Wavelet Application to Numerical PDEs

Bin Han

Department of Mathematical and Statistical Sciences University of Alberta, Edmonton, Canada

Present at 2021 International Undergraduate Summer Enrichment Program at UofA

July 12-August 13, 2021

Outline of Mini-course Talks

- Wavelet theory in the function setting.
- Multiresolution analysis.
- Riesz and biorthogonal wavelets in $L_2(\mathbb{R})$.
- Basics on Sobolev spaces.
- Basics on boundary value problems in PDEs.
- Wavelet applications to numerical PDEs.

Declaration: Some figures and graphs in this talk are from the book [Bin Han, Framelets and Wavelets: Algorithms, Analysis and Applications, Birkhäuser/Springer, 2017] and various other sources from Internet, or from published papers, or produced by matlab, maple, or C programming. [Details and sources of all graphs can be provided upon request of the audience.]

What Is a Wavelet in the Function Setting?

- Let $\phi = (\phi_1, \dots, \phi_r)^\mathsf{T}$ and $\psi = (\psi_1, \dots, \psi_s)^\mathsf{T}$ in $L_2(\mathbb{R})$.
- A system is derived from ϕ, ψ via dilates and integer shifts:

$$AS(\phi; \psi) := \{ \phi(\cdot - k) : k \in \mathbb{Z} \} \cup \{ \psi_{j;k} := 2^{j/2} \psi(2^{j} \cdot - k) : j \in \mathbb{N} \cup \{0\}, k \in \mathbb{Z} \}.$$

- $\{\phi; \psi\}$ is called an orthogonal wavelet in $L_2(\mathbb{R})$ if $\mathsf{AS}(\phi; \psi)$ is an orthonormal basis of $L_2(\mathbb{R})$.
- Wavelet representation:

$$f = \sum_{k \in \mathbb{Z}} \langle f, \phi(\cdot - k) \rangle \phi(\cdot - k) + \sum_{j=0}^{\infty} \sum_{k \in \mathbb{Z}} \langle f, \psi_{j;k} \rangle \psi_{j;k}, \quad f \in L_2(\mathbb{R}),$$

where $\langle f, g \rangle := \int_{\mathbb{R}} f(x) \overline{g(x)}^{\mathsf{T}} dx$ is the inner product.

• For r=1, $\{\phi;\psi\}$ is called a scalar wavelet. For r>1 (i.e., ϕ is a vector function), $\{\phi;\psi\}$ is called a multiwavelet.

Dilates and Shifts of Affine Systems

Multiresolution Analysis

Definition

A sequence $\{\mathcal{V}_j\}_{j\in\mathbb{Z}}$ of closed subspaces in $L_2(\mathbb{R})$ forms a (wavelet) multiresolution analysis (MRA) of $L_2(\mathbb{R})$ if

- ② $\overline{\cup_{j\in\mathbb{Z}}\mathscr{V}_j}=L_2(\mathbb{R})$ (that is, $\cup_{j\in\mathbb{Z}}\mathscr{V}_j$ is dense in $L_2(\mathbb{R})$) and $\cap_{j\in\mathbb{Z}}\mathscr{V}_j=\{0\}$;
- there exists a set Φ of functions in $L_2(\mathbb{R})$ such that $\{\phi(\cdot k) : k \in \mathbb{Z}, \phi \in \Phi\}$ is a Riesz basis for \mathscr{V}_0 .

Note that the set Φ of functions in item (3) completely determines a multiresolution analysis by

$$\mathscr{V}_j = \mathtt{S}_{2^j}(\Phi|L_2(\mathbb{R})) := \overline{\mathsf{span}\{\phi(2^j \cdot -k) \ : \ k \in \mathbb{Z}, \phi \in \Phi\}}^{L_2(\mathbb{R})}.$$

For scalar wavelets, Φ is a singleton and $\Phi = \phi$.

MRA of Orthogonal (Multi)Wavelets

- Let $\phi = (\phi^1, \dots, \phi^r)^\mathsf{T}$ and $\psi = (\psi^1, \dots, \psi^s)^\mathsf{T}$ in $L_2(\mathbb{R})$.
- $\{\phi; \psi\}$ is called an orthogonal wavelet if $\mathsf{AS}(\phi; \psi)$ is an orthonormal basis of $L_2(\mathbb{R})$, where as

$$\mathsf{AS}(\phi;\psi) := \{ \phi^{\ell}(\cdot - k) : k \in \mathbb{Z}, \ell = 1, \dots, r \}$$

$$\cup \{ \psi^{\ell}_{2^{j};k} := 2^{j/2} \psi^{\ell}(2^{j} \cdot - k) : j \geqslant 0, k \in \mathbb{Z}, \ell = 1, \dots, s \}.$$

- Define $\mathscr{V}_j := \mathbb{S}_{2^j}(\{\phi^1,\ldots,\phi^r\}|L_2(\mathbb{R}))$ and $\mathscr{W}_j := \mathbb{S}_{2^j}(\{\psi^1,\ldots,\psi^s\}|L_2(\mathbb{R}))$ for $j \in \mathbb{Z}$.
- Then we have the space decomposition of $L_2(\mathbb{R})$:

$$\mathscr{V}_{J+1} = \mathscr{V}_{J} \oplus \mathscr{W}_{J} \quad \text{and} \quad L_{2}(\mathbb{R}) = \mathscr{V}_{J} \oplus_{j=J}^{\infty} \mathscr{W}_{j} = \oplus_{j \in \mathbb{Z}} \mathscr{W}_{j}, \ orall \ J \in \mathbb{Z},$$

where \oplus means the orthogonal sum of closed subspaces in $L_2(\mathbb{R})$.

Vanishing Moments and Sparsity

- A function ψ has m vanishing moments if $\widehat{\psi}(\xi) = \mathscr{O}(|\xi|^m)$ as $\xi \to 0$, i.e., $\widehat{\psi}(0) = \widehat{\psi}'(0) = \cdots = \widehat{\psi}^{(m-1)}(0) = 0$.
- If ψ has decay, then the above is equivalent to $\int_{\mathbb{R}} \psi(x) x^j dx = 0$ for all $j = 0, \ldots, m-1$.
- If $\widehat{\psi}(\xi) := \widehat{b}(\xi/2)\widehat{\phi}(\xi/2)$ and $\widehat{\phi}(0) \neq 0$, then ψ has m vanishing moments if and only if the filter b has m vanishing moments: $\widehat{b}(\xi) = \mathscr{O}(|\xi|^m)$ as $\xi \to 0$.
- Let $\{\phi; \psi\}$ be an orthogonal wavelet in $L_2(\mathbb{R})$. Then every function $f \in L_2(\mathbb{R})$ can be represented as

$$f = \sum_{k \in \mathbb{Z}} \langle f, \phi(\cdot - k) \rangle \phi(\cdot - k) + \sum_{j=0}^{\infty} \sum_{k \in \mathbb{Z}} \langle f, \psi_{2^{j};k} \rangle \psi_{2^{j};k}.$$

• If $f \approx p$ on the support of $\psi_{2i;k}$ and $\deg(p) < m$, then ψ has m vanishing moments implies $\langle f, \psi_{2i;k} \rangle \approx 0$.

Fast Wavelet Transform in Function Setting

Let $\{\phi; \psi\}$ be an orthogonal wavelet in $L_2(\mathbb{R})$ with an orthogonal wavelet filter bank {a; b} such that

$$\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi), \qquad \widehat{\psi}(2\xi) = \widehat{b}(\xi)\widehat{\phi}(\xi).$$

Then every function $f \in L_2(\mathbb{R})$ can be represented as

$$f = \sum_{k \in \mathbb{Z}} \langle f, \phi_{2^{J};k} \rangle \phi_{2^{J};k} + \sum_{j=J}^{\infty} \sum_{k \in \mathbb{Z}} \langle f, \psi_{2^{j};k} \rangle \psi_{2^{j};k}.$$

Choose *j* large so that

$$fpprox f_j:=\sum_{k\in\mathbb{Z}} v^j(k)\phi_{2^j;k} \quad ext{with} \quad v^j(k):=\langle f,\phi_{2^j;k}
angle.$$

On the other hand, we also have

$$f_j=f_{j-1}+\sum_{k\in\mathbb{Z}}w^{j-1}(k)
angle\psi_{2^{j-1};k}\quad ext{with}\quad w^{j-1}(k):=\langle f,\psi_{2^{j-1};k}
angle.$$

Fast Wavelet Transform in Function Setting...

Then the coefficients v^{j-1} , w^{j-1} can be computed from v^j as follows:

$$v^{j-1}=rac{\sqrt{2}}{2}\mathcal{T}_{a}v^{j},\quad w^{j-1}=rac{\sqrt{2}}{2}\mathcal{T}_{b}v^{j},$$

which is exactly the same discrete wavelet decomposition in the discrete setting.

Conversely, we can obtained v^j from v^{j-1} and w^{j-1} by

$$v^j = \frac{\sqrt{2}}{2} \mathcal{S}_a v^{j-1} + \frac{\sqrt{2}}{2} \mathcal{S}_b w^{j-1},$$

which is exactly the same discrete wavelet reconstruction.

Explanation

Note $\widehat{\psi}(2\xi) = \widehat{b}(\xi)\widehat{\phi}(\xi)$ is equivalent to

$$\psi = 2\sum_{n\in\mathbb{Z}}b(n)\phi(2\cdot -n).$$

Then

$$\psi_{2^{j-1};k} = 2^{(j-1)/2} \psi(2^{j-1} \cdot -k) = 2^{(j+1)/2} \sum_{n \in \mathbb{Z}} b(n) \phi(2^{j} \cdot -2k - n)$$
$$= \sqrt{2} \sum_{n \in \mathbb{Z}} b(n) \phi_{2^{j};2k+n}.$$

Therefore,

$$w^{j-1}(k) = \langle f, \psi_{2^{j-1};k} \rangle = \sqrt{2} \sum_{n \in \mathbb{Z}} b(n) \langle f, \phi_{2^{j};2k+n} \rangle$$
$$= \sqrt{2} \sum_{n \in \mathbb{Z}} \overline{b(n)} v^{j} (2k+n) = \frac{\sqrt{2}}{2} [\mathcal{T}_{b} v^{j}](k).$$

Explanation...

Recall

$$\psi_{2^{j-1};k}=\sqrt{2}\sum_{n\in\mathbb{Z}}b(n)\phi_{2^j;2k+n}.$$

Conversely,

$$\begin{split} \sum_{k \in \mathbb{Z}} w^{j-1}(k) \psi_{2^{j-1};k} &= \sum_{k \in \mathbb{Z}} \sqrt{2} \sum_{n \in \mathbb{Z}} w^{j-1}(k) b(n) \phi_{2^{j};2k+n} \\ &= \sqrt{2} \sum_{k \in \mathbb{Z}} \sum_{n' \in \mathbb{Z}} w^{j-1}(k) b(2k-n') \phi_{2^{j};n'} \\ &= \sum_{n' \in \mathbb{Z}} \sqrt{2} \sum_{k \in \mathbb{Z}} b(2k'-n) w^{j-1}(k) \\ &= \sum_{n' \in \mathbb{Z}} \frac{\sqrt{2}}{2} [\mathcal{S}_{b} w^{j-1}](n') \end{split}$$

Explanation...

