Basics on Wavelet Theory and Its Applications

Bin Han

Department of Mathematical and Statistical Sciences University of Alberta, Edmonton, Canada

Present at 2021 International Undergraduate Summer Enrichment Program at UofA

$$
\text { July 12-August 13, } 2021
$$

Outline of Mini-Course Talks

- What is the discrete wavelet transform and why is it useful?
- General discrete wavelet transforms and types of wavelets.
- Wavelets and framelets in the discrete and function settings.
- Wavelet applications to signal and image processing.
- Wavelet-based methods for numerical solutions to partial differential equations (PDEs).

Declaration: Some figures and graphs in this talk are from the book [Bin Han, Framelets and Wavelets: Algorithms, Analysis and Applications, Birkhäuser/Springer, 2017] and various other sources from Internet, or from published papers, or produced by matlab, maple, or C programming. [Details and sources of all graphs can be provided upon request of the audience.]

Bin Han

Framelets and Wavelets

Algorithms, Analysis, and Applications

E Birkhäuser

How to represent data economically?

- In today's world, most data and signals are in digital format: digital TV, movies, songs, signals, images, videos,...
- How to represent data effectively (as few numbers as possible)?
- How to detect the sharp changes in data?
- Key advantages of wavelets:
- sparse representation.
- multiscale tree structure.
- fast computational algorithms.

Record information effectively

Given a particular signal to you:
$[-21,-22,-23,-23,-25,38,36,34]$. If you are allowed to send out only one number about this signal, which number shall you choose?

Your answer(s):

Record information effectively

Given a particular signal to you:
$[-21,-22,-23,-23,-25,38,36,34]$.
If you are allowed to send out only one number about this signal,
which number shall you choose?
Your answer(s): Average

$$
\frac{-21-22-23-23-25+38+36+34}{8}=-0.75
$$

Represent $[-21,-22,-23,-23,-25,38,36,34]$

The idea of wavelets using numbers

- $x=[-21,-22,-23,-23,-25,38,36,34]$.
- Averages at level 1 (A1): -0.75 ,
- Average at level 2 (A2): -21.5, 21.5
- Averages at level 3 (A3): $0.75,-0.75,-14.25,14.25$.
- Averages at level 4 (A4): $0.5,-0.5,0,0,-31.5,31.5,1,-1$.

Graph of wavelet coefficients A1

Graph of wavelet coefficients A2

Graph of wavelet coefficients A3

Graph of wavelet coefficients A4

Reconstruction: A1 (1 number)

Reconstruction: $A 1+A 2$ (2 numbers)

Reconstruction: $A 1+A 2+A 3$ (4 numbers)

Reconstruction: $A 1+A 2+A 3+A 4$ (8 numbers)

Comparison: Original-Reconstructed

Why wavelets?

- $x=[-21,-22,-23,-23,-25,38,36,34]$.
- Averages at level 1 (A1): -0.75 ,
- Average at level 2 (A2): $-21.5,21.5$
- Averages at level 3 (A3): $0.75,-0.75,-14.25,14.25$.
- Averages at level 4 (A4): $0.5,-0.5,0,0,-31.5,31.5,1,-1$

Comparison: Original

Reconstructed with 3 numbers by thresholding

Comparison: Original-Reconstructed

How to compute wavelet coefficients fast?

- $x=[-21,-22,-23,-23,-25,38,36,34]$.
- Averages at level 1 (A1): -0.75 ,
- Average at level 2 (A2): -21.5, 21.5
- Averages at level 3 (A3): 0.75, $-0.75,-14.25,14.25$.
- Averages at level 4 (A4): $0.5,-0.5,0,0,-31.5,31.5,1,-1$.

Are we missing something for wavelets? or can we expect more from wavelets?

How to compute wavelet coefficients fast?

- $x=[-21,-22,-23,-23,-25,38,36,34]$.
- Averages at level 1 (A1): -0.75 ,
- Average at level 2 (A2): -21.5, 21.5
- Averages at level 3 (A3): 0.75, $-0.75,-14.25,14.25$.
- Averages at level 4 (A4): $0.5,-0.5,0,0,-31.5,31.5,1,-1$.

Are we missing something for wavelets? or can we expect more from wavelets?

For applications,

a fast computational algorithm is highly demanded!

Fast Wavelet Transform (FWT): Decomposition

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.

Fast Wavelet Transform (FWT): Decomposition

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.

