
Fast Wavelet/Framelet Transform for Signal/Image Processing.
The following is based on book manuscript: B. Han, Frameletsand Wavelets: Al-

gorithms, Analysis and Applications.
To introduce a discrete framelet transform, we need some definitions and notation.

By l(Z) we denote the linear space of all sequencesv= {v(k)}k∈Z : Z→C of complex
numbers onZ. One -dimensional discrete input data or signal is often treated as an
element inl(Z). Similarly, by l0(Z) we denote the linear space of all sequencesu=
{u(k)}k∈Z : Z→ C on Z such that{k ∈ Z : u(k) 6= 0} is a finite set. An element in
l0(Z) is often regarded as a finite-impulse-response (FIR) filter (also called a finitely
supported mask in the literature of wavelet analysis). In this book we often useu for a
general filter andv for a general signal or data. It is often convenient to use theformal
Fourier series (or symbol)̂v of a sequencev= {v(k)}k∈Z, which is defined as follows:

v̂(ξ ) := ∑
k∈Z

v(k)e−ikξ , ξ ∈ R, (1)

wherei in this book always denotes the imaginary unit. Forv∈ l0(Z), v̂ is a 2π-periodic
trigonometric polynomial.

A discrete framelet transform can be described using two linear operators—the
subdivision operator and the transition operator. For a filteru∈ l0(Z) andv∈ l(Z), the
subdivision operatorSu : l(Z)→ l(Z) is defined to be

[Suv](n) := 2 ∑
k∈Z

v(k)u(n−2k), n∈ Z (2)

and thetransition operatorTu : l(Z)→ l(Z) is defined to be

[Tuv](n) := 2 ∑
k∈Z

v(k)u(k−2n), n∈ Z. (3)

The transition operator plays the role of coarsening and frequency-separating the data
to lower resolution levels; while the subdivision operatorplays the role of refining and
predicting the data to higher resolution levels.

In terms of Fourier series, the subdivision operatorSu in (2) and the transition
operatorTu in (3) can be equivalently rewritten as

Ŝuv(ξ ) = 2v̂(2ξ )û(ξ ), ξ ∈ R (4)

and
T̂uv(ξ ) = v̂(ξ/2)û(ξ/2)+ v̂(ξ/2+π)û(ξ/2+π), ξ ∈ R (5)

for u,v∈ l0(Z), wherec denotes the complex conjugate of a complex numberc∈ C.
Let ã, b̃1, . . . , b̃s be filters for decomposition. For a positive integerJ, a J-level

discrete framelet decompositionis given by

v j :=
√

2
2 Tãv j−1, wℓ, j :=

√
2

2 Tb̃ℓ
v j−1, ℓ= 1, . . . ,s, j = 1, . . . ,J, (6)

wherev0 :Z→C is an input signal. The filter ˜a is often called a dual low-pass filter and
the filtersb̃1, . . . , b̃s are called dual high-pass filters. After aJ-level discrete framelet
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decomposition, the original input signalv0 is decomposed into one sequencevJ of low-
pass framelet coefficients andsJ sequenceswℓ, j of high-pass framelet coefficients for
ℓ= 1, . . . ,sand j = 1, . . . ,J. Such framelet coefficients are often processed for various
purposes. One of the most commonly employed operations is thresholding so that the
low-pass framelet coefficientsvJ and high-pass framelet coefficientswℓ, j become ˚vJ

andẘℓ, j , respectively. More precisely, ˚wℓ, j(k) = η(wℓ, j(k)),k ∈ Z, whereη : C → C

is a thresholding function. For example, for a given threshold valueλ > 0, the hard
thresholding functionηhard

λ and soft-thresholding functionηso f t
λ are defined to be

ηhard
λ (z) =

{
z, if |z|> λ ;

0, otherwise
and ηso f t

λ (z) =

{
z− ε z

|z| , if |z|> λ ;

0, otherwise.
(7)

Another commonly employed operation is quantization, which can be applied after
or without thresholding. For example, for a given quantization levelq> 0, the quanti-
zation functionQ : R→ qZ is defined to beQ(x) := q⌊ x

q +
1
2⌋, x∈R, where⌊·⌋ is the

floor function such that⌊x⌋= n if n6 x< n+1 for an integern.

