
Wavelets/Framelets for Computer Graphics
The following is based on book manuscript: B. Han, Frameletsand Wavelets: Al-

gorithms, Analysis and Applications.
In this project, we only deal with computer generated curves(not surfaces). This is

an easier project than the project on wavelets/framelets for signal/image processing.
To introduce a subdivision curve, we need some definitions and notation. Byl(Z)

we denote the linear space of all sequencesv = {v(k)}k∈Z :Z→C of complex numbers
onZ. One -dimensional discrete input data or signal is often treated as an element in
l(Z). Similarly, by l0(Z) we denote the linear space of all sequencesu = {u(k)}k∈Z :
Z→ C onZ such that{k ∈ Z : u(k) 6= 0} is a finite set. An element inl0(Z) is often
regarded as a finite-impulse-response (FIR) filter (also called a finitely supported mask
in the literature of wavelet analysis). In this book we oftenuseu for a general filter and
v for a general signal or data. It is often convenient to use theformal Fourier series (or
symbol)v̂ of a sequencev = {v(k)}k∈Z, which is defined as follows:

v̂(ξ ) := ∑
k∈Z

v(k)e−ikξ , ξ ∈ R, (1)

wherei in this book always denotes the imaginary unit. Forv∈ l0(Z), v̂ is a 2π-periodic
trigonometric polynomial.

LetM be a positive integer greater than one. For a filtera ∈ l0(Z) andv ∈ l(Z), the
subdivision operator SM,a : l(Z)→ l(Z) is defined to be

[SM,av](n) := 2 ∑
k∈Z

v(k)a(n−Mk), n ∈ Z. (2)

Given an initial control polygonal shape{v(k)}k∈Z. We can generate a smooth
curve through subdivision schemes. Forj ∈ N, define

v j := S
j
M,av.

That is, we apply the subdivision operatorj times (see the other project about how to
efficiently implement a subdivision operator). Now we define“a function” f j on the
lattice 2− j

Z as:
f j(2− jk) := v j(k), k ∈ Z.

Then we connect these discrete points one-by-one to create afunction f j . When j →∞,
then f j → f , where f is the smooth subdivision curves. In practice, we only applythe
subdivision scheme no more than 10 times.

To efficiently compute valuesSa,Mv on the refined reference meshM−1Z from v
on the coarse meshZ, we often rewrite the subdivision operator using coset masks and
convolution: Forβ ,γ ∈ Z,

[Sa,Mv](γ +Mβ ) = |M| ∑
k∈Z

v(k)a(γ +Mβ −Mk) = |M|[v∗ a[γ]](β ), (3)

where thecoset mask a[γ] of the maska is defined to be

a[γ](k) := a(γ +Mk), k,γ ∈ Z. (4)
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If ∑k∈Z a(k) = 1, then|M|∑k∈Z a[γ](k) = 1 for all γ ∈ Z. Hence, a subdivision scheme
is a local averaging rule. Moreover,

[Sa,Mv](γ +Mβ ) = |M|[v∗ a[γ]](β ) = 〈v(β + ·), |M|a[γ](−·)〉, (5)

which is attached to the pointβ +M
−1γ −M

−1ca. Consequently, the filter

{|M|a[γ](−k)}k∈Z = {|M|a(γ −Mk)}k∈Z, γ ∈ {0, . . . ,M−1}

is called theM−1γ-stencil of the maska for computing the values[Sa,Mv](γ +M·) on
the cosets inM−1γ +Z of the refined meshM−1Z. It is more convenient to use stencils
for subdivision schemes in computer graphics than a filter/maska.

To deal with curves in two or three dimensions, we simply apply the subdivision
scheme componentwise (that is, entrywise). Quite often we also needa to have sym-
metry:

a(c− k) = a(k), k ∈ Z

for some integerc. That is, we see thata has{1,−1}-symmetry. For a subdivision
scheme, we often use subdivision triplets:(a,M,{−1,1}): a is the mask,M is the
dilation factor, and{−1,1} is the symmetry group. For dimension one and a dilation
factorM, the reference coarse meshZ is refined into a finer mesh1

M
Z by inserting new

vertices atγ
M
+Z with γ = 1, . . . , |M|−1.

In the following, we provide a few examples of subdivision triplets.

Example 1 (a,2,{−1,1}) is a primal subdivision triplet with

a =
1
2
{w3,w2,w1,w0,w1,w2,w3}[−3,3],

where

w0 =
3+t
4 , w1 =

8+t
16 , w2 =

1−t
8 , w3 =− t

16 with t ∈R. (6)

For t = − 1
2, thena = aB

6(·−3) and sr(a,2) = 6, lpm(a) = 2 and smp(a,2) = 5+1/p

for all 1 6 p 6 ∞. sr(a,2) = 4 if t 6= −1/2. Sinceâ(ξ ) = ei3ξ (1+ e−iξ )4b̂(ξ ) with
b̂(ξ ) := − t

32 +
1+t
16 e−iξ − t

32e−i2ξ , by item (5) of Corollary??, we have sm∞(a,2) =
3− log2(1+ t) providedt >−1/2. We only have sm∞(a,2)> 3− log2 |t| for t 6−1/2.
Whent = 0, a = aB

4(· − 2) is the centered B-spline filter of order 4 with sr(a,2) = 4
and lpm(a) = 2. Whent = 1, a is an interpolatory 2-wavelet filter with sr(a,2) = 4 and
lpm(a) = 4. See Figure 1 for its subdivision stencils.