Fast Wavelet Transform (FWT): Decomposition

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: $[-22.25,20.75]$. Differences: [0.75, -14.25].

Fast Wavelet Transform (FWT): Decomposition

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: $[-22.25,20.75]$. Differences: $[0.75,-14.25]$.
- Averages: [-0.75]. Differences: [-21.5].

Fast Wavelet Transform (FWT): Decomposition

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: $[-22.25,20.75]$. Differences: $[0.75,-14.25]$.
- Averages: [-0.75]. Differences: [-21.5].
- Compare:

Fast Wavelet Transform (FWT): Decomposition

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].
- Compare:
- Averages at level 1 (A1): -0.75 ,

Fast Wavelet Transform (FWT): Decomposition

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].
- Compare:
- Averages at level 1 (A1): -0.75,
- Average at level 2 (A2): -21.5, 21.5

Fast Wavelet Transform (FWT): Decomposition

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].
- Compare:
- Averages at level 1 (A1): -0.75 ,
- Average at level 2 (A2): -21.5, 21.5
- Averages at level 3 (A3): 0.75, -0.75, -14.25, 14.25.

Fast Wavelet Transform (FWT): Decomposition

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].
- Compare:
- Averages at level 1 (A1): -0.75 ,
- Average at level 2 (A2): -21.5, 21.5
- Averages at level 3 (A3): $0.75,-0.75,-14.25,14.25$.
- Averages at level 4 (A4): $0.5,-0.5,0,0,-31.5,31.5,1,-1$.

Fast Wavelet Transform (FWT): Reconstruction

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].

Fast Wavelet Transform (FWT): Reconstruction

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].
- Reconstruction: Apply subdivision scheme (prediction for doubling its size): $[-0.75] \rightarrow \underline{[-0.75,-0.75]}$.

Fast Wavelet Transform (FWT): Reconstruction

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: [$-21.5,-23 \mid 6.5,35$]. Difference: $[0.5,0,-31.5,1]$.
- Averages: [$-22.25,20.75$]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].
- Reconstruction: Apply subdivision scheme (prediction for doubling its size): $[-0.75] \rightarrow \underline{[-0.75,-0.75]}$.
- Add the finest detail [-21.5,21.5] to get [-22.25, 20.75]

Fast Wavelet Transform (FWT): Reconstruction

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: [$-22.25,20.75$]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].
- Reconstruction: Apply subdivision scheme (prediction for doubling its size): $[-0.75] \rightarrow \underline{[-0.75,-0.75]}$.
- Add the finest detail [-21.5,21.5] to get [$-22.25,20.75$]
- Subdivide $[-22.25,20.75] \rightarrow[-22.25,-22.25,20.75,20.75]$.

Fast Wavelet Transform (FWT): Reconstruction

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].
- Reconstruction: Apply subdivision scheme (prediction for doubling its size): $[-0.75] \rightarrow \underline{[-0.75,-0.75]}$.
- Add the finest detail [-21.5, 21.5] to get [-22.25, 20.75]
- Subdivide $[-22.25,20.75] \rightarrow[-22.25,-22.25,20.75,20.75]$.
- Add detail $[0.75,-0.75-14.25,14.25] \Rightarrow[-21.5,-23,6.5,35]$.

Fast Wavelet Transform (FWT): Reconstruction

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].
- Reconstruction: Apply subdivision scheme (prediction for doubling its size): $[-0.75] \rightarrow \underline{[-0.75,-0.75]}$.
- Add the finest detail [-21.5,21.5] to get [$-22.25,20.75$]
- Subdivide $[-22.25,20.75] \rightarrow[-22.25,-22.25,20.75,20.75]$.
- Add detail $[0.75,-0.75-14.25,14.25] \Rightarrow[-21.5,-23,6.5,35]$.
- Subdivide[-21.5, -23, 6.5, 35] \rightarrow

$$
[-21.5,-21.5,-23,-23,6.5,6.5,35,35]
$$

Fast Wavelet Transform (FWT): Reconstruction

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: $[-22.25,20.75]$. Differences: $[0.75,-14.25]$.
- Averages: [-0.75]. Differences: [-21.5].
- Reconstruction: Apply subdivision scheme (prediction for doubling its size): $[-0.75] \rightarrow[-0.75,-0.75]$.
- Add the finest detail [-21.5,21.5] to get $[-22.25,20.75]$
- Subdivide $[-22.25,20.75] \rightarrow[-22.25,-22.25,20.75,20.75]$.
- Add detail $[0.75,-0.75-14.25,14.25] \Rightarrow[-21.5,-23,6.5,35]$.
- Subdivide[-21.5, -23, 6.5, 35] \rightarrow

$$
[-21.5,-21.5,-23,-23,6.5,6.5,35,35]
$$

- Add detail $[0.5,-0.5,0,0,-31.5,31.5,1,-1]$ to get $[-21,-22,-23,-23,-25,38,36,34]$.