Hence,

$$\begin{split} \sum_{k \in \mathbb{Z}} v^{j}(k) \phi_{2^{j};k} &= \sum_{k \in \mathbb{Z}} v^{j-1}(k) \phi_{2^{j-1};k} + \sum_{k \in \mathbb{Z}} w^{j-1}(k) \psi_{2^{j-1};k} \\ &= \sum_{n' \in \mathbb{Z}} \left(\frac{\sqrt{2}}{2} [\mathcal{S}_{a} v^{j-1}](n') + \frac{\sqrt{2}}{2} [\mathcal{S}_{b} w^{j-1}](n') \right) \phi_{2^{j};n'} \\ &= \sum_{k \in \mathbb{Z}} \left(\frac{\sqrt{2}}{2} [\mathcal{S}_{a} v^{j-1}](k) + \frac{\sqrt{2}}{2} [\mathcal{S}_{b} w^{j-1}](k) \right) \phi_{2^{j};k}. \end{split}$$

Since $\{\phi(\cdot - k)\}_{k \in \mathbb{Z}}$ is an orthonormal system, we must have

$$v^{j}(k) = rac{\sqrt{2}}{2} [\mathcal{S}_{a} v^{j-1}](k) + rac{\sqrt{2}}{2} [\mathcal{S}_{b} w^{j-1}](k).$$

Construction of Orthogonal Scalar Wavelets

Theorem

Let $a, b \in I_0(\mathbb{Z})$ with $\widehat{a}(0) = 1$. Define

$$\widehat{\phi}(\xi) := \prod_{j=1}^{\infty} \widehat{a}(2^{-j}\xi), \qquad \widehat{\psi}(\xi) := \widehat{b}(\xi/2)\widehat{\phi}(\xi/2).$$

Then $\phi, \psi \in L_2(\mathbb{R})$ and $\{\phi; \psi\}$ is an orthogonal wavelet in $L_2(\mathbb{R})$ if and only if

- $[\widehat{\phi}, \widehat{\phi}] = 1$, i.e., $\{\phi(\cdot k)\}_{k \in \mathbb{Z}}$ is an orthonormal system.
- {a; b} is an orthogonal wavelet filter bank:

$$\begin{bmatrix} \widehat{a}(\xi) & \widehat{b}(\xi) \\ \widehat{a}(\xi+\pi) & \widehat{b}(\xi+\pi) \end{bmatrix} \overline{\begin{bmatrix} \widehat{a}(\xi) & \widehat{b}(\xi) \\ \widehat{a}(\xi+\pi) & \widehat{b}(\xi+\pi) \end{bmatrix}}^{\mathsf{I}} = I_2.$$

Orthogonal Wavelet Filter Bank

Proposition

Let $a, b \in I_0(\mathbb{Z})$. Then $\{a; b\}$ is an orthogonal wavelet filter bank:

$$\begin{bmatrix} \widehat{a}(\xi) & \widehat{b}(\xi) \\ \widehat{a}(\xi+\pi) & \widehat{b}(\xi+\pi) \end{bmatrix} \begin{bmatrix} \widehat{a}(\xi) & \widehat{b}(\xi) \\ \widehat{a}(\xi+\pi) & \widehat{b}(\xi+\pi) \end{bmatrix}^* = I_2$$

if and only if a is an orthogonal low-pass filter:

$$|\widehat{a}(\xi)|^2 + |\widehat{a}(\xi + \pi)|^2 = 1$$

and there exist $c \in \mathbb{T}$ and $n \in \mathbb{Z}$ such that

$$\widehat{b}(\xi) = ce^{i(2n-1)\xi}\overline{\widehat{a}(\xi+\pi)}.$$

For
$$c=1$$
 and $n=0$, $\widehat{b}(\xi)=\mathrm{e}^{-i\xi}\overline{\widehat{a}(\xi+\pi)}$.

Daubechies Orthogonal Wavelets

Define interpolatory filter $\widehat{a_{2m}^I}(\xi) := \cos^{2m}(\xi/2) P_{m,m}(\sin^2(\xi/2))$ with $P_{m,m}(x) := \sum_{j=0}^{m-1} \binom{m+j-1}{j} x^j$. Since $\widehat{a_{2m}^I}(\xi) \geqslant 0$, by Fejér-Riesz lemma, there exists $a_m^D \in I_0(\mathbb{Z})$ such that $\widehat{a_m^D}(0) = 1$.

$$|\widehat{a_{m}^{D}}(\xi)|^{2} = \widehat{a_{2m}^{I}}(\xi) := \widehat{a_{2m}^{I}}(\xi) = \cos^{2m}(\xi/2) P_{m,m}(\sin^{2}(\xi/2)).$$

Define ϕ through $\widehat{\phi}(\xi):=\prod_{j=1}^{\infty}\widehat{a_m^D}(2^{-j}\xi)$. Then $[\widehat{\phi},\widehat{\phi}]=1$ and $\{a_m^D;b_m^D\}$ is an orthogonal wavelet filter bank with

$$\widehat{b_m^D}(\xi) := e^{-i\xi} \overline{\widehat{a_m^D}(\xi + \pi)}, \quad \widehat{\psi}(\xi) := \widehat{b_m^D}(\xi/2) \widehat{\phi}(\xi/2).$$

Then $\{\phi;\psi\}$ is a compactly supported orthogonal wavelet such that the low-pass filter a_m^D has order m sum rules and the high-pass filter b_m^D has m vanishing moments, called the Daubechies orthogonal wavelet of order m.

Daubechies Orthogonal Filters

$$\begin{split} &a_1^D = \{\frac{1}{2},\frac{1}{2}\}_{[0,1]},\\ &a_2^D = \{\frac{1+\sqrt{3}}{8},\frac{3+\sqrt{3}}{8},\frac{3-\sqrt{3}}{8},\frac{1-\sqrt{3}}{8}\}_{[-1,2]}\\ &a_3^D = \{\frac{1+\sqrt{10}+\sqrt{5+2\sqrt{10}}}{32},\frac{5+\sqrt{10}+3\sqrt{5+2\sqrt{10}}}{32},\frac{5-\sqrt{10}+\sqrt{5+2\sqrt{10}}}{16},\\ &\qquad \qquad \frac{5-\sqrt{10}-\sqrt{5+2\sqrt{10}}}{16},\frac{5+\sqrt{10}-3\sqrt{5+2\sqrt{10}}}{32},\frac{1+\sqrt{10}-\sqrt{5+2\sqrt{10}}}{32}\}_{[-2,3]},\\ &a_4^D = \{-0.0535744507091,-0.0209554825625,0.351869534328,\\ &\qquad \qquad \underline{0.568329121704},0.210617267102,-0.0701588120893,\\ &\qquad \qquad -0.00891235072084,0.0227851729480\}_{[-3,4]}. \end{split}$$

Daubechies Orthogonal Wavelets

Plot Refinable Function ϕ and Wavelet Function ψ

$$a = \{\frac{1+\sqrt{3}}{8}, \frac{3+\sqrt{3}}{8}, \frac{3-\sqrt{3}}{8}, \frac{1-\sqrt{3}}{8}\}, \quad b = \{-\frac{1-\sqrt{3}}{8}, \frac{3-\sqrt{3}}{8}, -\frac{3+\sqrt{3}}{8}, \frac{1+\sqrt{3}}{8}\}.$$

Daubechies Orthogonal Wavelets

Riesz (Multi)Wavelets in $L_2(\mathbb{R})$

- Let $\phi = (\phi_1, \dots, \phi_r)^\mathsf{T}$ and $\psi = (\psi_1, \dots, \psi_s)^\mathsf{T}$ in $L_2(\mathbb{R})$.
- $\{\phi; \psi\}$ is a Riesz wavelet if $\mathsf{AS}(\phi; \psi)$ is a Riesz basis in $L_2(\mathbb{R})$, that is, (1) there exists positive constants C_1 and C_2 such that

$$C_1 \sum_{h \in \mathsf{AS}(\phi;\psi)} |c_h|^2 \leqslant \left\| \sum_{h \in \mathsf{AS}} c_h h \right\|_{L_2(\mathbb{R})}^2 \leqslant C_2 \sum_{h \in \mathsf{AS}(\phi;\psi)} |c_h|^2,$$

and the linear span of AS(ϕ ; ψ) is dense in $L_2(\mathbb{R})$, where

$$AS(\phi; \psi) := \{ \phi(\cdot - k) : k \in \mathbb{Z} \}$$

$$\cup \{ \psi_{2^{j}; k} := 2^{j/2} \psi(2^{j} \cdot - k) : j \geqslant 0, k \in \mathbb{Z} \}.$$

• If $C_1 = C_2 = 1$, then a Riesz wavelet becomes an orthogonal wavelet. That is, an orthogonal wavelet is a special case of Riesz wavelets.

Biorthogonal Wavelets in $L_2(\mathbb{R})$

- Let $\phi = (\phi_1, \dots, \phi_r)^\mathsf{T}$ and $\psi = (\psi_1, \dots, \psi_s)^\mathsf{T}$ in $L_2(\mathbb{R})$.
- Let $\tilde{\phi} = (\tilde{\phi}_1, \dots, \tilde{\phi}_r)^\mathsf{T}$ and $\tilde{\psi} = (\tilde{\psi}_1, \dots, \tilde{\psi}_s)^\mathsf{T}$ in $L_2(\mathbb{R})$.
- $(\{\tilde{\phi}; \tilde{\psi}\}, \{\phi; \psi\})$ is a biorthogonal (multi)wavelet in $L_2(\mathbb{R})$ if
 - **1** Both $\{\tilde{\phi}; \tilde{\psi}\}$ and $\{\phi; \psi\}$ are Riesz wavelets in $L_2(\mathbb{R})$;
 - ② $\mathsf{AS}(\tilde{\phi}; \tilde{\psi})$ and $\mathsf{AS}(\phi; \psi)$ are biorthogonal to each other:

$$\langle h, \tilde{h} \rangle = 1 \quad \text{and} \quad \langle h, g \rangle = 0, \quad \forall \, g \in \mathsf{AS}(\phi; \psi) \backslash \{h\}.$$

• Every function $f \in L_2(\mathbb{R})$ has the wavelet representation:

$$f = \sum_{k \in \mathbb{Z}} \langle f, \tilde{\phi}(\cdot - k) \rangle \phi(\cdot - k) + \sum_{j=0}^{\infty} \sum_{k \in \mathbb{Z}} \langle f, \tilde{\psi}_{2^{j};k} \rangle \psi_{2^{j};k}.$$

- An orthogonal wavelet $\{\phi; \psi\}$ is just a biorthogonal wavelet $(\{\phi; \psi\}, \{\phi; \psi\})$ (i.e., its dual is itself.)
- Biorthogonal wavelets and multiwavelets are widely used in image processing and numerical solutions of PDEs.

