_{k \in \mathbb{Z}} a(k) e^{-ik\xi}$ is a 2π -periodic trigonometric polynomial and $\widehat{\phi}(\xi) := \int_{\mathbb{R}} \phi(x) e^{-ix\xi} dx$.

- Assume the integer shifts of ϕ are stable: $[\widehat{\phi}, \widehat{\phi}](\xi) > 0$.
- Define $\widehat{\psi}(2\xi) := e^{-i\xi} \overline{\widehat{a}(\xi+\pi)} [\widehat{\phi}, \widehat{\phi}](\xi+\pi) \widehat{\phi}(\xi).$
- Then $\{\phi;\psi\}$ is a semi-orthogonal wavelet in $L_2(\mathbb{R})$, that is, $\mathsf{AS}_0^0(\phi;\psi) = \{\phi(\cdot - k) : k \in \mathbb{Z}\} \cup \{2^{j/2}\psi(2^j \cdot - k) : k \in \mathbb{Z}\}_{j=0}^{\infty}$

is almost an orthonormal basis for $L_2(\mathbb{R})$, except orthogonality among the same scale level j.

Sum Rules of a Matrix-valued Filter

A filter a ∈ (l₀(Z))^{r×r} has order m sum rules if there exists a matching filter v ∈ (l₀(Z))^{1×r} such that v̂(0) ≠ 0 and v̂(2ξ)â(ξ) = v̂(ξ) + 𝔅(|ξ|^m), v̂(2ξ)â(ξ + π) = 𝔅(|ξ|^m), ξ → 0.

•
$$f(\xi) = g(\xi) + \mathscr{O}(|\xi|^m), \xi \to 0 \Leftrightarrow f^{(j)}(0) = g^{(j)}(0), 0 \leqslant j < m.$$

- sr(a) denotes the highest order of sum rules satisfied by a.
- For $\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi)$ with stable integer shifts, TFAE
 - The filter a has order m sum rules (i.e., $sr(a) \ge m$).
 - All the polynomials of degree < *m* are contained inside the shift-invariant space

$$\mathcal{S}_{j}(\phi) := \Big\{ \sum_{k \in \mathbb{Z}} v(k) \phi(2^{j} \cdot -k) \; : \; ext{all sequences } v ext{ on } \mathbb{Z} \Big\}$$

• The vector function ϕ has approximation order *m*:

$$\inf_{g\in S_j(\phi)\cap L_2(\mathbb{R})} \|f-g\|_{L_2(\mathbb{R})} \leqslant C2^{-jm} \|f\|_{H^m(\mathbb{R})}, \quad f\in H^m(\mathbb{R}).$$

Main Result: Existence

Theorem

Let $\phi = (\phi_1, \ldots, \phi_r)^T$ be a compactly supported refinable vector function in $H^m(\mathbb{R})$ with $m \in \mathbb{N}_0$ such that $\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi)$ for some $a \in (I_0(\mathbb{Z}))^{r \times r}$. Then there exists a finitely supported high-pass filter $b \in (I_0(\mathbb{Z}))^{r \times r}$ such that $\{\phi; \psi\}$ with

$$\widehat{\psi}(\xi) := \widehat{b}(\xi/2)\widehat{\phi}(\xi/2)$$

is an mth-order derivative-orthogonal Riesz wavelet in the Sobolev space $H^m(\mathbb{R}) \iff$

- **1** the integer shifts of ϕ are stable;
- 2 the filter a has at least order 2m sum rules (i.e., $sr(a) \ge 2m$).

Remark: The proof is quite complicated for r > 1 and m > 0.

Main Result: Construction

Theorem

Let $\phi = (\phi_1, \dots, \phi_r)^T$ be a compactly supported refinable vector function in $H^m(\mathbb{R})$ with $m \in \mathbb{N}_0$ such that $\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi)$ for some $a \in (l_0(\mathbb{Z}))^{r \times r}$. Suppose that the integer shifts of ϕ are stable. For any $b \in (l_0(\mathbb{Z}))^{r \times r}$, $\{\phi; \psi\}$ with $\widehat{\psi}(\xi) := \widehat{b}(\xi/2)\widehat{\phi}(\xi/2)$ is an mth-order derivative-orthogonal Riesz wavelet in $H^m(\mathbb{R})$ \iff

$$\begin{split} \widehat{b}(\xi)[\widehat{\phi^{(m)}},\widehat{\phi^{(m)}}](\xi)\overline{\widehat{a}(\xi)}^{\mathsf{T}} &+ \widehat{b}(\xi+\pi)[\widehat{\phi^{(m)}},\widehat{\phi^{(m)}}](\xi+\pi)\overline{\widehat{a}(\xi+\pi)}^{\mathsf{T}} = 0, \\ \det(\{\widehat{a};\widehat{b}\})(\xi) &:= \det\left(\begin{bmatrix}\widehat{a}(\xi) & \widehat{a}(\xi+\pi)\\ \widehat{b}(\xi) & \widehat{b}(\xi+\pi)\end{bmatrix}\right) \neq 0, \quad \forall \ \xi \in \mathbb{R}. \end{split}$$

Moreover, $AS_0^{\tau}(\phi; \psi)$ is a Riesz basis in the Sobolev space $H^{\tau}(\mathbb{R})$ for all τ in the nonempty open interval $(2m - sm(\phi), sm(\phi))$.