Discrete Fourier Transform (DFT)

- Discrete Fourier transform (DFT):

$$
[x(0), \ldots, x(N-1)] \rightarrow[\widehat{x}(0), \ldots, \widehat{x}(N-1)]:
$$

$$
\widehat{x}(k)=\sum_{n=0}^{N-1} x(n) e^{-i 2 \pi k n / N}, \quad k=0, \ldots, N-1
$$

- Inverse discrete Fourier transform (iDFT):
$[\widehat{x}(0), \ldots, \widehat{x}(N-1)] \rightarrow[x(0), \ldots, x(N-1)]:$

$$
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} \widehat{x}(k) e^{i 2 \pi k n / N}, \quad n=0, \ldots, N-1
$$

Fast Fourier Transform: Complexity $\mathscr{O}(N \log N)$

\widehat{x} can be computed efficiently by Fast Fourier Transform (FFT), for example, through the Butterfly Scheme:

Fourier transform Lacks Time Localization

$$
x=[0,0,0,0,1,0,0,0] \longleftrightarrow \widehat{x}=[1,-1,1,-1,1,-1,1,-1] .
$$

Fourier transform Lacks Time Localization

$$
x=[0,0,0,0,1,0,0,0] \longleftrightarrow \widehat{x}=[1,-1,1,-1,1,-1,1,-1] .
$$

How does Fourier Transform Perform?

- $x=[-21,-22,-23,-23,-25,38,36,34]$.
- $|\widehat{x}|=[6,141.74,59.21,24.51,60,24.51,59.21,141.74]$.
- $\widehat{x}=[-6,1.87+141.73 i,-59-5 i, 6.12+23.74 i,-60,6.12-$ $23.74 i,-59+5 i, 1.87-141.73 i]$.
- Reconstructed using 3 largest coefficients:
- $\tilde{x}=$

$$
[-7.03,-17.22,-42.93,-17.89,-7.97,32.22,27.93,32.89] .
$$

Magnitude of Fourier Coefficients

Comparison: Original

Reconstructed with 3 Numbers by Thresholding

Comparison: Original-Reconstructed

Reconstructed with 5 Numbers by Thresholding

Comparison: Original-Reconstructed

Comparison with Wavelets: Original-Reconstructed

Revisit: Multiscale Wavelet Transform

- Decomposition:
- $[-21,-22,-23,-23,-25,38,36,34]$.
- $[-21.5,-23,6.5,35,0.5,0,-31.5,1]$.
- $[-22.25,20.75,0.75,-14.25,0.5,0,-31.5,1]$.
- $[-0.75,-21.5,0.75,-14.25,0.5,0,-31.5,1]$.
- Processing: Drop small wavelet coefficients.
- Reconstruction:
- $[-0.75,-21.5,0.75,-14.25,0.5,0,-31.5,1]$.
- Apply subdivision scheme: $[-0.75] \rightarrow[-0.75,-0.75]$.
- Add the detail $[-21.5,21.5]$ to get $[-22.25,20.75]$
- $[-22.25,20.75,0.75,-14.25,0.5,0,-31.5,1]$.
- $[-21.5,-23,6.5,35,0.5,0,-31.5,1]$.
- $[-21,-22,-23,-23,-25,38,36,34]$.

Convolutions, Downsampling and Upsampling

- Model signals by sequences in $\ell(\mathbb{Z}): v=\{v(k)\}_{k \in \mathbb{Z}}: \mathbb{Z} \rightarrow \mathbb{C}$.
- Model filters by finitely supported sequences $\ell_{0}(\mathbb{Z})$: $u=\{u(k)\}_{k \in \mathbb{Z}}$ such that $u(k) \neq 0$ for finitely many $k \in \mathbb{Z}$.
- Convolutions: For $j \in \mathbb{Z}$,

$$
\begin{aligned}
{[u * v](j): } & =\sum_{k \in \mathbb{Z}} u(j-k) v(k) \\
& =\cdots+u(1) v(j-1)+u(0) v(j)+u(-1) v(j+1)+\cdots
\end{aligned}
$$