MRA of Biorthogonal Wavelets

- Let $(\{\tilde{\phi}, \tilde{\psi}\}, \{\phi, \psi\})$ be a biorthogonal wavelet in $L_2(\mathbb{R})$.
- Define $\mathscr{V}_j:=\mathtt{S}_{2^j}(\phi|L_2(\mathbb{R}))$ and $\mathscr{W}_j:=\mathtt{S}_{2^j}(\psi|L_2(\mathbb{R}))$ for $j\in\mathbb{Z}$.
- Define $ilde{\mathscr{V}_j}:=\mathtt{S}_{2^j}(\tilde{\phi}|L_2(\mathbb{R}))$ and $ilde{\mathscr{W}_j}:=\mathtt{S}_{2^j}(\tilde{\psi}|L_2(\mathbb{R}))$ for $j\in\mathbb{Z}$.
- Then we have two intertwined MRAs: For $J \in \mathbb{Z}$,

$$egin{aligned} \mathscr{V}_{J+1} &= \mathscr{V}_{J} \oplus \mathscr{W}_{J} \quad \text{and} \quad L_{2}(\mathbb{R}) &= \mathscr{V}_{J} \oplus_{j=J}^{\infty} \mathscr{W}_{j} = \oplus_{j \in \mathbb{Z}} \mathscr{W}_{j}, \\ \widetilde{\mathscr{V}}_{J+1} &= \widetilde{\mathscr{V}}_{J} \oplus \widetilde{\mathscr{W}}_{J} \quad \text{and} \quad L_{2}(\mathbb{R}) &= \widetilde{\mathscr{V}}_{J} \oplus_{j=J}^{\infty} \mathscr{W}_{j} = \oplus_{j \in \mathbb{Z}} \mathscr{W}_{j}. \end{aligned}$$

where \oplus means the direct sum of closed subspaces in $L_2(\mathbb{R})$ and

$$\mathscr{W}_j = \mathscr{V}_{j+1} \cap \widetilde{\mathscr{V}}_j^{\perp}, \quad \widetilde{\mathscr{W}}_j = \widetilde{\mathscr{V}}_{j+1} \cap \mathscr{V}_j^{\perp}, \qquad j \in \mathbb{Z}.$$

• Wavelet coefficients $\langle f, \tilde{\psi}_{2^j;k} \rangle$ can be computed through MRAs using filter banks by fast wavelet transform as in the case of orthogonal wavelets.

Construction of Scalar Biorthogonal Wavelets

Theorem: Let $\phi, \psi \in L_2(\mathbb{R})$ and $\tilde{\phi}, \tilde{\psi} \in L_2(\mathbb{R})$. Then $(\{\tilde{\phi}; \tilde{\psi}\}, \{\phi; \psi\})$ is a biorthogonal wavelet in $L_2(\mathbb{R})$ if and only if

1 There exist $a, b, \tilde{a}, \tilde{b} \in I_2(\mathbb{Z})$ such that

$$\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi), \qquad \widehat{\psi}(2\xi) = \widehat{b}(\xi)\widehat{\phi}(\xi),$$

$$\widehat{\widetilde{\phi}}(2\xi) = \widehat{\widetilde{a}}(\xi)\widehat{\widetilde{\phi}}(\xi), \qquad \widehat{\widetilde{\psi}}(2\xi) = \widehat{\widetilde{b}}(\xi)\widehat{\widetilde{\phi}}(\xi).$$

② $(\{\tilde{a}; \tilde{b}\}, \{a; b\})$ is a biorthogonal wavelet filter bank:

$$\begin{bmatrix} \widehat{\widetilde{a}}(\xi) & \widehat{\widetilde{b}}(\xi) \\ \widehat{\widetilde{a}}(\xi+\pi) & \widehat{\widetilde{b}}(\xi+\pi) \end{bmatrix} \overline{\begin{bmatrix} \widehat{a}(\xi) & \widehat{b}(\xi) \\ \widehat{a}(\xi+\pi) & \widehat{b}(\xi+\pi) \end{bmatrix}}^{\mathsf{T}} = I_2.$$

 $\bullet \ \ [\widehat{\phi},\widehat{\phi}] \in L_{\infty}(\mathbb{R}), \ [\widehat{\widetilde{\phi}},\widehat{\widetilde{\phi}}] \in L_{\infty}(\mathbb{R}), \ \text{and} \ [\widehat{\widetilde{\phi}},\widehat{\phi}] = 1, \ \text{where}$

$$\widehat{f}(\xi) := \int_{\mathbb{R}} f(x) e^{-ix\xi} dx, \quad [\widehat{f}, \widehat{g}](\xi) := \sum_{k \in \mathbb{Z}} \widehat{f}(\xi + 2\pi k) \overline{\widehat{g}(\xi + 2\pi k)}.$$

Scalar Biorthogonal Wavelet Filter Bank

Proposition

Let $a, b, \tilde{a}, \tilde{b} \in l_0(\mathbb{Z})$. Then $(\{\tilde{a}; \tilde{b}\}, \{a; b\})$ is a biorthogonal wavelet filter bank:

$$\begin{bmatrix} \widehat{a}(\xi) & \widehat{b}(\xi) \\ \widehat{a}(\xi + \pi) & \widehat{b}(\xi + \pi) \end{bmatrix} \overline{\begin{bmatrix} \widehat{a}(\xi) & \widehat{b}(\xi) \\ \widehat{a}(\xi + \pi) & \widehat{b}(\xi + \pi) \end{bmatrix}}^{\mathsf{I}} = I_2$$

if (\tilde{a}, a) is a biorthogonal low-pass filter:

$$\widehat{\tilde{a}}(\xi)\overline{\hat{a}(\xi)} + \widehat{\tilde{a}}(\xi + \pi)\overline{\hat{a}(\xi + \pi)} = 1$$

with the choice
$$\widehat{\widetilde{b}}(\xi) = e^{i\xi} \overline{\widehat{a}(\xi + \pi)}$$
 and $\widehat{b}(\xi) = e^{i\xi} \overline{\widehat{\widetilde{a}}(\xi + \pi)}$.

If $\widehat{a}(0) = \sum_{k \in \mathbb{Z}} a(k) = 1$, then $\widehat{\phi}(\xi) := \prod_{j=1}^{\infty} \widehat{a}(2^{-j}\xi)$ is well defined and satisfies $\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi)$.

Example of Scalar Biorthogonal Wavelets

We can obtain a pair of biorthogonal wavelet filters by splitting the interplatory filter

$$\widehat{\widetilde{a}_m(\xi)}\widehat{a_m}(\xi) := \widehat{a_{2m}^I}(\xi) = \cos^{2m}(\xi/2)\mathsf{P}_{m,m}(\sin^2(\xi/2))$$

as follows: $P(x)\tilde{P}(x) = P_{m,m}(x)$ and

$$\begin{split} \widehat{a_m}(\xi) &= 2^{-m} (1 + e^{-i\xi})^m \mathsf{P}(\sin^2(\xi/2)), \qquad \widehat{b_m}(\xi) := e^{-i\xi} \overline{\widehat{\tilde{a}_m}(\xi + \pi)}, \\ \widehat{\tilde{a}_m}(\xi) &= 2^{-m} (1 + e^{-i\xi})^m \tilde{\mathsf{P}}(\sin^2(\xi/2)), \qquad \widehat{\tilde{b}_m}(\xi) := e^{-i\xi} \overline{\widehat{a_m}(\xi + \pi)}. \end{split}$$

For m = 2, we have the LeGall biorthogonal wavelet filter bank:

$$\textit{a}_2 = \{\tfrac{1}{4}, \tfrac{1}{2}, \tfrac{1}{4}\}_{[-1,1]}$$

and

$$\tilde{a}_2 = \{-\frac{1}{8}, \frac{1}{4}, \frac{3}{4}, \frac{1}{4}, -\frac{1}{8}\}_{[-2,2]}.$$

Examples of Biorthogonal Wavelets

The Most Famous Biorthogonal Wavelet

For m = 4,

$$a_{4} = \left\{ -\frac{t}{64}, \frac{2-t}{32}, \frac{16+t}{64}, \frac{6+t}{16}, \frac{16+t}{64}, \frac{2-t}{32}, -\frac{t}{64} \right\}_{[-3,3]},$$

$$\tilde{a}_{4} = \left\{ \frac{t^{2}-4t+10}{256}, \frac{t-4}{64}, -\frac{t^{2}+6t-14}{64}, \frac{20-t}{64}, \frac{3t^{2}-20t+110}{128}, \frac{20-t}{64}, \frac{-t^{2}+6t-14}{64}, \frac{t-4}{64}, \frac{t^{2}-4t+10}{256} \right\}_{[-4,4]},$$

where $t \approx 2.92069$. The derived biorthogonal wavelet is called Daubechies 7/9 filter and has very impressive performance in many applications.