Construction for the Scalar Case r = 1

Theorem

Let $m \in \mathbb{N}_0$ and $a \in l_0(\mathbb{Z})$ such that $\widehat{a}(\xi) = 2^{-2m}(1 + e^{-i\xi})^{2m}\widetilde{a}(\xi)$ with $\check{a} \in l_0(\mathbb{Z})$ and $\widehat{a}(0) = 1$. Define $\widehat{\phi}(\xi) := \prod_{j=1}^{\infty} \widehat{a}(2^{-j}\xi)$ and $\widehat{\phi}(\xi) := \prod_{j=1}^{\infty} \widehat{a}(2^{-j}\xi)$ with $\widehat{a}(\xi) := 2^{-m}(1 + e^{-i\xi})^m \widetilde{a}(\xi)$. Suppose that $\phi \in H^m(\mathbb{R})$ and the integer shifts of ϕ are stable. Then for $b \in l_0(\mathbb{Z})$, $\{\phi; \psi\}$ with $\widehat{\psi}(\xi) := \widehat{b}(\xi/2)\widehat{\phi}(\xi/2)$ is an mth-order derivative-orthogonal Riesz wavelet in $H^m(\mathbb{R})$ \iff

$$\widehat{b}(\xi)=e^{i(m-1)\xi}\overline{\widetilde{ec{a}}(\xi+\pi)}[\widehat{\dot{\phi}},\widehat{\dot{\phi}}](\xi+\pi)\widehat{ heta}(2\xi)/\widehat{c}(2\xi),$$

where $\theta \in I_0(\mathbb{Z})$ satisfying $\widehat{\theta}(\xi) \neq 0 \ \forall \xi \in \mathbb{R}$ and $c \in I_0(\mathbb{Z})$ is

$$\widehat{c}(2\xi) := \gcd\left(\overline{\widetilde{a}(\xi)}[\widehat{\phi},\widehat{\phi}](\xi),\overline{\widetilde{a}(\xi+\pi)}[\widehat{\phi},\widehat{\phi}](\xi+\pi)\right).$$

Example of Refinable Functions: B-Splines

• For $n \in \mathbb{N}$, the B-spline function B_n of order n is defined to be

$$B_1 := \chi_{(0,1]}, \quad B_n := B_{n-1} * B_1 = \int_0^1 B_{n-1}(\cdot - t) dt.$$

- B_n = B_n(n ·) (symmetry), sm(B_n) = n 1/2 and B_n is a piecewise polynomial: B_n|_(k,k+1) ∈ P_{n-1} for all k ∈ Z.
 B_n = 2∑_{k∈Z} a(k)B_n(2 · -k), i.e., B_n(2ξ) = a(ξ)B_n(ξ) with a(ξ) := 2⁻ⁿ(1 + e^{-iξ})ⁿ with sr(a) = n.
- A compactly supported *m*th-order derivative-orthogonal Riesz wavelet {*B_n*; ψ} in *H^m*(ℝ) can be derived from *B_n* ⇐⇒

$$n \ge \max(m+1, 2m).$$

Example from B-Spline B_2 : m = 1

$$a = \left\{\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right\}_{[-1,1]}, \qquad b = \left\{\frac{1}{2}\right\}_{[1,1]}$$

sr(a) = 2 and $\phi = B_2(\cdot - 1)$ is the centered piecewise linear spline B_2 of order 2 satisfying $\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi)$. The wavelet function $\psi = \phi(2x)$. Then $\{\phi; \psi\}$ is a first-order derivative-orthogonal Riesz wavelet in $H^1(\mathbb{R})$, which is closely linked to finite element methods.

Example from B-Spline B_4 : m = 2

$$a = \left\{ \frac{1}{16}, \frac{1}{4}, \frac{3}{8}, \frac{1}{4}, \frac{1}{16} \right\}_{[-2,2]}, \quad b = \left\{ -\frac{1}{4}, 1, -\frac{1}{4} \right\}_{[0,2]}$$

sr(a) = 4 and $\phi = B_4(\cdot - 2)$ is the centered B-spline B_4 of order 4 satisfying $\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi)$. The wavelet function $\psi = \phi(2x) - \frac{1}{2}\phi(2x+1) - \frac{1}{2}\phi(2x-1)$. Then $\{\phi;\psi\}$ is a second-order derivative-orthogonal Riesz wavelet in $H^2(\mathbb{R})$.