- Downsampling: For $v=\{v(k)\}_{k \in \mathbb{Z}},[v \downarrow 2](k):=v(2 k)$ for $k \in \mathbb{Z}$. That is, only keep $v(k)$ on even integer positions $k \in 2 \mathbb{Z}$.
- Upsampling: Padding zero in between,
$[v \uparrow 2](k)=v(k / 2)$ if k is even \quad and $\quad[v \uparrow 2](k)=0$ if k is odd.
- Flipping filters: $u^{\star}(k):=\overline{u(-k)}$ for $k \in \mathbb{Z}$.

z-transform and Fourier series

- For $u \in \ell(\mathbb{Z})$, its z-transform is given by

$$
\mathrm{u}(z):=\sum_{k \in \mathbb{Z}} u(k) z^{k}, \quad z \in \mathbb{C} \backslash\{0\}
$$

- Its Fourier transform \widehat{u} is 2π-periodic and is given by

$$
\widehat{u}(\xi):=u\left(e^{-i \xi}\right)=\sum_{k \in \mathbb{Z}} u(k) e^{-i k \xi}, \quad \xi \in \mathbb{R} .
$$

- The z transform of $u * v$ is $u(z) v(z)$ and $\widehat{u * v}(\xi)=\widehat{u}(\xi) \widehat{v}(\xi)$.
- The z-transform of $v \downarrow 2$ is $\left[v\left(z^{1 / 2}\right)+v\left(-z^{1 / 2}\right)\right] / 2$ and $\widehat{v \downarrow 2}(\xi)=[\widehat{v}(\xi / 2)+\widehat{v}(\xi / 2+\pi)] / 2$.
- The z-transform of $v \uparrow 2$ is $v\left(z^{2}\right)$ and $\widehat{v \uparrow 2}(\xi)=\widehat{v}(2 \xi)$.
- $u^{\star}(z)=\overline{u(1 / z)}$ and $\widehat{u^{\star}}(\xi)=\overline{\widehat{u}(\xi)}$.

Haar Wavelet Decomposition

- $x=[-21,-22,-23,-23,-25,38,36,34]_{[0,7]}$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- $v=[\ldots, 0,0,-21,-22,-23,-23,-25,38,36,34,0,0, \ldots]$.
- Define the Haar low-pass filter a and high-pass filter b :

$$
a=\left\{\frac{1}{2}, \frac{1}{2}\right\}_{[0,1]}, \quad b=\left\{\frac{1}{2},-\frac{1}{2}\right\}_{[0,1]} .
$$

- $\widehat{v * a^{\star}}(\xi)=\widehat{v}(\xi) \widehat{a^{\star}}(\xi)=\widehat{v}(\xi) \overline{\hat{a}(\xi)}$, that is, $v * a^{\star}$ is $[\ldots, \underline{0},-10.5, \underline{21.5},-22.5,-23,-24, \underline{6.5}, 37, \underline{35}, 17, \underline{0}, \ldots]$.
- $\left[v * a^{\star}\right] \downarrow 2=[\ldots, \underline{0}, \underline{21.5}, \underline{-23}, \underline{6.5}, \underline{35}, \underline{0}, \ldots]$.
- $v * b^{\star}=[\ldots, \underline{0}, 10.5, \underline{0.5}, 0.5, \underline{0}, 1, \underline{-31.5}, 1, \underline{1}, 17, \underline{0}, \ldots]$.
- $\left[v * b^{\star}\right] \downarrow 2=[\ldots, \underline{0}, \underline{0.5}, \underline{0}, \underline{-31.5}, \underline{1}, \underline{0}, \ldots]$.