Example of Biorthogonal Wavelets

B-spline Functions

• For $m \in \mathbb{N}$, the B-spline function B_m of order m is defined to be

$$B_1:=\chi_{(0,1]} \quad \text{and} \quad B_m:=B_{m-1}*B_1=\int_0^1 B_{m-1}(\cdot-t)dt.$$

- $supp(B_m) = [0, m] \text{ and } B_m(x) > 0 \text{ for all } x \in (0, m).$
- $B_m = B_m(m \cdot)$ and $B_m \in \mathscr{C}^{m-2}(\mathbb{R})$.
- $B_m|_{(k,k+1)} \in \mathbb{P}_{m-1}$ for all $k \in \mathbb{Z}$.
- $\widehat{B_m}(\xi) = (\frac{1-e^{-i\xi}}{i\xi})^m$ and B_m is refinable:

$$B_m = 2\sum_{k\in\mathbb{Z}} a_m^B(k) B_m(2\cdot -k),$$

where a_m^B is the B-spline filter of order m:

$$\widehat{a_m^B}(\xi) := 2^{-m} (1 + e^{-i\xi})^m.$$

Graphs of B-spline Functions

B-spline Filters a_m^B

$$\begin{aligned} a_1^B &= \{ \frac{1}{2}, \frac{1}{2} \}_{[0,1]}, \\ a_2^B &= \{ \frac{1}{4}, \frac{1}{2}, \frac{1}{4} \}_{[0,2]}, \\ a_3^B &= \{ \frac{1}{8}, \frac{3}{8}, \frac{3}{8}, \frac{1}{8} \}_{[0,3]}, \\ a_4^B &= \{ \frac{1}{16}, \frac{1}{4}, \frac{3}{8}, \frac{1}{4}, \frac{1}{16} \}_{[0,4]}, \\ a_5^B &= \{ \frac{1}{32}, \frac{5}{32}, \frac{5}{16}, \frac{5}{16}, \frac{15}{32}, \frac{1}{32} \}_{[0,5]}, \\ a_6^B &= \{ \frac{1}{64}, \frac{3}{32}, \frac{15}{64}, \frac{5}{16}, \frac{15}{64}, \frac{3}{32}, \frac{1}{64} \}_{[0,6]}. \end{aligned}$$

Basics on Sobolev Spaces

• A function f on I := [a, b] is absolutely continuous if for every $\varepsilon > 0$, there exists $\delta > 0$ such that for all nonoverlapping $(a_j, b_j), j = 1, \ldots, n$ in I such that

$$\sum_{j=1}^n |f(b_j) - f(a_j)| < \varepsilon \quad \text{as long as} \quad \sum_{j=1}^n (b_j - a_j) < \delta.$$

- If f is absolutely continuous, then f' exists almost everywhere and f is uniformly continuous.
- The Sobolev space $H^m(I)$ with $m \in \mathbb{N} \cup \{0\}$ consists of all functions f on I such that $f, f', \ldots, f^{(m-1)}$ are absolutely continuous on $I, f, f', \ldots, f^{(m-1)}, f^{(m)} \in L_2(I)$.
- Sobolev norm: $||f||_{H^m}^2 := \sum_{i=0}^m ||f^{(j)}||_{L_2}^2$.
- Sobolev spaces $H^m(I)$ are widely used for studying and solving PDEs.

Basics on Boundary Value Problems (BVP)

- Poisson equation: u''(x) = f(x) for $x \in (0,1)$ with boundary conditions $u(0) = \alpha$ (Dirichlet boundary condition) and $u'(0) = \beta$ (Neumann boundary condition).
- Helmholtz equation: $u'' + \kappa^2 u = f$ on (0,1) with boundary conditions $u(0) = \alpha$ and u'(1) - iku(1) = 0 (Robin boundary conditions).
- A weak solution $u \in H^1(0,1)$ must satisfy

$$\langle u'', v \rangle = \langle f, v \rangle, \quad \forall v \in H^1(0,1).$$

Using integration by parts and boundary conditions,

$$\langle u'', v \rangle = \int_0^1 u''(x)v(x)dx = u'(x)v(x)|_{x=0}^{x=1} - \int_0^1 u'(x)v'(x)dx.$$

• Hence, a weak solution u is given by

$$\langle u', v' \rangle = -\langle f, v \rangle - u'(1)v(1) + u'(0)v(0), \quad \forall \ v \in H^1(0,1).$$

Galerkin Scheme

- Poisson equation: u'' = f on (0,1) with u(0) = u(1) = 0.
- Let V_h be a finite dimensional subspace of $H^1(0,1)$ with suitable boundary conditions. For the above Poisson equation, we consider $H^1_0(0,1)$ by requiring $\phi(0) = \phi(1) = 0$ for all $\phi \in V_h$.
- Galerkin scheme: Seek $u_h \in V_h \subseteq H_0^1(0,1)$ such that

$$\langle u'_h, v' \rangle = \int_0^1 u'_h v' = -\langle f, v \rangle, \quad \forall v \in V_h.$$

• Let $\{\phi_1, \ldots, \phi_N\}$ be a basis of V_h . Then we can write $u_h = \sum_{j=1}^N c_j \phi_j \in V_h$ such that $\{c_1, \ldots, c_N\}$ must satisfy

$$\sum_{j=1}^{N} c_j \langle \phi_j', \phi_k' \rangle = \langle f, \phi_k \rangle, \qquad k = 1, \dots, N.$$

• Solve the linear system Ac = b for $c = (c_1, \ldots, c_N)^T$, where $A = (\langle \phi_j', \phi_k' \rangle)_{1 \leq j,k \leq N}$, and $b = (-\langle f, \phi_k \rangle)_{1 \leq k \leq N}$.

Finite Element Method

- Let $N \in \mathbb{N}$ and $h := \frac{1}{N}$.
- Consider partition

$$0 = x_0 < x_1 < \cdots < x_N = 1$$

with $x_j := \frac{j}{N}$ for $j = 0, \dots, N$.

- Define a piecewise linear function ϕ_j with support $[x_{j-1}, x_{j+1}]$ such that $\phi_j(x_{j-1}) = \phi(x_{j+1}) = 0$ and $\phi_j(x_j) = 1$.
- The Finite Element Method uses the basis $\{\phi_1, \dots, \phi_{N-1}\}$ which spans V_h (a spline space generated by the linear spline)
- Note that all basis elements $\phi_j \in H^1_0(0,1)$ and hence $V_h \subseteq H^1_0(0,1)$.

Collocation Scheme

- Poisson equation: u'' = f on (0,1) with u(0) = u(1) = 0.
- Let V_h be a finite dimensional subspace of $H^1(0,1)\cap C^2$ with suitable boundary conditions. For the above Poisson equation, we consider $H^1_0(0,1)$ by requiring $\phi(0)=\phi(1)=0$ for all $\phi\in V_h$.
- Let $\{\phi_1,\ldots,\phi_N\}$ be a basis of V_h . Then we seek $u_h = \sum_{j=1}^N c_j\phi_j \in V_h$ with coefficients c_1,\ldots,c_N to be determined.
- Collocation scheme: (1) suitably pick up N sampling points z_1, \ldots, z_N inside [0, 1]. (2) obtain the linear system through

$$\sum_{j=1}^{N} c_j \phi_j''(z_k) = f(z_k), \qquad k = 1, \ldots, N.$$

• Solve the above linear equations to determine the coefficients c_1, \ldots, c_N .

Wavelet Method

- Let $\{\phi; \psi\}$ be a Riesz wavelet for $H^1(\mathbb{R})$ such that ϕ, ψ belong to the Sobolev space $H^1(0,1)$.
- Adapt the Riesz wavelet $\{\phi; \psi\}$ on the real line into the interval [0,1] with prescribed boundary conditions to obtain a Riesz basis $\Phi_0 \cup \bigcup_{i=0}^{\infty} \Psi_j$ for $H_0^1(0,1)$, where

$$\Phi_0 = \{\phi^L\} \cup \{\phi(\cdot - k) : I_\phi \leqslant k \leqslant h_\phi\} \cup \{\phi^R\}$$

and

$$\Psi_j = \{\psi^L_{2^j;0}\} \cup \{\psi_{2^j;k} : I_{\psi} \leqslant k \leqslant 2^j - h_{\psi}\} \cup \{\psi^R_{2^j;2^j-1}\}.$$

- Take a large integer $J \in \mathbb{N}$ and consider $\{\eta_j\}_{j \in N_J} = \Phi_0 \cup \bigcup_{j=0}^J \Psi_j$ which spans V_h .
- Now apply Galerkin scheme or collocation scheme.

Riesz Wavelets in Sobolev Spaces

• For $\tau \in \mathbb{R}$, the Sobolev space $H^{\tau}(\mathbb{R})$ consists of all tempered distributions f satisfying

$$\|f\|_{H^{ au}(\mathbb{R})}^2 := rac{1}{2\pi} \int_{\mathbb{R}} |\widehat{f}(\xi)|^2 (1+|\xi|^2)^{ au} d\xi < \infty,$$

For $m \in \mathbb{N} \cup \{0\}$, $f \in H^m(\mathbb{R})$ if $f, f', \dots, f^{(m)} \in L_2(\mathbb{R})$.

• For $\phi = (\phi_1, \dots, \phi_r)^\mathsf{T}$ and $\psi = (\psi_1, \dots, \psi_r)^\mathsf{T}$, we define

$$\mathsf{AS}_0^{\tau}(\phi;\psi) = \{\phi(\cdot - k) : k \in \mathbb{Z}\} \cup \{2^{j(\frac{1}{2}-\tau)}\psi(2^j \cdot - k) : k \in \mathbb{Z}\}_{j=0}^{\infty}.$$

• $\{\phi; \psi\}$ is a Riesz wavelet in the Sobolev space $H^{\tau}(\mathbb{R})$ if $\mathsf{AS}_0^{\tau}(\phi; \psi)$ is Riesz basis for $H^{\tau}(\mathbb{R})$: the linear span of $\mathsf{AS}_0^{\tau}(\phi; \psi)$ is dense in $H^{\tau}(\mathbb{R})$ and there exist $C_1, C_2 > 0$ such that

$$C_1 \sum_{h \in \mathsf{AS}_0^\tau(\phi;\psi)} |c_h|^2 \leqslant \Big\| \sum_{h \in \mathsf{AS}_0^\tau(\phi;\psi)} c_h h \Big\|_{H^\tau(\mathbb{R})} \leqslant C_2 \sum_{h \in \mathsf{AS}_0^\tau(\phi;\psi)} |c_h|^2$$

for all finitely supported sequences $\{c_h\}_{h\in AS_0^{\tau}(\phi;\psi)}$.

Derivative-Orthogonal Riesz Wavelets

- Let $m \in \mathbb{N} \cup \{0\}$ be a nonnegative integer.
- Let $\phi = (\phi_1, \dots, \phi_r)^\mathsf{T}$ and $\psi = (\psi_1, \dots, \psi_r)^\mathsf{T}$ in $H^m(\mathbb{R})$.
- We say that $\{\phi; \psi\}$ is an *m*th-order derivative-orthogonal Riesz wavelet in the Sobolev space $H^m(\mathbb{R})$ if
 - **1** AS₀^m(ϕ ; ψ) is a Riesz wavelet in $H^{m}(\mathbb{R})$;
 - 2 The *m*th-order derivatives are orthogonal between levels:

$$\langle \psi^{(m)}, \phi^{(m)}(\cdot - k) \rangle = 0, \quad \forall k \in \mathbb{Z},$$

and

$$\langle \psi^{(m)}(2^j \cdot -k), \psi^{(m)}(2^{j'} \cdot -k') \rangle = 0,$$

for all $k, k' \in \mathbb{Z}, j, j' \in \mathbb{N}_0$ with $j \neq j'$.

For m = 0, they are called semi-orthogonal (or pre-) wavelets and well studied, e.g., [Chui-Wang, Jia-Micchelli, Shen-Riemanschneider] through a simple orthogonalization procedure.

Why Derivative-Orthogonal Riesz Wavelets?