Hermite Cubic Splines

The Hermite cubic splines are given by

$$\phi_1 = \begin{cases} (1-x)^2(1+2x), & x \in [0,1], \\ (1+x)^2(1-2x), & x \in [-1,0), \\ 0, & \text{otherwise}, \end{cases} \quad \phi_2 = \begin{cases} (1-x)^2x, & x \in [0,1], \\ (1+x)^2x, & x \in [-1,0), \\ 0, & \text{otherwise}. \end{cases}$$

Then $\phi = (\phi_1, \phi_2)^{\mathsf{T}}$ in $H^2(\mathbb{R})$ satisfies the refinement equation $\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi)$ with the filter $a \in (I_0(\mathbb{Z}))^{2 \times 2}$: $a = \left\{ \begin{bmatrix} \frac{1}{4} & \frac{3}{8} \\ -\frac{1}{16} & -\frac{1}{16} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}, \begin{bmatrix} \frac{1}{4} & -\frac{3}{8} \\ \frac{1}{16} & -\frac{1}{16} \end{bmatrix} \right\}_{[-1,1]}.$

The filter *a* has order 4 sum rules with sr(a) = 4 and ϕ has the Hermite interpolation property with $sm(\phi) = 5/2$:

 $\phi_1(k) = \delta(k), \quad \phi'_1(k) = 0, \quad \phi_2(k) = 0, \quad \phi'_2(k) = \delta(k), \quad \forall k \in \mathbb{Z},$ where $\delta(0) = 1$ and $\delta(k) = 0$ for $k \neq 0$.

Example from Hermite Cubic Splines: m = 1

$$b = \left\{ \begin{bmatrix} \frac{2}{21} & 1\\ \frac{1}{9} & 1 \end{bmatrix}, \begin{bmatrix} -\frac{4}{21} & 0\\ 0 & \frac{4}{3} \end{bmatrix}, \begin{bmatrix} \frac{2}{21} & -1\\ -\frac{1}{9} & 1 \end{bmatrix} \right\}_{[-1,1]}$$

Then $\{\phi; \psi\}$ with $\widehat{\psi}(\xi) := \widehat{b}(\xi/2)\widehat{\phi}(\xi/2)$ is a first-order derivative-orthogonal Riesz wavelet in $H^1(\mathbb{R})$, which is used in [Jia-Liu, Adv. Comput. Math., (2006)] for Sturm-Liouville equations.

Bin Han (University of Alberta) Wavelet Application to Numerical PDEs

Example from Hermite Cubic Splines: m = 2

$$b = \left\{ egin{bmatrix} rac{1}{2} & 0 \ 0 & rac{1}{2} \end{bmatrix}
ight\}_{[1,1]}$$

Then $\{\phi; \psi\}$ with $\psi = \phi(2\cdot)$ is a second-order derivative-orthogonal Riesz wavelet in $H^2(\mathbb{R})$.

Example from Hermite Quadratic Splines: m = 1

$$a = \left\{ \begin{bmatrix} \frac{1}{4} & \frac{1}{2} \\ -\frac{1}{16} & -\frac{1}{8} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}, \begin{bmatrix} \frac{1}{4} & -\frac{1}{2} \\ \frac{1}{16} & -\frac{1}{8} \end{bmatrix} \right\}_{[-1,1]}, \\ b = \left\{ \begin{bmatrix} \frac{1}{6} & 1 \\ \frac{1}{6} & 1 \end{bmatrix}, \begin{bmatrix} -\frac{1}{3} & 0 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} \frac{1}{6} & -1 \\ -\frac{1}{6} & 1 \end{bmatrix} \right\}_{[-1,1]}.$$

Then sr(a) = 3, sm(ϕ) = 2.5 and { ϕ ; ψ } is a first-order derivative-orthogonal Riesz wavelet in $H^1(\mathbb{R})$.

Example from Hermite Linear Splines: m = 1

$$\mathbf{a} = \left\{ \begin{bmatrix} \frac{1}{4} & \frac{3}{4} \\ -\frac{1}{12} & -\frac{1}{4} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}, \begin{bmatrix} \frac{1}{4} & -\frac{3}{4} \\ \frac{1}{12} & -\frac{1}{4} \end{bmatrix} \right\}_{[-1,1]}, \\ b = \left\{ \begin{bmatrix} \frac{1}{6} & 0 \\ 0 & \frac{\sqrt{2}}{4} \end{bmatrix} \right\}_{[0,0]}.$$

Then $\operatorname{sr}(a) = 2$, $\operatorname{sm}(\phi) = 1.5$ and $\{\phi; \psi\}$ is a first-order derivative-orthogonal Riesz wavelet in $H^1(\mathbb{R})$.

Wavelets on [0, 1] with Very Simple Structure

- Let n > 1 be the scale/resolution level.
- Let $g_1 = \phi^L(2 \cdot), g_2 = \phi_1(2 \cdot -1), g_3 = \phi_2(2 \cdot -1), g_4 = \phi^R(2 \cdot).$
- For $1 < j \leqslant n$, the boundary wavelets at level j are given by

$$g_{2^{j}+1} := 2^{j(1/2-m)} \psi^{L}(2^{j} \cdot), \quad g_{2^{j}+2^{j}} := 2^{j(1/2-m)} \psi^{R}(2^{j} \cdot -2^{j})$$

with only one boundary wavelet at each endpoint:

- $$\begin{split} \phi^{L} &\in \{\phi_{1}|_{[0,1]}, \phi_{2}|_{[0,1]}\}, \qquad \phi^{R} \in \{\phi_{1}(\cdot 1)|_{[0,1]}, \phi_{2}(\cdot 1)|_{[0,1]}\}, \\ \psi^{L} &\in \{\psi_{1}|_{[0,1]}, \psi_{2}|_{[0,1]}\}, \qquad \psi^{R} \in \{\psi_{1}(\cdot 1)|_{[0,1]}, \psi_{2}(\cdot 1)|_{[0,1]}\} \end{split}$$
- For $k = 1, \ldots, 2^j 1$, the inner wavelets at level j are

$$g_{2^{j}+(2k-1)} := 2^{j(1/2-m)}\psi_1(2^{j}\cdot -k), \quad g_{2^{j}+2k} := 2^{j(1/2-m)}\psi_2(2^{j}\cdot -k).$$
• Normalize $\{g_k\}_{k=1}^{2^{n+1}}$ so that $\|g_k^{(m)}\|_{L_2(\mathbb{R})} = 1$ for $k = 1, \dots, 2^{n+1}$.

