Fast Wavelet/Framelet Transform for Signal/Image Processing.

The following is based on book manuscript: B. Han, Framelets and Wavelets: Algorithms, Analysis and Applications.

To introduce a discrete framelet transform, we need some definitions and notation. By $l(\mathbb{Z})$ we denote the linear space of all sequences $v=\{v(k)\}_{k \in \mathbb{Z}}: \mathbb{Z} \rightarrow \mathbb{C}$ of complex numbers on \mathbb{Z}. One -dimensional discrete input data or signal is often treated as an element in $l(\mathbb{Z})$. Similarly, by $l_{0}(\mathbb{Z})$ we denote the linear space of all sequences $u=$ $\{u(k)\}_{k \in \mathbb{Z}}: \mathbb{Z} \rightarrow \mathbb{C}$ on \mathbb{Z} such that $\{k \in \mathbb{Z}: u(k) \neq 0\}$ is a finite set. An element in $l_{0}(\mathbb{Z})$ is often regarded as a finite-impulse-response (FIR) filter (also called a finitely supported mask in the literature of wavelet analysis). In this book we often use u for a general filter and v for a general signal or data. It is often convenient to use the formal Fourier series (or symbol) \widehat{v} of a sequence $v=\{v(k)\}_{k \in \mathbb{Z}}$, which is defined as follows:

$$
\begin{equation*}
\widehat{v}(\xi):=\sum_{k \in \mathbb{Z}} v(k) e^{-i k \xi}, \quad \xi \in \mathbb{R} \tag{1}
\end{equation*}
$$

where i in this book always denotes the imaginary unit. For $v \in l_{0}(\mathbb{Z}), \widehat{v}$ is a 2π-periodic trigonometric polynomial.

A discrete framelet transform can be described using two linear operators-the subdivision operator and the transition operator. For a filter $u \in l_{0}(\mathbb{Z})$ and $v \in l(\mathbb{Z})$, the subdivision operator $\mathscr{S}_{u}: l(\mathbb{Z}) \rightarrow l(\mathbb{Z})$ is defined to be

$$
\begin{equation*}
\left[\mathscr{S}_{u} v\right](n):=2 \sum_{k \in \mathbb{Z}} v(k) u(n-2 k), \quad n \in \mathbb{Z} \tag{2}
\end{equation*}
$$

and the transition operator $\mathscr{T}_{u}: l(\mathbb{Z}) \rightarrow l(\mathbb{Z})$ is defined to be

$$
\begin{equation*}
\left[\mathscr{T}_{u} v\right](n):=2 \sum_{k \in \mathbb{Z}} v(k) \overline{u(k-2 n)}, \quad n \in \mathbb{Z} \tag{3}
\end{equation*}
$$

The transition operator plays the role of coarsening and frequency-separating the data to lower resolution levels; while the subdivision operator plays the role of refining and predicting the data to higher resolution levels.

In terms of Fourier series, the subdivision operator \mathscr{S}_{u} in (2) and the transition operator \mathscr{T}_{u} in (3) can be equivalently rewritten as

$$
\begin{equation*}
\widehat{\mathscr{S}_{u} v}(\xi)=2 \widehat{v}(2 \xi) \widehat{u}(\xi), \quad \xi \in \mathbb{R} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{\mathscr{T}_{u} v}(\xi)=\widehat{v}(\xi / 2) \overline{\widehat{u}(\xi / 2)}+\widehat{v}(\xi / 2+\pi) \overline{\widehat{u}(\xi / 2+\pi)}, \quad \xi \in \mathbb{R} \tag{5}
\end{equation*}
$$

for $u, v \in l_{0}(\mathbb{Z})$, where \bar{c} denotes the complex conjugate of a complex number $c \in \mathbb{C}$.
Let $\tilde{a}, \tilde{b}_{1}, \ldots, \tilde{b}_{s}$ be filters for decomposition. For a positive integer J, a J-level discrete framelet decomposition is given by

$$
\begin{equation*}
v_{j}:=\frac{\sqrt{2}}{2} \mathscr{T}_{\tilde{a}} v_{j-1}, \quad w_{\ell, j}:=\frac{\sqrt{2}}{2} \mathscr{T}_{\tilde{b}_{\ell}} v_{j-1}, \quad \ell=1, \ldots, s, \quad j=1, \ldots, J, \tag{6}
\end{equation*}
$$