• Differential equation with homogeneous boundary condition:

$$u^{(2m)}(x) + \alpha u(x) = f(x), \quad x \in I = [0, 1].$$

• The Galerkin formulation of a weak solution $u \in H^m(I)$ is

$$(-1)^m \langle u^{(m)}, v^{(m)} \rangle + \alpha \langle u, v \rangle = \langle f, v \rangle, \quad v \in H^m(I).$$

• Let S be a Riesz wavelet basis of $H^m(I)$ derived from mth-order derivative-orthogonal wavelet $\{\phi; \psi\}$. Then $u = \sum_{h \in S} c_h h$ and

$$\sum_{h \in S} \left((-1)^m A_{h,g} + \alpha B_{h,g} \right) c_h = \langle f, g \rangle, \qquad g \in S$$

with
$$A = (\langle h^{(m)}, g^{(m)} \rangle)_{h,g \in S}$$
 and $B = (\langle h, g \rangle)_{h,g \in S}$.

- (1) The matrix A is sparse and is almost diagonal.
- The condition number of A dominates that of $(-1)^m A + \alpha B$ and is often very small (can be the optimal condition number 1)

Stable Integer Shifts of Vector Functions

- Let $\phi = (\phi_1, \dots, \phi_r)^T$ in $H^m(\mathbb{R})$ be compactly supported.
- ullet We say that the integer shifts of ϕ are stable if

$$\operatorname{span}\{\widehat{\phi}(\xi+2\pi k)\ :\ k\in\mathbb{Z}\}=\mathbb{C}^r,\qquad\forall\,\xi\in\mathbb{R}.$$

• For $f = (f_1, \dots, f_r)^T$ and $g = (g_1, \dots, g_r)^T$, bracket product is

$$[\widehat{f},\widehat{g}](\xi) := \sum_{k \in \mathbb{Z}} \widehat{f}(\xi + 2\pi k) \overline{\widehat{g}(\xi + 2\pi k)}^{\mathsf{T}}, \quad \xi \in \mathbb{R}.$$

- The integer shifts of ϕ in $H^m(\mathbb{R})$ are stable \iff $[\widehat{\phi}, \widehat{\phi}](\xi) > 0$ for all $\xi \in \mathbb{R} \iff$ $\{\phi(\cdot k) : k \in \mathbb{Z}\}$ is a Riesz sequence in $H^m(\mathbb{R})$.
- Smoothness of a function is measured by

$$\operatorname{sm}(\phi) := \sup\{\tau \in \mathbb{R} : \phi \in H^{\tau}(\mathbb{R})\}.$$

Semi-orthogonal (or Pre-) Wavelets

For m = 0, mth order derivative-orthogonal wavelets are called semi-orthogonal (or pre-) wavelets and well studied, e.g., [Chui-Wang, Jia-Micchelli, Shen-Riemanschneider] through

• $\phi \in L_2(\mathbb{R})$ has compact support and satisfies

$$\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi)$$

where $\widehat{a}(\xi) := \sum_{k \in \mathbb{Z}} a(k) e^{-ik\xi}$ is a 2π -periodic trigonometric polynomial and $\phi(\xi) := \int_{\mathbb{D}} \phi(x) e^{-ix\xi} dx$.

- Assume the integer shifts of ϕ are stable: $[\widehat{\phi}, \widehat{\phi}](\xi) > 0$.
- Define $\widehat{\psi}(2\xi) := e^{-i\xi} \overline{\widehat{a}(\xi+\pi)} [\widehat{\phi}, \widehat{\phi}](\xi+\pi) \widehat{\phi}(\xi)$.
- Then $\{\phi; \psi\}$ is a semi-orthogonal wavelet in $L_2(\mathbb{R})$, that is,

$$\mathsf{AS}_0^0(\phi;\psi) = \{\phi(\cdot - k) : k \in \mathbb{Z}\} \cup \{2^{j/2}\psi(2^j \cdot - k) : k \in \mathbb{Z}\}_{j=0}^{\infty}$$

is almost an orthonormal basis for $L_2(\mathbb{R})$, except orthogonality among the same scale level i.

Sum Rules of a Matrix-valued Filter

• A filter $a \in (I_0(\mathbb{Z}))^{r \times r}$ has order m sum rules if there exists a matching filter $v \in (I_0(\mathbb{Z}))^{1 \times r}$ such that $\widehat{v}(0) \neq 0$ and

$$\widehat{v}(2\xi)\widehat{a}(\xi) = \widehat{v}(\xi) + \mathscr{O}(|\xi|^m), \quad \widehat{v}(2\xi)\widehat{a}(\xi + \pi) = \mathscr{O}(|\xi|^m), \quad \xi \to 0.$$

- $f(\xi) = g(\xi) + \mathcal{O}(|\xi|^m), \xi \to 0 \Leftrightarrow f^{(j)}(0) = g^{(j)}(0), 0 \leqslant j < m.$
- sr(a) denotes the highest order of sum rules satisfied by a.
- For $\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi)$ with stable integer shifts, TFAE
 - The filter a has order m sum rules (i.e., $sr(a) \ge m$).
 - All the polynomials of degree < m are contained inside the shift-invariant space

$$S_j(\phi) := \Big\{ \sum_{k \in \mathbb{Z}} v(k) \phi(2^j \cdot -k) \ : \ \mathsf{all} \ \mathsf{sequences} \ v \ \mathsf{on} \ \mathbb{Z} \Big\}$$

• The vector function ϕ has approximation order m:

$$\inf_{g\in S_i(\phi)\cap L_2(\mathbb{R})}\|f-g\|_{L_2(\mathbb{R})}\leqslant C2^{-jm}\|f\|_{H^m(\mathbb{R})},\quad f\in H^m(\mathbb{R}).$$

Main Result: Existence

Theorem

Let $\phi = (\phi_1, \dots, \phi_r)^T$ be a compactly supported refinable vector function in $H^m(\mathbb{R})$ with $m \in \mathbb{N}_0$ such that $\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi)$ for some $a \in (I_0(\mathbb{Z}))^{r \times r}$. Then there exists a finitely supported high-pass filter $b \in (I_0(\mathbb{Z}))^{r \times r}$ such that $\{\phi; \psi\}$ with

$$\widehat{\psi}(\xi) := \widehat{b}(\xi/2)\widehat{\phi}(\xi/2)$$

is an mth-order derivative-orthogonal Riesz wavelet in the Sobolev space $H^m(\mathbb{R}) \iff$

- the integer shifts of ϕ are stable;
- ② the filter a has at least order 2m sum rules (i.e., $sr(a) \ge 2m$).

Remark: The proof is quite complicated for r > 1 and m > 0.

Main Result: Construction

Theorem

Let $\phi = (\phi_1, \ldots, \phi_r)^\mathsf{T}$ be a compactly supported refinable vector function in $H^m(\mathbb{R})$ with $m \in \mathbb{N}_0$ such that $\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi)$ for some $a \in (I_0(\mathbb{Z}))^{r \times r}$. Suppose that the integer shifts of ϕ are stable. For any $b \in (I_0(\mathbb{Z}))^{r \times r}$, $\{\phi; \psi\}$ with $\widehat{\psi}(\xi) := \widehat{b}(\xi/2)\widehat{\phi}(\xi/2)$ is an mth-order derivative-orthogonal Riesz wavelet in $H^m(\mathbb{R})$ \iff

$$\begin{split} \widehat{b}(\xi) [\widehat{\phi^{(m)}}, \widehat{\phi^{(m)}}](\xi) \overline{\widehat{a}(\xi)}^\mathsf{T} + \widehat{b}(\xi + \pi) [\widehat{\phi^{(m)}}, \widehat{\phi^{(m)}}](\xi + \pi) \overline{\widehat{a}(\xi + \pi)}^\mathsf{T} &= 0, \\ \det(\{\widehat{a}; \widehat{b}\})(\xi) := \det\left(\begin{bmatrix}\widehat{a}(\xi) & \widehat{a}(\xi + \pi) \\ \widehat{b}(\xi) & \widehat{b}(\xi + \pi)\end{bmatrix}\right) \neq 0, \qquad \forall \ \xi \in \mathbb{R}. \end{split}$$

Moreover, $\mathsf{AS}^{\tau}_0(\phi;\psi)$ is a Riesz basis in the Sobolev space $\mathsf{H}^{\tau}(\mathbb{R})$ for all τ in the nonempty open interval $(2m-\mathsf{sm}(\phi),\mathsf{sm}(\phi))$.

Construction for the Scalar Case r=1

Theorem

Let $m \in \mathbb{N}_0$ and $a \in I_0(\mathbb{Z})$ such that $\widehat{a}(\xi) = 2^{-2m}(1 + e^{-i\xi})^{2m}\widetilde{a}(\xi)$ with $\widecheck{a} \in I_0(\mathbb{Z})$ and $\widehat{a}(0) = 1$. Define $\widehat{\phi}(\xi) := \prod_{j=1}^{\infty} \widehat{a}(2^{-j}\xi)$ and $\widehat{\phi}(\xi) := \prod_{j=1}^{\infty} \widehat{a}(2^{-j}\xi)$ with $\widehat{a}(\xi) := 2^{-m}(1 + e^{-i\xi})^m\widetilde{a}(\xi)$. Suppose that $\phi \in H^m(\mathbb{R})$ and the integer shifts of ϕ are stable. Then for $b \in I_0(\mathbb{Z})$, $\{\phi; \psi\}$ with $\widehat{\psi}(\xi) := \widehat{b}(\xi/2)\widehat{\phi}(\xi/2)$ is an mth-order derivative-orthogonal Riesz wavelet in $H^m(\mathbb{R})$

$$\widehat{b}(\xi) = e^{i(m-1)\xi} \overline{\widehat{a}(\xi+\pi)} [\widehat{\phi}, \widehat{\phi}](\xi+\pi) \widehat{\theta}(2\xi) / \widehat{c}(2\xi),$$

where $\theta \in I_0(\mathbb{Z})$ satisfying $\widehat{\theta}(\xi) \neq 0 \ \forall \xi \in \mathbb{R}$ and $c \in I_0(\mathbb{Z})$ is

$$\widehat{c}(2\xi) := \gcd\left(\overline{\widetilde{a}(\xi)}[\widehat{\mathring{\phi}},\widehat{\mathring{\phi}}](\xi),\overline{\widetilde{a}(\xi+\pi)}[\widehat{\mathring{\phi}},\widehat{\mathring{\phi}}](\xi+\pi)\right).$$

Example of Refinable Functions: B-Splines

• For $n \in \mathbb{N}$, the B-spline function B_n of order n is defined to be

$$B_1 := \chi_{(0,1]}, \quad B_n := B_{n-1} * B_1 = \int_0^1 B_{n-1}(\cdot - t) dt.$$

- $B_n = B_n(n-\cdot)$ (symmetry), sm $(B_n) = n-1/2$ and B_n is a piecewise polynomial: $B_n|_{(k,k+1)} \in \mathbb{P}_{n-1}$ for all $k \in \mathbb{Z}$.
- $B_n = 2\sum_{k \in \mathbb{Z}} a(k) B_n(2 \cdot -k)$, i.e., $\widehat{B_n}(2\xi) = \widehat{a}(\xi) \widehat{B_n}(\xi)$ with

$$\widehat{a}(\xi) := 2^{-n}(1 + e^{-i\xi})^n$$
 with $sr(a) = n$.