Example: 1D Sturm-Liouville Equations

• Consider the following differential equation:

$$\begin{cases} -u'' + \alpha u = f \quad \text{on} \quad (0, 1), \\ u'(0) = 100(1 - e^{-1}), \quad u(1) = 200e^{-1} - 100, \end{cases}$$

where $\alpha = 5$ and $f(x) = -100e^{-x} - 500(1 - e^{-x}) - 500e^{-1}x$. The exact solution is $u(x) = 100(1 - e^{-x}) - 100e^{-1}x$.

• Its corresponding Galerkin formulation is

$$\sum_{k=1}^{2^{n+1}} A_{j,k} c_k = \langle g_j, f \rangle, \qquad j = 1, \ldots, 2^{n+1}$$

with the coefficient matrix $A_{j,k} := \langle g'_j, g'_k \rangle + \alpha \langle g_j, g_k \rangle$.

• According to boundary conditions, the boundary elements are

$$\begin{split} \phi^L &:= \phi_2|_{[0,1]}, \qquad \phi^R := \phi_1(\cdot - 1)|_{[0,1]}, \\ \psi^L &:= \psi_2|_{[0,1]}, \qquad \psi^R := \psi_1(\cdot - 1)|_{[0,1]}. \end{split}$$

Boundary Elements and Numerical Performance

Use the first-order derivative-orthogonal Riesz wavelet derived from Hermite quadratic splines with m = 1.

1.1561e-10

4.6097e-11

2.9346

57 / 1

Table: Size of linear system, conjugate gradient iterations, condition

3.2106

9

2048

16

Example: 1D Sturm-Liouville Equations

• Consider the following differential equation:

$$\begin{pmatrix} -u'' = f & \text{on } (0,1), \\ u'(0) = 0, & u(1) = 0, \end{pmatrix}$$

where $f(x) = x \ln(x+1)$. The exact solution is $u(x) = (5x^3 - 12x^2 - 12x + 19 - 24 \ln(2) - 6(x-2)(x+1)^2 \ln(x+1))/36$.

• Its corresponding Galerkin formulation is

$$\sum_{k=1}^{2^{n+1}} A_{j,k} c_k = \langle g_j, f \rangle, \qquad j = 1, \ldots, 2^{n+1}$$

with the coefficient matrix $A_{j,k} := \langle g'_j, g'_k \rangle$.

• According to boundary conditions, the boundary elements are

$$\begin{split} \phi^L &:= \phi_1|_{[0,1]}, \qquad \phi^R := \phi_2(\cdot - 1)|_{[0,1]}, \\ \psi^L &:= \psi_1|_{[0,1]}, \qquad \psi^R := \psi_2(\cdot - 1)|_{[0,1]}. \end{split}$$

Boundary Elements and Numerical Performance

Use the first-order derivative-orthogonal Riesz wavelet derived from Hermite linear splines with m = 1.

Table: Size of linear system, no iteration is needed, condition number κ of the matrices A (A is the identity matrix), errors, and convergence rates. Bin Han (University of Alberta) Wavelet Application to Numerical PDEs July 20/23/26, 2021 59/1

Example: 1D Biharmonic Equations

• Consider the following differential equation:

$$\begin{cases} u^{(4)} - \alpha u = f \quad \text{on} \quad (0, 1), \\ u(0) = 0, \quad u'(0) = 0, \quad u(1) = 0, \quad u'(1) = 0, \end{cases}$$

where $\alpha = 11$ and $f(x) = -4\pi^4 \cos(2\pi x) - \frac{11}{4}(1 - \cos(2x))$. The exact solution is $u(x) = \frac{1}{4}(1 - \cos(2\pi x))$.

• Its corresponding Galerkin formulation is

$$\sum_{k=1}^{2^{n+2}} B_{j,k} c_k = \langle g_j, f \rangle, \qquad j = 1, \dots, 2^{n+2} - 2$$

with the coefficient matrix $B_{j,k} := \langle g_j'', g_k'' \rangle + \alpha \langle g_j, g_k \rangle$.

• According to boundary conditions, the boundary elements are

$$\begin{split} \phi^{L} &:= \emptyset, \qquad \phi^{R} := \emptyset, \\ \psi^{L} &:= \emptyset, \qquad \psi^{R} := \emptyset. \end{split}$$

Boundary Elements and Numerical Performance

Use the second-order derivative-orthogonal Riesz wavelet derived from Hermite cubic splines with m = 2.