where $v_{0}: \mathbb{Z} \rightarrow \mathbb{C}$ is an input signal. The filter \tilde{a} is often called a dual low-pass filter and the filters $\tilde{b}_{1}, \ldots, \tilde{b}_{s}$ are called dual high-pass filters. After a J-level discrete framelet
decomposition, the original input signal v_{0} is decomposed into one sequence v_{J} of lowpass framelet coefficients and $s J$ sequences $w_{\ell, j}$ of high-pass framelet coefficients for $\ell=1, \ldots, s$ and $j=1, \ldots, J$. Such framelet coefficients are often processed for various purposes. One of the most commonly employed operations is thresholding so that the low-pass framelet coefficients v_{J} and high-pass framelet coefficients $w_{\ell, j}$ become $\stackrel{\circ}{\nu}_{J}$ and $\stackrel{\circ}{\circ}_{\ell, j}$, respectively. More precisely, $\stackrel{\circ}{\psi}_{\ell, j}(k)=\eta\left(w_{\ell, j}(k)\right), k \in \mathbb{Z}$, where $\eta: \mathbb{C} \rightarrow \mathbb{C}$ is a thresholding function. For example, for a given threshold value $\lambda>0$, the hard thresholding function $\eta_{\lambda}^{\text {hard }}$ and soft-thresholding function $\eta_{\lambda}^{\text {soft }}$ are defined to be

$$
\eta_{\lambda}^{\text {hard }}(z)=\left\{\begin{array}{ll}
z, & \text { if }|z| \geqslant \lambda ; \tag{7}\\
0, & \text { otherwise }
\end{array} \quad \text { and } \quad \eta_{\lambda}^{\text {soft }}(z)= \begin{cases}z-\varepsilon \frac{z}{|z|}, & \text { if }|z| \geqslant \lambda \\
0, & \text { otherwise }\end{cases}\right.
$$

Another commonly employed operation is quantization, which can be applied after or without thresholding. For example, for a given quantization level $q>0$, the quantization function $\mathscr{Q}: \mathbb{R} \rightarrow q \mathbb{Z}$ is defined to be $\mathscr{Q}(x):=q\left\lfloor\frac{x}{q}+\frac{1}{2}\right\rfloor, x \in \mathbb{R}$, where $\lfloor\cdot\rfloor$ is the floor function such that $\lfloor x\rfloor=n$ if $n \leqslant x<n+1$ for an integer n.

Figure 1: The hard thresholding function $\eta_{\lambda}^{\text {hard }}$, the soft thresholding function $\eta_{\lambda}^{\text {soft }}$, and the quantization function, respectively. Both thresholding and quantization operations are often used to process framelet coefficients in a discrete framelet transform.

Let a, b_{1}, \ldots, b_{s} be filters for reconstruction. Now a J-level discrete framelet reconstruction is

$$
\begin{equation*}
\stackrel{\circ}{v}_{j-1}:=\frac{\sqrt{2}}{2} \mathscr{S}_{a} \stackrel{\circ}{v}_{j}+\frac{\sqrt{2}}{2} \sum_{\ell=1}^{s} \mathscr{S}_{b_{\ell}} \stackrel{\circ}{\psi}_{\ell, j}, \quad j=J, \ldots, 1 . \tag{8}
\end{equation*}
$$

The filter a is often called a primal low-pass filter and the filters b_{1}, \ldots, b_{s} are called primal high-pass filters.

We say that $\left(\left\{\tilde{a} ; \tilde{b}_{1}, \ldots, \tilde{b}_{s}\right\},\left\{a ; b_{1}, \ldots, b_{s}\right\}\right)$ is a dual framelet filter bank if it satisfies the perfect reconstruction condition:
$\left[\begin{array}{cccc}\widehat{\tilde{a}}(\xi) & \widehat{b}_{1}(\xi) & \cdots & \widehat{b}_{s}(\xi) \\ \widehat{\tilde{a}}(\xi+\pi) & \widetilde{b}_{1}(\xi+\pi) & \cdots & \widehat{b}_{s}(\xi+\pi)\end{array}\right]\left[\begin{array}{cccc}\widehat{a}(\xi) & \widehat{b_{1}}(\xi) & \cdots & \widehat{b_{s}}(\xi) \\ \widehat{a}(\xi+\pi) & \widehat{b_{1}}(\xi+\pi) & \cdots & \widehat{b}_{s}(\xi+\pi)\end{array}\right]^{\star}=I_{2}$,
$\left.\left\{a ; b_{1}, \ldots, b_{s}\right\}\right)$ is called a tight framelet filter bank if $\left(\left\{a ; b_{1}, \ldots, b_{s}\right\},\left\{a ; b_{1}, \ldots, b_{s}\right\}\right)$ is a dual framelet filter bank.