• A compactly supported mth-order derivative-orthogonal Riesz wavelet $\{B_n; \psi\}$ in $H^m(\mathbb{R})$ can be derived from $B_n \iff$

$$n \geqslant \max(m+1,2m)$$
.

Example from B-Spline B_2 : m = 1

$$a = \left\{\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right\}_{[-1,1]}, \qquad b = \left\{\frac{1}{2}\right\}_{[1,1]}.$$

 $\operatorname{sr}(a)=2$ and $\phi=B_2(\cdot-1)$ is the centered piecewise linear spline B_2 of order 2 satisfying $\widehat{\phi}(2\xi)=\widehat{a}(\xi)\widehat{\phi}(\xi)$. The wavelet function $\psi=\phi(2x)$. Then $\{\phi;\psi\}$ is a first-order derivative-orthogonal Riesz wavelet in $H^1(\mathbb{R})$, which is closely linked to finite element methods.

Example from B-Spline B_4 : m = 2

$$a = \left\{ \frac{1}{16}, \frac{1}{4}, \frac{3}{8}, \frac{1}{4}, \frac{1}{16} \right\}_{[-2,2]}, \quad b = \left\{ -\frac{1}{4}, 1, -\frac{1}{4} \right\}_{[0,2]}$$

 $\operatorname{sr}(a)=4$ and $\phi=B_4(\cdot-2)$ is the centered B-spline B_4 of order 4 satisfying $\widehat{\phi}(2\xi)=\widehat{a}(\xi)\widehat{\phi}(\xi)$. The wavelet function $\psi=\phi(2x)-\frac{1}{2}\phi(2x+1)-\frac{1}{2}\phi(2x-1)$. Then $\{\phi;\psi\}$ is a second-order derivative-orthogonal Riesz wavelet in $H^2(\mathbb{R})$.

Hermite Cubic Splines

The Hermite cubic splines are given by

$$\phi_1 = \begin{cases} (1-x)^2(1+2x), & x \in [0,1], \\ (1+x)^2(1-2x), & x \in [-1,0), \\ 0, & \text{otherwise}, \end{cases} \quad \phi_2 = \begin{cases} (1-x)^2x, & x \in [0,1], \\ (1+x)^2x, & x \in [-1,0), \\ 0, & \text{otherwise}. \end{cases}$$

Then $\phi = (\phi_1, \phi_2)^T$ in $H^2(\mathbb{R})$ satisfies the refinement equation $\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi)$ with the filter $a \in (I_0(\mathbb{Z}))^{2 \times 2}$:

$$a = \left\{ \begin{bmatrix} \frac{1}{4} & \frac{3}{8} \\ -\frac{1}{16} & -\frac{1}{16} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}, \begin{bmatrix} \frac{1}{4} & -\frac{3}{8} \\ \frac{1}{16} & -\frac{1}{16} \end{bmatrix} \right\}_{[-1,1]}.$$

The filter a has order 4 sum rules with sr(a) = 4 and ϕ has the Hermite interpolation property with $sm(\phi) = 5/2$:

$$\phi_1(k)=oldsymbol{\delta}(k),\quad \phi_1'(k)=0,\quad \phi_2(k)=0,\quad \phi_2'(k)=oldsymbol{\delta}(k),\quad orall\, k\in \mathbb{Z},$$

where $\delta(0) = 1$ and $\delta(k) = 0$ for $k \neq 0$.

Example from Hermite Cubic Splines: m = 1

$$b = \left\{ \begin{bmatrix} \frac{2}{21} & 1 \\ \frac{1}{9} & 1 \end{bmatrix}, \begin{bmatrix} -\frac{4}{21} & 0 \\ 0 & \frac{4}{3} \end{bmatrix}, \begin{bmatrix} \frac{2}{21} & -1 \\ -\frac{1}{9} & 1 \end{bmatrix} \right\}_{[-1,1]}.$$

Then $\{\phi; \psi\}$ with $\widehat{\psi}(\xi) := \widehat{b}(\xi/2)\widehat{\phi}(\xi/2)$ is a first-order derivative-orthogonal Riesz wavelet in $H^1(\mathbb{R})$, which is used in [Jia-Liu, Adv. Comput. Math., (2006)] for Sturm-Liouville equations.

Example from Hermite Cubic Splines: m = 2

$$b = \left\{ \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \right\}_{[1,1]}.$$

Then $\{\phi; \psi\}$ with $\psi = \phi(2\cdot)$ is a second-order derivative-orthogonal Riesz wavelet in $H^2(\mathbb{R})$.

Example from Hermite Quadratic Splines: m = 1

$$a = \left\{ \begin{bmatrix} \frac{1}{4} & \frac{1}{2} \\ -\frac{1}{16} & -\frac{1}{8} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}, \begin{bmatrix} \frac{1}{4} & -\frac{1}{2} \\ \frac{1}{16} & -\frac{1}{8} \end{bmatrix} \right\}_{[-1,1]},$$

$$b = \left\{ \begin{bmatrix} \frac{1}{6} & 1 \\ \frac{1}{6} & 1 \end{bmatrix}, \begin{bmatrix} -\frac{1}{3} & 0 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} \frac{1}{6} & -1 \\ -\frac{1}{6} & 1 \end{bmatrix} \right\}_{[-1,1]}.$$

Then $\operatorname{sr}(a) = 3$, $\operatorname{sm}(\phi) = 2.5$ and $\{\phi; \psi\}$ is a first-order derivative-orthogonal Riesz wavelet in $H^1(\mathbb{R})$.

Example from Hermite Linear Splines: m = 1

$$a = \left\{ \begin{bmatrix} \frac{1}{4} & \frac{3}{4} \\ -\frac{1}{12} & -\frac{1}{4} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}, \begin{bmatrix} \frac{1}{4} & -\frac{3}{4} \\ \frac{1}{12} & -\frac{1}{4} \end{bmatrix} \right\}_{[-1,1]},$$

$$b = \left\{ \begin{bmatrix} \frac{1}{6} & 0 \\ 0 & \frac{\sqrt{2}}{4} \end{bmatrix} \right\}_{[0,0]}.$$

Then sr(a) = 2, $sm(\phi) = 1.5$ and $\{\phi; \psi\}$ is a first-order derivative-orthogonal Riesz wavelet in $H^1(\mathbb{R})$.

Wavelets on [0, 1] with Very Simple Structure

- Let n > 1 be the scale/resolution level.
- Let $g_1 = \phi^L(2\cdot), g_2 = \phi_1(2\cdot -1), g_3 = \phi_2(2\cdot -1), g_4 = \phi^R(2\cdot).$
- For $1 < j \leqslant n$, the boundary wavelets at level j are given by

$$g_{2^{j}+1} := 2^{j(1/2-m)} \psi^{L}(2^{j} \cdot), \quad g_{2^{j}+2^{j}} := 2^{j(1/2-m)} \psi^{R}(2^{j} \cdot -2^{j})$$

with only one boundary wavelet at each endpoint:

$$\phi^{L} \in \{\phi_{1}|_{[0,1]}, \phi_{2}|_{[0,1]}\}, \qquad \phi^{R} \in \{\phi_{1}(\cdot - 1)|_{[0,1]}, \phi_{2}(\cdot - 1)|_{[0,1]}\},$$

$$\psi^{L} \in \{\psi_{1}|_{[0,1]}, \psi_{2}|_{[0,1]}\}, \qquad \psi^{R} \in \{\psi_{1}(\cdot - 1)|_{[0,1]}, \psi_{2}(\cdot - 1)|_{[0,1]}\}$$

• For $k = 1, \dots, 2^j - 1$, the inner wavelets at level j are

$$g_{2^{j}+(2k-1)}:=2^{j(1/2-m)}\psi_1(2^{j}\cdot -k), \quad g_{2^{j}+2k}:=2^{j(1/2-m)}\psi_2(2^{j}\cdot -k).$$

55 / 1

ullet Normalize $\{g_k\}_{k=1}^{2^{n+1}}$ so that $\|g_k^{(m)}\|_{L_2(\mathbb{R})}=1$ for $k=1,\ldots,2^{n+1}$

Example: 1D Sturm-Liouville Equations

Consider the following differential equation:

$$\begin{cases} -u'' + \alpha u = f & \text{on } (0,1), \\ u'(0) = 100(1 - e^{-1}), \quad u(1) = 200e^{-1} - 100, \end{cases}$$

where $\alpha = 5$ and $f(x) = -100e^{-x} - 500(1 - e^{-x}) - 500e^{-1}x$. The exact solution is $u(x) = 100(1 - e^{-x}) - 100e^{-1}x$.

• Its corresponding Galerkin formulation is

$$\sum_{k=1}^{2^{n+1}} A_{j,k} c_k = \langle g_j, f \rangle, \qquad j = 1, \dots, 2^{n+1}$$

with the coefficient matrix $A_{j,k} := \langle g'_j, g'_k \rangle + \alpha \langle g_j, g_k \rangle$.

According to boundary conditions, the boundary elements are

$$\begin{split} \phi^L &:= \phi_2|_{[0,1]}, \qquad \phi^R := \phi_1(\cdot - 1)|_{[0,1]}, \\ \psi^L &:= \psi_2|_{[0,1]}, \qquad \psi^R := \psi_1(\cdot - 1)|_{[0,1]}. \end{split}$$

Boundary Elements and Numerical Performance

Use the first-order derivative-orthogonal Riesz wavelet derived from Hermite quadratic splines with m=1.

Table: Size of linear system, conjugate gradient iterations, condition

Example: 1D Sturm-Liouville Equations

Consider the following differential equation:

$$\begin{cases} -u'' = f & \text{on } (0,1), \\ u'(0) = 0, & u(1) = 0, \end{cases}$$

where
$$f(x) = x \ln(x+1)$$
. The exact solution is $u(x) = (5x^3 - 12x^2 - 12x + 19 - 24 \ln(2) - 6(x-2)(x+1)^2 \ln(x+1))/36$.

• Its corresponding Galerkin formulation is

$$\sum_{k=1}^{2^{n+1}} A_{j,k} c_k = \langle g_j, f \rangle, \qquad j = 1, \dots, 2^{n+1}$$

with the coefficient matrix $A_{i,k} := \langle g'_i, g'_k \rangle$.