Level	Size	Iteration	κ	$\ e_n\ _{L_{\infty}}$	$\ e_n\ _{L_2}$	$\log_2 \frac{\ e_{n-1}\ _{L_2}}{\ e_n\ _{L_2}}$	$\ e_n\ _{H^1}$	$\log_2 \frac{\ e_{n-1}\ _{H_1}}{\ e_n\ _{H_1}}$
2	14	4	1.0225	2.2655e-04	1.1050e-04	_	3.0679e-03	_
3	30	4	1.0225	1.5147e-05	6.9610e-06	3.9886	3.8598e-04	2.9907
4	62	4	1.0225	9.6244e-07	4.3628e-07	3.9971	4.8325e-05	2.9977
5	126	4	1.0225	6.0411e-08	2.7653e-08	3.9993	6.0431e-06	2.9994
6	254	4	1.0225	3.9699e-09	2.1493e-09	4.0000	7.5554e-07	2.9999
7	510	4	1.0225	1.1049e-09	6.8832e-10	4.0650	9.4808e-08	3.0000

Table: Size of linear system, conjugate gradient iteration, condition number κ of the matrices *B*, errors, and convergence rates.

Example: 1D Biharmonic Equations

• Consider the following differential equation:

$$\begin{cases} u^{(4)} = f & \text{on } (0,1), \\ u(0) = 16, & u'(0) = -64, & u(1) = 0, & u'(1) = 0, \end{cases}$$

where $f(x) = 24(15x^2 - 50x + 41)$. The exact solution is $u(x) = (x - 2)^4(x - 1)^2$.

• Its corresponding Galerkin formulation is

$$\sum_{k=1}^{2^{n+2}} B_{j,k} c_k = \langle g_j, f \rangle - u(0) \chi_{\{2,3\}}(j) \langle g_j'', g_1'' \rangle - u'(0) \chi_{\{2,3\}}(j) \langle g_j'', g_4'' \rangle,$$

with the coefficient matrix $B_{j,k} := \langle g_j'', g_k'' \rangle$.

• According to boundary conditions, the boundary elements are

$$\begin{split} \phi^L &:= \phi_1|_{[0,1]}, & \phi^R &:= \phi_2|_{[0,1]}, \\ \psi^L &:= \emptyset, & \psi^R &:= \emptyset. \end{split}$$

Boundary Elements and Numerical Performance

Use the second-order derivative-orthogonal Riesz wavelet derived from Hermite cubic splines with m = 2.

Level	Size	κ	$\ e_n\ _{L_{\infty}}$	$\ e_n\ _{L_2}$	$\log_2 \frac{\ e_{n-1}\ _{L_2}}{\ e_n\ _{L_2}}$	$\ e_n\ _{H_1}$	$\log_2 \frac{\ e_{n-1}\ _{H^1}}{\ e_n\ _{H_1}}$
5	126	1	1.5129e-07	5.5402e-08		1.2283e-05	—
6	254	1	9.5006e-09	3.4413e-09	4.0089	1.5354e-06	3.0000
7	510	1	5.9521e-10	2.1642e-10	3.9910	1.9193e-07	3.0000
8	1022	1	3.7247e-11	1.3528e-11	3.9998	2.4004e-08	2.9992
9	2046	1	2.3306e-12	8.4696e-13	3.9975	3.1070e-09	2.9497

Table: Size of linear system, no iteration is needed, condition number κ of the matrices B (B is the identity matrix), errors, and convergence rates.

Bin Han (University of Alberta)

General Construction of Wavelets on [0, 1]

Theorem

Let $\Phi = \{\phi^1, \dots, \phi^r\}$, $\Psi = \{\psi^1, \dots, \psi^s\}$, and $\tilde{\Phi} = \{\tilde{\phi}^1, \dots, \tilde{\phi}^r\}$, $\tilde{\Psi} = {\tilde{\psi}^1, \dots, \tilde{\psi}^s}$ be sets of compactly supported functions in $L_2(\mathbb{R})$: $\phi^{\ell}(c^{\phi}_{\ell}-\cdot)=\epsilon^{\phi}_{\ell}\phi^{\ell},\quad \tilde{\phi}^{\ell}(c^{\phi}_{\ell}-\cdot)=\epsilon^{\phi}_{\ell}\tilde{\phi}^{\ell}\quad \text{with}\quad c^{\phi}_{\ell}\in\mathbb{Z}, \epsilon^{\phi}_{\ell}\in\{-1,1\},$ $\psi^{\ell}(c_{\ell}^{\psi}-\cdot)=\epsilon_{\ell}^{\psi}\psi^{\ell}, \ \tilde{\psi}^{\ell}(c_{\ell}^{\psi}-\cdot)=\epsilon_{\ell}^{\psi}\tilde{\psi}^{\ell} \quad \text{with} \quad c_{\ell}^{\psi}\in\mathbb{Z}, \epsilon_{\ell}^{\psi}\in\{-1,1\}.$ For $\epsilon \in \{-1,1\}$ and $c \in \mathbb{Z}$, define $\mathcal{I} := [\frac{c}{2}, \frac{c}{2} + 1]$. For $j \in \mathbb{N}_0$, $d^{\phi}_{i\,\ell} := |2^{j-1}c - 2^{-1}c^{\phi}_{\ell}|, \quad d^{\psi}_{i\,\ell} := |2^{j-1}c - 2^{-1}c^{\psi}_{\ell}|,$ $o^{\phi}_{i\,\ell} := \mathsf{odd}(2^j c - c^{\phi}_{\ell}), \qquad o^{\psi}_{i\,\ell} := \mathsf{odd}(2^j c - c^{\psi}_{\ell}),$

where odd(m) := 1 if m is odd and odd(m) := 0 if m is even. Let $\chi_{\mathcal{I}}$ denote the characteristic function of the interval \mathcal{I} .