Undecimated Frequency Viewpoint

(a) $|\widehat{v}(\xi)|$

(d) $|\widehat{v}(\xi) \overline{\hat{a}(\xi)}|$

(b) $|\hat{a}(\xi)|$

(e) $\mid \widehat{v}(\xi) \overline{\widehat{b}(\xi) \mid}$

(c) $|\widehat{b}(\xi)|$

(f) $|\widehat{a}|^{2}+|\widehat{b}|^{2}$

Undecimated Haar Wavelet Transform

- $a=\left\{\frac{1}{2}, \frac{1}{2}\right\}_{[0,1]}$ and $b=\left\{\frac{1}{2},-\frac{1}{2}\right\}_{[0,1]}$.
- $|\widehat{a}(\xi)|^{2}=\cos ^{2}(\xi / 2)$ and $|\widehat{b}(\xi)|^{2}=\sin ^{2}(\xi / 2)$.
- $|\widehat{a}(\xi)|^{2}+|\widehat{b}(\xi)|^{2}=1$.
- Perfect reconstruction:

$$
\widehat{v}(\xi)=\widehat{v}(\xi)[\overline{\hat{a}(\xi)} \widehat{a}(\xi)+\widehat{\hat{b}}(\xi) \widehat{b}(\xi)]=[\widehat{v}(\xi) \overline{\hat{a}(\xi)}] \widehat{a}(\xi)+[\widehat{v}(\xi) \widehat{\hat{b}}(\xi)]] \widehat{b}(\xi) .
$$

- The undecimated Haar wavelet transform is

$$
v=\left(v * a^{\star}\right) * a+\left(v * b^{\star}\right) * b
$$

- Energy preservation: $\|v\|_{\ell_{2}(\mathbb{Z})}^{2}=\left\|v * a^{\star}\right\|_{\ell_{2}(\mathbb{Z})}^{2}+\left\|v * b^{\star}\right\|_{\ell_{2}(\mathbb{Z})}^{2}$, where $\|v\|_{\ell_{2}(\mathbb{Z})}^{2}:=\sum_{k \in \mathbb{Z}}|v(k)|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|\widehat{v}(\xi)|^{2} d \xi$.
- Lengths of $v * a^{\star}$ and $v * b^{\star}$ are the same as that of v !.

Decimated Frequency Viewpoint

(a) $|\widehat{v}(\xi)|$

(d) $|\hat{a}|$ and $|\widehat{b}|$

Bin Han (University of Alberta)
Bin Han (Universty of Alserta)

(Decimated) Haar Wavelet Transform

- $a=\left\{\frac{1}{2}, \frac{1}{2}\right\}_{[0,1]}$ and $b=\left\{\frac{1}{2},-\frac{1}{2}\right\}_{[0,1]}$.
- $|\widehat{a}(\xi)|^{2}=\cos ^{2}(\xi / 2)$ and $|\widehat{b}(\xi)|^{2}=\sin ^{2}(\xi / 2)$.
- $\left[v * a^{\star}\right] \downarrow 2(\xi)=\widehat{v}(\xi / 2) \overline{\hat{a}(\xi)}+\widehat{v}(\xi / 2+\pi) \overline{\hat{a}(\xi / 2+\pi)}$.
- $\left[v * \widehat{b^{\star}}\right] \downarrow 2(\xi)=\widehat{v}(\xi / 2) \widehat{\widehat{b}}(\xi)+\widehat{v}(\xi / 2+\pi) \widehat{\widehat{b}}(\xi / 2+\pi)$.
- $v=2^{-1 / 2}\left[\left(\sqrt{2}\left[v * a^{\star}\right] \downarrow 2\right) \uparrow 2\right] * a+2^{-1 / 2}\left[\left(\sqrt{2}\left[v * b^{\star}\right] \downarrow 2\right) \uparrow 2\right] * b$,

$$
\begin{aligned}
\widehat{v}(\xi)= & {[\widehat{v}(\xi) \overline{\hat{a}(\xi)}+\widehat{v}(\xi+\pi) \overline{\hat{a}(\xi+\pi)}] \widehat{a}(\xi) } \\
& +[\widehat{v}(\xi) \widehat{b}(\xi)+\widehat{v}(\xi+\pi) \widehat{\hat{b}}(\xi+\pi)] \widehat{b}(\xi)
\end{aligned}
$$

- The above perfect reconstruction holds if and only if

$$
\overline{\hat{a}(\xi)} \widehat{a}(\xi)+\overline{\widehat{b}}(\xi) \widehat{b}(\xi)=1, \quad \overline{\hat{a}(\xi+\pi)} \widehat{a}(\xi)+\overline{\widehat{b}}(\xi+\pi) \widehat{b}(\xi)=0
$$

- Such $\{a ; b\}$ is called an orthogonal wavelet filter bank.
- Energy preservation:

$$
\|v\|_{\ell_{2}(\mathbb{Z})}^{2}=\left\|\sqrt{2}\left(v * a^{\star}\right) \downarrow 2\right\|_{\ell_{2}(\mathbb{Z})}^{2}+\left\|\sqrt{2}\left(v * b^{\star}\right) \downarrow 2\right\|_{\ell_{2}(\mathbb{Z})}^{2} .
$$