According to boundary conditions, the boundary elements are

$$\begin{split} \phi^L &:= \phi_1|_{[0,1]}, \qquad \phi^R := \phi_2(\cdot - 1)|_{[0,1]}, \\ \psi^L &:= \psi_1|_{[0,1]}, \qquad \psi^R := \psi_2(\cdot - 1)|_{[0,1]}. \end{split}$$

Boundary Elements and Numerical Performance

Use the first-order derivative-orthogonal Riesz wavelet derived from Hermite linear splines with m=1

Table: Size of linear system, no iteration is needed, condition number κ the matrices A (A is the identity matrix), errors, and convergence rates.

Example: 1D Biharmonic Equations

Consider the following differential equation:

$$\begin{cases} u^{(4)} - \alpha u = f & \text{on } (0, 1), \\ u(0) = 0, \quad u'(0) = 0, \quad u(1) = 0, \quad u'(1) = 0, \end{cases}$$

where $\alpha=11$ and $f(x)=-4\pi^4\cos(2\pi x)-\frac{11}{4}(1-\cos(2x))$. The exact solution is $u(x)=\frac{1}{4}(1-\cos(2\pi x))$.

Its corresponding Galerkin formulation is

$$\sum_{k=1}^{2^{n+2}} B_{j,k} c_k = \langle g_j, f \rangle, \qquad j = 1, \dots, 2^{n+2} - 2$$

with the coefficient matrix $B_{j,k} := \langle g_i'', g_k'' \rangle + \alpha \langle g_j, g_k \rangle$.

According to boundary conditions, the boundary elements are

$$\begin{split} \phi^L &:= \emptyset, \qquad \phi^R := \emptyset, \\ \psi^L &:= \emptyset, \qquad \psi^R := \emptyset. \end{split}$$

Boundary Elements and Numerical Performance

Use the second-order derivative-orthogonal Riesz wavelet derived from Hermite cubic splines with m = 2.

Level	Size	Iteration	κ	$\ e_n\ _{L_\infty}$	$\ e_n\ _{L_2}$	$\log_2 \frac{\ e_{n-1}\ _{L_2}}{\ e_n\ _{L_2}}$	$\ e_n\ _{H^1}$	$\log_2 \frac{\ e_{n-1}\ _{H_1}}{\ e_n\ _{H_1}}$
2	14	4	1.0225	2.2655e-04	1.1050e-04	_	3.0679e-03	_
3	30	4	1.0225	1.5147e-05	6.9610e-06	3.9886	3.8598e-04	2.9907
4	62	4	1.0225	9.6244e-07	4.3628e-07	3.9971	4.8325e-05	2.9977
5	126	4	1.0225	6.0411e-08	2.7653e-08	3.9993	6.0431e-06	2.9994
6	254	4	1.0225	3.9699e-09	2.1493e-09	4.0000	7.5554e-07	2.9999
7	510	4	1.0225	1.1049e-09	6.8832e-10	4.0650	9.4808e-08	3.0000

Table: Size of linear system, conjugate gradient iteration, condition number κ of the matrices B, errors, and convergence rates.

Example: 1D Biharmonic Equations

Consider the following differential equation:

$$\begin{cases} u^{(4)} = f & \text{on } (0,1), \\ u(0) = 16, \quad u'(0) = -64, \quad u(1) = 0, \quad u'(1) = 0, \end{cases}$$

where $f(x) = 24(15x^2 - 50x + 41)$. The exact solution is $u(x) = (x-2)^4(x-1)^2$.

Its corresponding Galerkin formulation is

$$\sum_{k=1}^{2^{n+2}} B_{j,k} c_k = \langle g_j, f \rangle - u(0) \chi_{\{2,3\}}(j) \langle g_j'', g_1'' \rangle - u'(0) \chi_{\{2,3\}}(j) \langle g_j'', g_4'' \rangle,$$

with the coefficient matrix $B_{i,k} := \langle g_i'', g_k'' \rangle$.

According to boundary conditions, the boundary elements are

$$\begin{split} \phi^L &:= \phi_1|_{[0,1]}, & \phi^R &:= \phi_2|_{[0,1]}, \\ \psi^L &:= \emptyset, & \psi^R &:= \emptyset. \end{split}$$

Boundary Elements and Numerical Performance

Use the second-order derivative-orthogonal Riesz wavelet derived from Hermite cubic splines with m=2.

Level	Size	κ	$\ e_n\ _{L_\infty}$	$ e_n _{L_2}$	$\log_2 \frac{\ e_{n-1}\ _{L_2}}{\ e_n\ _{L_2}}$	$ e_n _{H_1}$	$\log_2 \frac{\ e_{n-1}\ _{H^1}}{\ e_n\ _{H_1}}$
5	126	1	1.5129e-07	5.5402e-08		1.2283e-05	
6	254	1	9.5006e-09	3.4413e-09	4.0089	1.5354e-06	3.0000
7	510	1	5.9521e-10	2.1642e-10	3.9910	1.9193e-07	3.0000
8	1022	1	3.7247e-11	1.3528e-11	3.9998	2.4004e-08	2.9992
9	2046	1	2.3306e-12	8.4696e-13	3.9975	3.1070e-09	2.9497

Table: Size of linear system, no iteration is needed, condition number κ of the matrices B (B is the identity matrix), errors, and convergence rates.

General Construction of Wavelets on [0,1]

Theorem

Let
$$\Phi = \{\phi^1, \dots, \phi^r\}$$
, $\Psi = \{\psi^1, \dots, \psi^s\}$, and $\tilde{\Phi} = \{\tilde{\phi}^1, \dots, \tilde{\phi}^r\}$, $\tilde{\Psi} = \{\tilde{\psi}^1, \dots, \tilde{\psi}^s\}$ be sets of compactly supported functions in $L_2(\mathbb{R})$: $\phi^\ell(c_\ell^\phi - \cdot) = \epsilon_\ell^\phi \phi^\ell$, $\tilde{\phi}^\ell(c_\ell^\phi - \cdot) = \epsilon_\ell^\phi \tilde{\phi}^\ell$ with $c_\ell^\phi \in \mathbb{Z}, \epsilon_\ell^\phi \in \{-1, 1\}$, $\psi^\ell(c_\ell^\phi - \cdot) = \epsilon_\ell^\psi \psi^\ell$, $\tilde{\psi}^\ell(c_\ell^\phi - \cdot) = \epsilon_\ell^\psi \tilde{\psi}^\ell$ with $c_\ell^\psi \in \mathbb{Z}, \epsilon_\ell^\psi \in \{-1, 1\}$.

For
$$\epsilon \in \{-1,1\}$$
 and $c \in \mathbb{Z}$, define $\mathcal{I} := \left[\frac{c}{2},\frac{c}{2}+1\right]$. For $j \in \mathbb{N}_0$,

$$egin{aligned} d^\phi_{j,\ell} &:= \lfloor 2^{j-1}c - 2^{-1}c^\phi_\ell
floor, & d^\psi_{j,\ell} &:= \lfloor 2^{j-1}c - 2^{-1}c^\psi_\ell
floor, \ o^\phi_{j,\ell} &:= \mathsf{odd}(2^jc - c^\phi_\ell), & o^\psi_{j,\ell} &:= \mathsf{odd}(2^jc - c^\psi_\ell), \end{aligned}$$

where odd(m) := 1 if m is odd and odd(m) := 0 if m is even. Let $\chi_{\mathcal{I}}$ denote the characteristic function of the interval \mathcal{I} .

General Construction of Wavelets on [0, 1]...

Theorem

For
$$j \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$$
, define Ψ_j^ℓ to be
$$\begin{cases} \{F_{c,\epsilon}(\psi_{2^j;k}^\ell)\chi_{\mathcal{I}} : k = d_{j,\ell}^\psi + 1, \dots, d_{j,\ell}^\psi + 2^j\}, & o_{j,\ell}^\psi = 1, \\ \{F_{c,\epsilon}(\psi_{2^j;k}^\ell)\chi_{\mathcal{I}} : k = d_{j,\ell}^\psi + 1, \dots, d_{j,\ell}^\psi + 2^j - 1\}, & o_{j,\ell}^\psi = 0, \ \epsilon_\ell^\psi = -\epsilon, \\ \{F_{c,\epsilon}(\psi_{2^j;k}^\ell)\chi_{\mathcal{I}} : k = d_{j,\ell}^\psi + 1, \dots, d_{j,\ell}^\psi + 2^j - 1\} \\ \cup \{\frac{1}{\sqrt{2}}F_{c,\epsilon}(\psi_{2^j;d_{j,\ell}^\psi}^\ell)\chi_{\mathcal{I}}, \frac{1}{\sqrt{2}}F_{c,\epsilon}(\psi_{2^j;d_{j,\ell}^\psi + 2^j}^\ell)\chi_{\mathcal{I}}\}, & o_{j,\ell}^\psi = 0, \ \epsilon_\ell^\psi = \epsilon, \end{cases}$$
 where $F_{c,\epsilon}(f) := \sum_{k \in \mathbb{Z}} (f(\cdot - 2k) + \epsilon f(c + 2k - \cdot))$, and define $\tilde{\Psi}_j^\ell$, Φ_j^ℓ , $\tilde{\Phi}_j^\ell$ similarly. For $J \in \mathbb{N}_0$, define
$$\mathcal{B}_J := (\bigcup_{\ell=1}^r \Phi_J^\ell) \cup \bigcup_{j=J}^\infty (\bigcup_{\ell=1}^s \Psi_j^\ell), & \tilde{\mathcal{B}}_J := (\bigcup_{\ell=1}^r \tilde{\Phi}_J^\ell) \cup \bigcup_{j=J}^\infty (\bigcup_{\ell=1}^s \tilde{\Psi}_j^\ell).$$
 If $(\{\tilde{\Phi}; \tilde{\Psi}\}, \{\Phi; \Psi\})$ is a biorthogonal wavelet in $L_2(\mathbb{R})$, then $(\tilde{\mathcal{B}}_J, \mathcal{B}_J)$ is a pair of biorthogonal bases for $L_2(\mathcal{I})$ for all $J \in \mathbb{N}_0$. Moreover, \mathcal{B}_J and $\tilde{\mathcal{B}}_J$ are Riesz bases for $L_2(\mathcal{I})$.

Wavelets on [0,1] with Simple Structure

Let ϕ , $\tilde{\phi}$, ψ , $\tilde{\psi}$ be compactly supported vector functions in $L_2(\mathbb{R})$ with symmetry and all the symmetry centers satisfy

$$c_1^\phi=\cdots=c_r^\phi=c_1^\psi=\cdots=c_s^\psi=0.$$

In addition we assume that

all the elements/entries in ϕ and ψ vanish outside [-1,1].