General Construction of Wavelets on [0, 1]...

Theorem

For $j \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$, define Ψ_i^{ℓ} to be $\{F_{c,\epsilon}(\psi_{2^{j},k}^{\ell})\chi_{\mathcal{I}} : k = d_{j,\ell}^{\psi} + 1, \dots, d_{j,\ell}^{\psi} + 2^{j}\},\$ $o_{j,\ell}^{\psi} = 1,$ $\{F_{c,\epsilon}(\psi_{2^{j};k}^{\ell})\chi_{\mathcal{I}} : k = d_{j,\ell}^{\psi} + 1, \dots, d_{j,\ell}^{\psi} + 2^{j} - 1\},\$ $o_{i,\ell}^{\psi} = 0, \ \epsilon_{\ell}^{\psi} = -\epsilon,$ $\begin{cases} \{F_{c,\epsilon}(\psi_{2^{j};k}^{\ell})\chi_{\mathcal{I}} : k = d_{j,\ell}^{\psi} + 1, \dots, d_{j,\ell}^{\psi} + 2^{j} - 1\} \\ \cup \{\frac{1}{\sqrt{2}}F_{c,\epsilon}(\psi_{2^{j};d_{i,\ell}^{\psi}}^{\ell})\chi_{\mathcal{I}}, \frac{1}{\sqrt{2}}F_{c,\epsilon}(\psi_{2^{j};d_{i,\ell}^{\psi}}^{\ell} + 2^{j})\chi_{\mathcal{I}}\}, \quad o_{j,\ell}^{\psi} = 0, \ \epsilon_{\ell}^{\psi} = \epsilon, \end{cases}$ where $F_{c,\epsilon}(f) := \sum_{k \in \mathbb{Z}} (f(\cdot - 2k) + \epsilon f(c + 2k - \cdot))$, and define $\tilde{\Psi}_i^{\ell}$, $\Phi_{i}^{\ell}, \tilde{\Phi}_{i}^{\ell}$ similarly. For $J \in \mathbb{N}_{0}$, define $\mathscr{B}_J := (\cup_{\ell=1}^r \Phi_J^\ell) \cup \cup_{i=J}^\infty (\cup_{\ell=1}^s \Psi_i^\ell), \quad \tilde{\mathscr{B}}_J := (\cup_{\ell=1}^r \tilde{\Phi}_J^\ell) \cup \cup_{i=J}^\infty (\cup_{\ell=1}^s \tilde{\Psi}_i^\ell).$ If $(\{\tilde{\Phi}; \tilde{\Psi}\}, \{\Phi; \Psi\})$ is a biorthogonal wavelet in $L_2(\mathbb{R})$, then $(\mathscr{B}_J, \mathscr{B}_J)$ is a pair of biorthogonal bases for $L_2(\mathcal{I})$ for all $J \in \mathbb{N}_0$. Moreover, $\mathscr{B}_{\mathcal{J}}$ and $\tilde{\mathscr{B}}_{\mathcal{J}}$ are Riesz bases for $L_2(\mathcal{I})$.

Wavelets on [0, 1] with Simple Structure

Let ϕ , $\tilde{\phi}$, ψ , $\tilde{\psi}$ be compactly supported vector functions in $L_2(\mathbb{R})$ with symmetry and all the symmetry centers satisfy

$$c_1^\phi=\cdots=c_r^\phi=c_1^\psi=\cdots=c_s^\psi=0.$$

In addition we assume that

all the elements/entries in ϕ and ψ vanish outside [-1, 1]. Take c = 0. Since $d^{\phi}_{i\,\ell} = d^{\psi}_{i\,\ell} = o^{\phi}_{i\,\ell} = o^{\psi}_{i\,\ell} = 0$, Ψ^{ℓ}_{i} becomes $\begin{cases} \{\psi_{2^{j};k}^{\ell} : k = 1, \dots, 2^{j} - 1\}, & \epsilon_{\ell}^{\psi} = -\\ \{\psi_{2^{j}:k}^{\ell} : k = 1, \dots, 2^{j} - 1\} \cup \{\sqrt{2}\psi_{2^{j};0}^{\ell}\chi_{[0,1]}, \sqrt{2}\psi_{2^{j};2^{j}}^{\ell}\chi_{[0,1]}\}, & \epsilon_{\ell}^{\psi} = \epsilon. \end{cases}$ $\epsilon^{\psi}_{\ell} = -\epsilon,$ (i) If $\epsilon = -1$ and all entries in ϕ, ψ are continuous, then h(0) = h(1) = 0 for all $h \in \mathcal{B}_{I}$ (Dirichlet boundary condition). (ii) If $\epsilon = 1$ and all entries in ϕ, ψ are in $\mathscr{C}^1(\mathbb{R})$, then h'(0) = h'(1) = 0 for all $h \in \mathscr{B}_{I}$ (von Neumann boundary).