−λ λ −λ λ − q
2

q
2

Figure 1: The hard thresholding functionηhard
λ , the soft thresholding functionηso f t

λ ,
and the quantization function, respectively. Both thresholding and quantization opera-
tions are often used to process framelet coefficients in a discrete framelet transform.

Let a,b1, . . . ,bs be filters for reconstruction. Nowa J-level discrete framelet recon-
structionis

v̊ j−1 :=

√
2

2
Sav̊ j +

√
2

2

s

∑
ℓ=1

Sbℓẘℓ, j , j = J, . . . ,1. (8)

The filter a is often called a primal low-pass filter and the filtersb1, . . . ,bs are called
primal high-pass filters.

We say that({ã; b̃1, . . . , b̃s},{a;b1, . . . ,bs}) is a dual framelet filter bank if it satis-
fies the perfect reconstruction condition:

[
̂̃a(ξ ) ̂̃b1(ξ ) · · · ̂̃bs(ξ )

̂̃a(ξ +π) ̂̃b1(ξ +π) · · · ̂̃bs(ξ +π)

][
â(ξ ) b̂1(ξ ) · · · b̂s(ξ )

â(ξ +π) b̂1(ξ +π) · · · b̂s(ξ +π)

]⋆

= I2,

(9)
{a;b1, . . . ,bs}) is called a tight framelet filter bank if({a;b1, . . . ,bs},{a;b1, . . . ,bs})

is a dual framelet filter bank.
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If s= 1, a dual framelet filter bank({a;b},{a;b}) is called a biorthogonal wavelet
filter bank. If s= 1, a tight framelet filter bank{a;b} is called an orthogonal wavelet
filter bank.

In the following, let us provide a few examples to illustratevarious types of filter
banks. For a filteru= {u(k)}k∈Z such thatu(k) = 0 for all k∈Z\[m,n] andu(m)u(n) 6=
0, we denote by fsupp(u) := [m,n] as itsfilter support. To list the filteru, we shall
adopt the following notation throughout the book:

u= {u(m),u(m+1), . . . ,u(−1),u(0),u(1), . . . ,u(n−1),u(n)}[m,n], (10)

where we underlined and boldfaced the numberu(0) to indicate its position at the
origin.

Example 1 {a;b} is an orthogonal wavelet filter bank (called the Haar orthogonal
wavelet filter bank), where

a= { 1
2 ,

1
2}[0,1], b= {− 1

2 ,
1
2}[0,1]. (11)

Example 2 ({ã; b̃},{a;b}) is a biorthogonal wavelet filter bank, where

ã= {− 1
8,

1
4,

3
4 ,

1
4,− 1

8}[−2,2], b̃= {− 1
4 ,

1
2,− 1

4}[0,2],
a= { 1

4,
1
2 ,

1
4}[−1,1], b= {− 1

8,− 1
4 ,

3
4,− 1

4,− 1
8}[−1,3].

Example 3 {a;b1,b2} is a tight framelet filter bank, where

a= { 1
4,

1
2 ,

1
4}[−1,1], b1 = {−

√
2

4 ,0,
√

2
4 }[−1,1], b2 = {− 1

4,
1
2 ,− 1

4}[−1,1].

Example 4 ({ã; b̃1, b̃2},{a;b1,b2}) is a dual framelet filter bank, where

ã= { 1
2 ,

1
2}[0,1], b̃1 = {− 1

2,
1
2}[−1,0], b̃2 = {− 1

2 ,
1
2}[0,1]

and

a= { 1
8,

3
8 ,

3
8,

1
8}[−1,2], b1 = {− 1

4,
1
4}[−1,0], b2 = {− 1

8,− 3
8 ,

3
8,

1
8}[−1,2].