Take c=0. Since $d^\phi_{j,\ell}=d^\psi_{j,\ell}=o^\phi_{j,\ell}=o^\psi_{j,\ell}=0$, Ψ^ℓ_j becomes

$$\begin{cases} \{\psi_{2^{j};k}^{\ell} \ : \ k=1,\ldots,2^{j}-1\}, & \epsilon_{\ell}^{\psi}=-\epsilon, \\ \{\psi_{2^{j};k}^{\ell} \ : \ k=1,\ldots,2^{j}-1\} \cup \{\sqrt{2}\psi_{2^{j};0}^{\ell}\chi_{[0,1]},\sqrt{2}\psi_{2^{j};2^{j}}^{\ell}\chi_{[0,1]}\}, & \epsilon_{\ell}^{\psi}=\epsilon. \end{cases}$$

- (i) If $\epsilon = -1$ and all entries in ϕ, ψ are continuous, then h(0) = h(1) = 0 for all $h \in \mathcal{B}_J$ (Dirichlet boundary condition).
- (ii) If $\epsilon = 1$ and all entries in ϕ, ψ are in $\mathscr{C}^1(\mathbb{R})$, then h'(0) = h'(1) = 0 for all $h \in \mathscr{B}_J$ (von Neumann boundary).

Tight Framelet from Hermite Linear Splines

A tight framelet $\{\phi; \psi\}$ is given by

$$\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi), \qquad \widehat{\psi}(2\xi) = \widehat{b}(\xi)\widehat{\phi}(\xi)$$

through a tight framelet filter bank $\{a; b\}$:

$$a = \left\{ \begin{bmatrix} \frac{1}{4} & \frac{\sqrt{7}}{14} \\ -\frac{\sqrt{7}}{8} & -\frac{1}{4} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}, \begin{bmatrix} \frac{1}{4} & -\frac{\sqrt{7}}{14} \\ \frac{\sqrt{7}}{8} & -\frac{1}{4} \end{bmatrix} \right\}_{[-1,1]},$$

$$b = \left\{ \begin{bmatrix} \frac{1}{4} & \frac{\sqrt{7}}{14} \\ \frac{1}{8} & \frac{\sqrt{7}}{28} \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -\frac{1}{2} & 0 \\ 0 & \frac{\sqrt{7}}{4} \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} \frac{1}{4} & -\frac{\sqrt{7}}{14} \\ -\frac{1}{8} & \frac{\sqrt{7}}{28} \\ 0 & \frac{\sqrt{42}}{14} \end{bmatrix} \right\}_{[-1,1]}.$$

Then $\{\phi; \psi\}$ generates a tight frame in $L_2(\mathbb{R})$ and has symmetry property.

Tight Framelet in $L_2([0,1])$ from Linear Splines

Tight Framelet from Hermite Quadratic Splines

A tight framelet $\{\phi; \psi\}$ is given by

$$\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi), \qquad \widehat{\psi}(2\xi) = \widehat{b}(\xi)\widehat{\phi}(\xi)$$

through a tight framelet filter bank $\{a; b\}$:

$$a = \left\{ \begin{bmatrix} \frac{1}{4} & \frac{\sqrt{7}}{28} \\ -\frac{\sqrt{7}}{8} & -\frac{1}{8} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}, \begin{bmatrix} \frac{1}{4} & -\frac{\sqrt{7}}{28} \\ \frac{\sqrt{7}}{8} & -\frac{1}{8} \end{bmatrix} \right\}_{[-1,1]},$$

$$b = \left\{ \begin{bmatrix} \frac{1}{4} & \frac{\sqrt{7}}{28} \\ \frac{1}{8} & \frac{\sqrt{7}}{56} \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} -\frac{1}{2} & 0 \\ 0 & \frac{\sqrt{7}}{4} \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} \frac{1}{4} & -\frac{\sqrt{7}}{28} \\ -\frac{1}{8} & \frac{\sqrt{7}}{56} \\ 0 & \frac{\sqrt{21}}{7} \end{bmatrix} \right\}_{[-1,1]}.$$

Then $\{\phi; \psi\}$ generates a tight frame in $L_2(\mathbb{R})$ and has symmetry property.

Tight Framelet in $L_2([0,1])$ from Quadratic Splines

Riesz Wavelet from Hermite Cubic Splines

A Riesz wavelet $\{\phi; \psi\}$ is given by

$$\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi), \qquad \widehat{\psi}(2\xi) = \widehat{b}(\xi)\widehat{\phi}(\xi)$$

through a filter bank $\{a;b\}$ (part of a biorthogonal wavelet filter bank $(\{a;b\},\{\tilde{a};\tilde{b}\})$:

$$\begin{split} a &= \left\{ \begin{bmatrix} \frac{1}{4} & \frac{3}{8} \\ -\frac{1}{16} & -\frac{1}{16} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}, \begin{bmatrix} \frac{1}{4} & -\frac{3}{8} \\ \frac{1}{16} & -\frac{1}{16} \end{bmatrix} \right\}_{[-1,1]}, \\ b &= \left\{ \begin{bmatrix} -\frac{1}{4} & -\frac{23}{24} \\ \frac{1}{16} & \frac{91}{176} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{37}{44} \end{bmatrix}, \begin{bmatrix} -\frac{1}{4} & \frac{23}{24} \\ -\frac{1}{16} & \frac{91}{176} \end{bmatrix} \right\}_{[-1,1]}, \end{split}$$

Then $\{\phi; \psi\}$ generates a Riesz wavelet in $L_2(\mathbb{R})$ and has symmetry property.

Riesz Wavelet in $L_2([0,1])$ from Cubic Splines

Riesz Wavelet from B₂ Spline

A Riesz wavelet $\{\phi; \psi\}$ is given by

$$\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi), \qquad \widehat{\psi}(2\xi) = \widehat{b}(\xi)\widehat{\phi}(\xi)$$

through a filter bank $\{a;b\}$ (part of a biorthogonal wavelet filter bank $(\{a;b\},\{\tilde{a};\tilde{b}\})$:

$$a = \left\{ \begin{bmatrix} 0 & \frac{1}{4} \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & \frac{1}{4} \\ 0 & \frac{1}{4} \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ \frac{1}{2} & \frac{1}{4} \end{bmatrix} \right\}_{[-1,1]},$$

$$b = \left\{ \begin{bmatrix} \frac{1}{4} & -\frac{1}{2} \\ -\frac{1}{3} & \frac{1}{2} \end{bmatrix}, \begin{bmatrix} 0 & \frac{1}{2} \\ -\frac{1}{3} & \frac{1}{2} \end{bmatrix}, \begin{bmatrix} -\frac{1}{4} & 0 \\ -\frac{1}{3} & 0 \end{bmatrix} \right\}_{[-1,1]},$$

Then $\{\phi; \psi\}$ generates a Riesz wavelet in $L_2(\mathbb{R})$ and has symmetry property.

Riesz Wavelet in $L_2([0,1])$ from B_2 Spline

Orthogonal Multiwavelet

An orthogonal wavelet $\{\phi;\psi\}$ (Gernimo-Hardin-Massopust) is given by

$$\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi), \qquad \widehat{\psi}(2\xi) = \widehat{b}(\xi)\widehat{\phi}(\xi)$$

through a filter bank $\{a;b\}$ (part of a biorthogonal wavelet filter bank $(\{a;b\},\{\tilde{a};\tilde{b}\})$:

$$a = \left\{ \begin{bmatrix} \frac{3}{5} & \frac{4\sqrt{2}}{5} \\ -\frac{\sqrt{2}}{20} & -\frac{3}{10} \end{bmatrix}, \begin{bmatrix} \frac{3}{5} & 0 \\ \frac{9\sqrt{2}}{20} & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ \frac{9\sqrt{2}}{20} & -\frac{3}{10} \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ -\frac{\sqrt{2}}{20} & 0 \end{bmatrix} \right\}_{[0,3]},$$

$$b = \left\{ \begin{bmatrix} -\frac{\sqrt{2}}{20} & -\frac{3}{10} \\ \frac{1}{10} & \frac{3\sqrt{2}}{10} \end{bmatrix}, \begin{bmatrix} \frac{9\sqrt{2}}{20} & -1 \\ -\frac{9}{10} & 0 \end{bmatrix}, \begin{bmatrix} \frac{9\sqrt{2}}{20} & -\frac{3}{10} \\ \frac{9}{10} & -\frac{3\sqrt{2}}{10} \end{bmatrix}, \begin{bmatrix} -\frac{\sqrt{2}}{20} & 0 \\ -\frac{1}{10} & 0 \end{bmatrix} \right\}_{[0,3]}.$$

Then $\{\phi; \psi\}$ generates an orthogonal wavelet in $L_2(\mathbb{R})$ and has symmetry property.

Orthogonal Multiwavelet in $L_2([0,1])$

Orthogonal Multiwavelet

An orthogonal wavelet $\{\phi; \psi\}$ is given by

$$\widehat{\phi}(2\xi) = \widehat{a}(\xi)\widehat{\phi}(\xi), \qquad \widehat{\psi}(2\xi) = \widehat{b}(\xi)\widehat{\phi}(\xi)$$

through a filter bank $\{a;b\}$ (part of a biorthogonal wavelet filter bank $(\{a;b\},\{\tilde{a};\tilde{b}\})$:

$$a = \left\{ \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\ -\frac{\sqrt{7}}{8} & -\frac{\sqrt{7}}{8} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{4} \end{bmatrix}, \begin{bmatrix} \frac{1}{4} & -\frac{1}{4} \\ \frac{\sqrt{7}}{8} & -\frac{\sqrt{7}}{8} \end{bmatrix} \right\}_{[-1,1]},$$

$$b = \left\{ \begin{bmatrix} -\frac{1}{4} & -\frac{1}{4} \\ \frac{1}{8} & \frac{1}{8} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{\sqrt{7}}{4} \end{bmatrix}, \begin{bmatrix} -\frac{1}{4} & \frac{1}{4} \\ -\frac{1}{8} & \frac{1}{8} \end{bmatrix} \right\}_{[-1,1]}.$$

Then $\{\phi; \psi\}$ generates an orthogonal wavelet in $L_2(\mathbb{R})$ and has symmetry property.

Orthogonal Multiwavelet in $L_2([0,1])$

Summary

- Riesz wavelets with short support and high vanishing moments are often used in wavelet application to numerical PDEs.
- To have short support and high vanishing moments, people often adopt Riesz multiwavelets derived from biorthogonal multiwavelets using matrix-valued filter banks.
- Wavelets on the real line have to be adapted into bounded intervals with prescribed boundary conditions.
- Then either Galerkin scheme or collocation method is used by using wavelet bases.
- Advantages of wavelet applications to PDEs:
 - Uniformly bounded condition numbers.
 - Sparse coefficient matrices for efficient computing.
 - Adaptive wavelet numerical method can handle singularities in solutions of PDEs.
- Shortcomings: Not that easy to design wavelets with prescribed boundary conditions for general domains.