Tight Framelet from Hermite Linear Splines

A tight framelet $\{\phi; \psi\}$ is given by

$$\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi), \qquad \widehat{\psi}(2\xi) = \widehat{b}(\xi)\widehat{\phi}(\xi)$$

through a tight framelet filter bank $\{a; b\}$:

$$\begin{aligned} \mathbf{a} &= \left\{ \begin{bmatrix} \frac{1}{4} & \frac{\sqrt{7}}{14} \\ -\frac{\sqrt{7}}{8} & -\frac{1}{4} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}, \begin{bmatrix} \frac{1}{4} & -\frac{\sqrt{7}}{14} \\ \frac{\sqrt{7}}{8} & -\frac{1}{4} \end{bmatrix} \right\}_{[-1,1]}, \\ \mathbf{b} &= \left\{ \begin{bmatrix} \frac{1}{4} & \frac{\sqrt{7}}{14} \\ \frac{1}{8} & \frac{\sqrt{7}}{28} \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -\frac{1}{2} & 0 \\ 0 & \frac{\sqrt{7}}{4} \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} \frac{1}{4} & -\frac{\sqrt{7}}{14} \\ -\frac{1}{8} & \frac{\sqrt{7}}{28} \\ 0 & \frac{\sqrt{42}}{14} \end{bmatrix} \right\}_{[-1,1]}. \end{aligned}$$

Then $\{\phi; \psi\}$ generates a tight frame in $L_2(\mathbb{R})$ and has symmetry property.

Tight Framelet in $L_2([0, 1])$ from Linear Splines

Tight Framelet from Hermite Quadratic Splines

A tight framelet $\{\phi; \psi\}$ is given by

$$\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi), \qquad \widehat{\psi}(2\xi) = \widehat{b}(\xi)\widehat{\phi}(\xi)$$

through a tight framelet filter bank $\{a; b\}$:

$$\begin{aligned} \mathbf{a} &= \left\{ \begin{bmatrix} \frac{1}{4} & \frac{\sqrt{7}}{28} \\ -\frac{\sqrt{7}}{8} & -\frac{1}{8} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}, \begin{bmatrix} \frac{1}{4} & -\frac{\sqrt{7}}{28} \\ \frac{\sqrt{7}}{8} & -\frac{1}{8} \end{bmatrix} \right\}_{[-1,1]}, \\ \mathbf{b} &= \left\{ \begin{bmatrix} \frac{1}{4} & \frac{\sqrt{7}}{28} \\ \frac{1}{8} & \frac{\sqrt{7}}{56} \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -\frac{1}{2} & 0 \\ 0 & \frac{\sqrt{7}}{4} \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} \frac{1}{4} & -\frac{\sqrt{7}}{28} \\ -\frac{1}{8} & \frac{\sqrt{7}}{56} \\ 0 & \frac{\sqrt{21}}{7} \end{bmatrix} \right\}_{[-1,1]}. \end{aligned}$$

Then $\{\phi; \psi\}$ generates a tight frame in $L_2(\mathbb{R})$ and has symmetry property.

Tight Framelet in $L_2([0, 1])$ from Quadratic Splines

Riesz Wavelet from Hermite Cubic Splines

A Riesz wavelet $\{\phi; \psi\}$ is given by

$$\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi), \qquad \widehat{\psi}(2\xi) = \widehat{b}(\xi)\widehat{\phi}(\xi)$$

through a filter bank $\{a; b\}$ (part of a biorthogonal wavelet filter bank ($\{a; b\}, \{\tilde{a}; \tilde{b}\}$):

$$\mathbf{a} = \left\{ \begin{bmatrix} \frac{1}{4} & \frac{3}{8} \\ -\frac{1}{16} & -\frac{1}{16} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}, \begin{bmatrix} \frac{1}{4} & -\frac{3}{8} \\ \frac{1}{16} & -\frac{1}{16} \end{bmatrix} \right\}_{[-1,1]},$$
$$\mathbf{b} = \left\{ \begin{bmatrix} -\frac{1}{4} & -\frac{23}{24} \\ \frac{1}{16} & \frac{91}{176} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{37}{44} \end{bmatrix}, \begin{bmatrix} -\frac{1}{4} & \frac{23}{24} \\ -\frac{1}{16} & \frac{91}{176} \end{bmatrix} \right\}_{[-1,1]},$$

Then $\{\phi; \psi\}$ generates a Riesz wavelet in $L_2(\mathbb{R})$ and has symmetry property.