Example 2 (a,2,{−1,1}) is a dual subdivision triplet with

a =
1
2
{w2,w1,w0,w0,w1,w2}[−2,3],

where
w0 =

12+3t
16 , w1 =

8−3t
32 , w2 =− 3t

32 with t ∈ R. (7)
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◦ ◦
w2 w0 w2

◦ ◦ ◦ ◦•
w3 w1 w1 w3

Figure 1: The 0-stencil (left) and the12-stencil (right) of the primal subdivision scheme
in Example 1, wherew0, . . . ,w3 are given in (6). It is an interpolatory 2-wavelet filter
if w2 =

1−t
8 = 0. SinceM= 2, each line segment (with endpoints◦) in the coarse mesh

Z is equally split into two line segments with one new vertex (•) in the middle.

For t =− 2
3, a = aB

5(·−2) and sr(a,2) = 5, lpm(a) = 2 and smp(a,2) = 4+1/p for all

16 p 6 ∞. Sinceâ(ξ ) = ei2ξ (1+ e−iξ )3b̂(ξ ) with b̂(ξ ) := − 3t
8 + 4+3t

32 e−iξ − 3t
8 e−i2ξ ,

by item (5) of Corollary??, we have sr(a,2) = 3 and sm∞(a,2) = 4− log2(4+ 3t)
providedt >−2/3. We only have sm∞(a,2)> 1− log2(3|t|) for t 6−2/3. Whent = 0,
a = aB

3(·−1) is the shifted B-spline filter of order 3 with sr(a,2) = 3 and lpm(a) = 2.
Whent = 1, sr(a,2) = 3 and lpm(a) = 4. See Figure 2 for its subdivision stencils.

◦ ◦ ◦ ◦
w1 w0 w2

◦ ◦ ◦ ◦
w1w0w2

Figure 2: The 0-stencil (left) and the12-stencil (right) of the dual subdivision scheme in
Example 2, wherew0,w1,w2 are given in (7). The12-stencil is the same as the 0-stencil.
The value[Sa,2v](k) for k ∈Z is attached to the centerk−1

2 of the line segment[k−1,k]
instead of the vertexk2. SinceM= 2, each line segment is equally split into two.

Example 3 (a,3,{−1,1}) is a primal subdivision triplet with

a = 1
3{w5,w4,w3,w2,w1,w0,w1,w2,w3,w4,w5}[−5,5],

where

w0 =
7−2t1−8t2

9 , w1 =
6−2t1−5t2

9 , w2 =
3+t1+t2

9 ,

w3 =
1+t1+4t2

9 , w4 =
t1+3t2

9 , w5 =
t2
9

with t1, t2 ∈R. (8)

Fort1 = 2/9 andt2 = 1/9, sr(a,3) = 5 and smp(a,3) = 4+1/p for all 16 p6∞ whose
3-refinable function is the B-spline of order 5. Sinceâ(ξ ) = (eiξ +1+e−iξ )3b̂(ξ ) with

b̂(ξ ) := t2
27ei2ξ + t1

27eiξ + 1−2t1−2t2
27 + t1

27e−iξ + t2
27e−i2ξ ,

by a similar result to item (5) of Corollary??, we have

sm∞(a,2)> 2− log3max(|1−2t1−2t2|, |2t1|, |2t2|).

For t1 = 7/9 and t2 = −4/9, a is an interpolatory 3-wavelet filter with sr(a,3) =
4 = lpm(a) and sm∞(a,3) > log314− 4 ≈ 1.5978. Fort1 = 5/11 andt2 = −4/11,
a is an interpolatory 3-wavelet filter with sr(a,3) = 3 = lpm(a) and sm∞(a,3) > 2+
log3(11/10)≈ 2.0867(Using joint spectral radius, we in fact have sm2(a,3)= log311≈
2.18266). See Figure 3 for its subdivision stencils.

We now provide some subdivision curves in Figure 4 using the above subdivision
triplets.
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◦ ◦
w3 w0 w3

◦ ◦ ◦ ◦•
w4 w1 w2 w5

◦ ◦ ◦ ◦•
w5 w2 w1 w4

Figure 3: The 0-stencil (left), the13-stencil (middle), and23-stencil of the subdivision
scheme in Example 3, wherew0, . . . ,w5 are given in (8). Due to symmetry,2

3-stencil

is the same as the13-stencil. It is an interpolatory 3-wavelet filter ifw3 = 1+t1+4t2
9 =

0. SinceM = 3, each line segment (with endpoints◦) is equally split into three line
segments with two new inserted vertices (•) at 1

3 +Z and 2
3 +Z.
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Figure 4: Subdivision curves at levels 1,2,3 with the initial control polygons at the
first row. The subdivision triplet(a,2,{−1,1}) in Example 1 is used witht = − 1

2
(aB

4(·−2)) for the 2nd row and witht = 1 (interpolatory) for the 3rd row.(a,2,{−1,1})
in Example 2 is used witht = 0 (aB

3(·−1), the corner cutting scheme) for the 4th row
and witht = 1 and lpm(a) = 4 for the 5th row.(a,3,{−1,1}) is used witht1 = 2

9, t2 =
1
9

for the 6th row and witht1 = 5
11, t2 = − 4

11 (interpolatory, sm∞(a,3) = log311) for the
7th row.
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