At the end of this section, we illustrate a one-level discrete framelet transform using
the Haar orthogonal wavelet filter bank in (11). Let

v= {1,0,−1,−1,−4,60,58,56}[0,7] (12)

be a test input signal. Note that

[Tav](n) = v(2n+1)+ v(2n), [Tbv](n) = v(2n+1)− v(2n), n∈ Z.

Therefore, we have the wavelet coefficients:

w0 =
√

2
2 {1,−2,56,114}[0,3], w1 =

√
2

2 {−1,0,64,−2}[0,3].
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On the other hand, we have

[Saẘ0](2n) = ẘ0(n), [Saẘ0](2n+1) = ẘ0(n), n∈ Z

and
[Sbẘ1](2n) =−ẘ1(n), [Sbẘ1](2n+1) = ẘ1(n), n∈ Z.

Hence, we have
√

2
2 Saw0 =

1
2{1,1,−2,−2,56,56,114,114}[0,7],

√
2

2 Sbw1 =
1
2{1,−1,0,0,−64,64,2,−2}[0,7].

Clearly, we have the perfect reconstruction of the originalinput signalv:
√

2
2 Saw0+

√
2

2 Sbw1 = {1,0,−1,−1,−4,60,58,56}[0,7]= v

and the following energy-preserving identity

‖w0‖2
l2(Z)

+ ‖w1‖2
l2(Z)

= 16137
2 + 4101

2 = 10119= ‖v‖2
l2(Z)

.

Next, let us describe how to efficiently implement discrete framelet/wavelet trans-
form.

The subdivision operator and the transition operator in applications are often imple-
mented through the widely used convolution operation in mathematics and engineering.
Foru∈ l0(Z) andv∈ l(Z), the convolutionu∗ v is defined to be

[u∗ v](n) := ∑
k∈Z

u(k)v(n− k), n∈ Z. (13)

Note thatû∗ v(ξ ) = û(ξ )v̂(ξ ). To implement the subdivision and transition opera-
tors using the convolution operation, we also need the upsampling and downsam-
pling operators on sequences inl(Z). The downsampling (or decimation) operator
↓d : l(Z)→ l(Z) and theupsampling operator↑d : l(Z)→ l(Z) with a sampling factor
d ∈ Z\{0} are given by

[v↓d](n) := v(dn) and [v↑d](n) :=

{
v(n/d), if n/d is an integer;

0, otherwise,
(14)

for n∈ Z. For a sequencev= {v(k)}k∈Z, we denote its complex conjugate sequence
reflected about the origin byv⋆, which is defined to be

v⋆(k) := v(−k), k∈ Z.

Note thatv̂⋆(ξ ) = v̂(ξ ). Now the subdivision operatorSu in (2) and the transition
operatorTu in (3) can be equivalently expressed as follows:

Suv= 2(v↑2)∗u and Tuv= 2(v∗u⋆)↓2. (15)
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For u= {u(k)}k∈Z andγ ∈ Z, we define the associatedcoset sequence u[γ] of u at the
cosetγ +2Z by

û[γ](ξ ) := ∑
k∈Z

u(γ +2k)e−ikξ , i.e., u[γ] = u(γ + ·)↓2= {u(γ +2k)}k∈Z. (16)

Using the coset sequences ofu, we can rewrite (15) as

[Suv][0] = 2v∗u[0], [Suv][1] = 2v∗u[1],

Tuv= 2
(
v[0] ∗ (u[0])⋆+ v[1] ∗ (u[1])⋆

)
.

(17)
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Figure 2: Diagram of a two-level discrete framelet transform employing filter banks
{ã; b̃1, . . . , b̃s} and{a;b1, . . . ,bs}. Note that

√
2

2 Tb̃ℓ
v =

√
2(v∗ b̃⋆ℓ) ↓2 and

√
2

2 ↓ bℓv =√
2(v↑2)∗ b̃ℓ for ℓ= 1, . . . ,s.
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