Riesz Wavelet in $L_2([0, 1])$ from Cubic Splines

Riesz Wavelet from B_2 Spline

A Riesz wavelet $\{\phi; \psi\}$ is given by

$$\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi), \qquad \widehat{\psi}(2\xi) = \widehat{b}(\xi)\widehat{\phi}(\xi)$$

through a filter bank $\{a; b\}$ (part of a biorthogonal wavelet filter bank ($\{a; b\}, \{\tilde{a}; \tilde{b}\}$):

$$a = \left\{ \begin{bmatrix} 0 & \frac{1}{4} \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & \frac{1}{4} \\ 0 & \frac{1}{4} \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{4} \end{bmatrix} \right\}_{[-1,1]}, \\ b = \left\{ \begin{bmatrix} \frac{1}{4} & -\frac{1}{2} \\ -\frac{1}{3} & \frac{1}{2} \end{bmatrix}, \begin{bmatrix} 0 & \frac{1}{2} \\ -\frac{1}{3} & \frac{1}{2} \end{bmatrix}, \begin{bmatrix} -\frac{1}{4} & 0 \\ -\frac{1}{3} & 0 \end{bmatrix} \right\}_{[-1,1]},$$

Then $\{\phi; \psi\}$ generates a Riesz wavelet in $L_2(\mathbb{R})$ and has symmetry property.

Riesz Wavelet in $L_2([0, 1])$ from B_2 Spline

74/1

.

Orthogonal Multiwavelet

An orthogonal wavelet $\{\phi; \psi\}$ (Gernimo-Hardin-Massopust) is given by

$$\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi), \qquad \widehat{\psi}(2\xi) = \widehat{b}(\xi)\widehat{\phi}(\xi)$$

through a filter bank $\{a; b\}$ (part of a biorthogonal wavelet filter bank ($\{a; b\}, \{\tilde{a}; \tilde{b}\}$):

$$a = \left\{ \begin{bmatrix} \frac{3}{5} & \frac{4\sqrt{2}}{5} \\ -\frac{\sqrt{2}}{20} & -\frac{3}{10} \end{bmatrix}, \begin{bmatrix} \frac{3}{5} & 0 \\ \frac{9\sqrt{2}}{20} & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ \frac{9\sqrt{2}}{20} & -\frac{3}{10} \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -\frac{\sqrt{2}}{20} & 0 \end{bmatrix} \right\}_{[0,3]},$$

$$b = \left\{ \begin{bmatrix} -\frac{\sqrt{2}}{20} & -\frac{3}{10} \\ \frac{1}{10} & \frac{3\sqrt{2}}{10} \end{bmatrix}, \begin{bmatrix} \frac{9\sqrt{2}}{20} & -1 \\ -\frac{9}{10} & 0 \end{bmatrix}, \begin{bmatrix} \frac{9\sqrt{2}}{20} & -\frac{3}{10} \\ \frac{9}{10} & -\frac{3\sqrt{2}}{10} \end{bmatrix}, \begin{bmatrix} -\frac{\sqrt{2}}{20} & 0 \\ -\frac{1}{10} & 0 \end{bmatrix} \right\}_{[0,3]}$$

Then $\{\phi; \psi\}$ generates an orthogonal wavelet in $L_2(\mathbb{R})$ and has symmetry property.

75/1

Orthogonal Multiwavelet in $L_2([0, 1])$

Bin Han (University of Alberta)

Wavelet Application to Numerical PDEs

July 20/23/26, 2021

76/1

.

Orthogonal Multiwavelet

An orthogonal wavelet $\{\phi; \psi\}$ is given by

$$\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi), \qquad \widehat{\psi}(2\xi) = \widehat{b}(\xi)\widehat{\phi}(\xi)$$

through a filter bank $\{a; b\}$ (part of a biorthogonal wavelet filter bank ($\{a; b\}, \{\tilde{a}; \tilde{b}\}$):

$$\begin{aligned} \mathbf{a} &= \left\{ \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ \frac{-\sqrt{7}}{8} & \frac{-\sqrt{7}}{8} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & \mathbf{0} \\ \mathbf{0} & \frac{1}{4} \end{bmatrix}, \begin{bmatrix} \frac{1}{4} & -\frac{1}{4} \\ \frac{\sqrt{7}}{8} & -\frac{\sqrt{7}}{8} \end{bmatrix} \right\}_{[-1,1]}, \\ \mathbf{b} &= \left\{ \begin{bmatrix} -\frac{1}{4} & -\frac{1}{4} \\ \frac{1}{8} & \frac{1}{8} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & \mathbf{0} \\ \mathbf{0} & \frac{\sqrt{7}}{4} \end{bmatrix}, \begin{bmatrix} -\frac{1}{4} & \frac{1}{4} \\ -\frac{1}{8} & \frac{1}{8} \end{bmatrix} \right\}_{[-1,1]}. \end{aligned}$$

Then $\{\phi; \psi\}$ generates an orthogonal wavelet in $L_2(\mathbb{R})$ and has symmetry property.

Orthogonal Multiwavelet in $L_2([0, 1])$

78/1

-

Summary

- Riesz wavelets with short support and high vanishing moments are often used in wavelet application to numerical PDEs.
- To have short support and high vanishing moments, people often adopt Riesz multiwavelets derived from biorthogonal multiwavelets using matrix-valued filter banks.
- Wavelets on the real line have to be adapted into bounded intervals with prescribed boundary conditions.
- Then either Galerkin scheme or collocation method is used by using wavelet bases.
- Advantages of wavelet applications to PDEs:
 - Uniformly bounded condition numbers.
 - Sparse coefficient matrices for efficient computing.
 - Adaptive wavelet numerical method can handle singularities in solutions of PDEs.
- Shortcomings: Not that easy to design wavelets with prescribed boundary conditions for general domains.