Revisit Haar Wavelet Decomposition

- $x=[-21,-22,-23,-23,-25,38,36,34]_{[0,7]}$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- $v=[\ldots, 0,0,-21,-22,-23,-23,-25,38,36,34,0,0, \ldots]$.
- $a=\left\{\frac{1}{2}, \frac{1}{2}\right\}_{[0,1]}$ and $b=\left\{\frac{1}{2},-\frac{1}{2}\right\}_{[0,1]}$.
- $\widehat{v * a^{\star}}(\xi)=\widehat{v}(\xi) \widehat{a^{\star}}(\xi)=\widehat{v}(\xi) \overline{\hat{a}(\xi)}$, that is, $v * a^{\star}$ is $[\ldots, \underline{0},-10.5, \underline{21.5},-22.5, \underline{-23},-24, \underline{6.5}, 37, \underline{35}, 17, \underline{0}, \ldots]$.
- $\left[v * a^{\star}\right] \downarrow 2=[\ldots, \underline{0}, \underline{21.5}, \underline{-23}, \underline{6.5}, \underline{35}, \underline{0}, \ldots]$.
- $v * b^{\star}=[\ldots, \underline{0}, 10.5, \underline{0.5}, 0.5, \underline{0}, 1, \underline{-31.5}, 1, \underline{1}, 17, \underline{0}, \ldots]$.
- $\left[v * b^{\star}\right] \downarrow 2=[\ldots, \underline{0}, \underline{0.5}, \underline{0}, \underline{-31.5}, \underline{1}, \underline{0}, \ldots]$.
- $\|v\|_{\ell_{2}}^{2}=6504=5109+1395=\left\|v * a^{\star}\right\|_{\ell_{2}}^{2}+\left\|v * b^{\star}\right\|_{\ell_{2}}^{2}$.
- $\|v\|_{\ell_{2}}^{2}=6504=4517+1987=\left\|\sqrt{2} v * a^{\star} \downarrow 2\right\|_{\ell_{2}}^{2}+\left\|\sqrt{2} v * b^{\star} \downarrow 2\right\|_{\ell_{2}}^{2}$.

Differences: Tight Frames and Orthonormal Bases

$$
\boldsymbol{q}^{v_{2}}=\left(-\sqrt{\frac{1}{6}}, \sqrt{\frac{1}{2}}\right)
$$

Figure: Left: Orthonormal basis $\left\{e_{1}=(1,0), e_{2}=(0,1)\right\}$ in \mathbb{R}^{2}. Right: Tight frame $\left\{v 1=\left(\sqrt{\frac{2}{3}}, 0\right), v_{2}=\left(-\sqrt{\frac{1}{6}}, \sqrt{\frac{1}{2}}\right), v_{3}=\left(-\sqrt{\frac{1}{6}},-\sqrt{\frac{1}{2}}\right)\right\}$ in \mathbb{R}^{2}.

$$
\begin{aligned}
& v=\left\langle v, e_{1}\right\rangle e_{1}+\left\langle v, e_{2}\right\rangle e_{2} \\
& v=\left\langle v, u_{1}\right\rangle u_{1}+\left\langle v, u_{2}\right\rangle u_{2}+\left\langle v, u_{3}\right\rangle u_{3}
\end{aligned}
$$

A tight frame generalizes an orthonormal basis by having redundancye and more elements.

Summary

- Four types of wavelets and framelet:
- Wavelets: orthogonal wavelets and biorthogonal wavelets
- Framelets: tight framelets and dual framelets.
- For compression purpose such as signal/image compression and wavelet applications to numerical PDEs, we often use (bi)orthogonal wavelet filter banks $\{a ; b\}$: (1) More restrictive conditions on filter banks; (2) no redundance.
- For data sciences applications such as signal and image processing, we often use dual (or tight) framelet filter banks $\left\{a ; b_{1}, \ldots, b_{s}\right\}:(1)$ less restrictive conditions on filter banks (flexibility); (2) enjoy redundancy.
- The undecimated Haar wavelet filter bank can be written as the tight framelet filter bank $\{a ; a(\cdot-1), b, b(\cdot-1)\}$.
- Haar orthogonal wavelet filter bank is simple, but more wavelet filter banks with some additional desired properties are needed.