If $s=1$, a dual framelet filter bank $(\{a ; b\},\{a ; b\})$ is called a biorthogonal wavelet filter bank. If $s=1$, a tight framelet filter bank $\{a ; b\}$ is called an orthogonal wavelet filter bank.

In the following, let us provide a few examples to illustrate various types of filter banks. For a filter $u=\{u(k)\}_{k \in \mathbb{Z}}$ such that $u(k)=0$ for all $k \in \mathbb{Z} \backslash[m, n]$ and $u(m) u(n) \neq$ 0 , we denote by $\operatorname{fsupp}(u):=[m, n]$ as its filter support. To list the filter u, we shall adopt the following notation throughout the book:

$$
\begin{equation*}
u=\{u(m), u(m+1), \ldots, u(-1), \underline{\mathbf{u}(\mathbf{0})}, u(1), \ldots, u(n-1), u(n)\}_{[m, n]}, \tag{10}
\end{equation*}
$$

where we underlined and boldfaced the number $u(0)$ to indicate its position at the origin.

Example $1\{a ; b\}$ is an orthogonal wavelet filter bank (called the Haar orthogonal wavelet filter bank), where

$$
\begin{equation*}
a=\left\{\underline{\frac{1}{\mathbf{2}}}, \frac{1}{2}\right\}_{[0,1]}, \quad b=\left\{\underline{-\frac{1}{2}}, \frac{1}{2}\right\}_{[0,1]} . \tag{11}
\end{equation*}
$$

Example $2(\{\tilde{a} ; \tilde{b}\},\{a ; b\})$ is a biorthogonal wavelet filter bank, where

$$
\begin{aligned}
& \tilde{a}=\left\{-\frac{1}{8}, \frac{1}{4}, \underline{\frac{3}{4}}, \frac{1}{4},-\frac{1}{8}\right\}_{[-2,2]}, \tilde{b}=\left\{-\frac{1}{4}, \frac{1}{2},-\frac{1}{4}\right\}_{[0,2]}, \\
& a=\left\{\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right\}_{[-1,1]}, b=\left\{-\frac{1}{8},-\frac{1}{4}, \frac{3}{4},-\frac{1}{4},-\frac{1}{8}\right\}_{[-1,3]} .
\end{aligned}
$$

Example $3\left\{a ; b_{1}, b_{2}\right\}$ is a tight framelet filter bank, where

$$
a=\left\{\frac{1}{4}, \underline{\mathbf{1}}, \frac{1}{4}\right\}_{[-1,1]}, \quad b_{1}=\left\{-\frac{\sqrt{2}}{4}, \underline{\mathbf{0}}, \frac{\sqrt{2}}{4}\right\}_{[-1,1]}, \quad b_{2}=\left\{-\frac{1}{4}, \underline{\mathbf{1}},-\frac{1}{4}\right\}_{[-1,1]} .
$$

Example $4\left(\left\{\tilde{a} ; \tilde{b}_{1}, \tilde{b}_{2}\right\},\left\{a ; b_{1}, b_{2}\right\}\right)$ is a dual framelet filter bank, where

$$
\tilde{a}=\left\{\underline{\mathbf{1}}, \frac{1}{2}\right\}_{[0,1]}, \quad \tilde{b}_{1}=\left\{-\frac{1}{2}, \underline{\mathbf{1}}\right\}_{[-1,0]}, \quad \tilde{b}_{2}=\left\{\underline{-\frac{1}{\mathbf{2}}}, \frac{1}{2}\right\}_{[0,1]}
$$

and

$$
a=\left\{\frac{1}{8}, \underline{\mathbf{3}}, \frac{3}{8}, \frac{1}{8}\right\}_{[-1,2]}, \quad b_{1}=\left\{-\frac{1}{4}, \frac{\mathbf{1}}{\mathbf{4}}\right\}_{[-1,0]}, \quad b_{2}=\left\{-\frac{1}{8},-\frac{\mathbf{3}}{\mathbf{8}}, \frac{3}{8}, \frac{1}{8}\right\}_{[-1,2]} .
$$

At the end of this section, we illustrate a one-level discrete framelet transform using the Haar orthogonal wavelet filter bank in (11). Let

$$
\begin{equation*}
v=\{1,0,-1,-1,-4,60,58,56\}_{[0,7]} \tag{12}
\end{equation*}
$$

be a test input signal. Note that

$$
\left[\mathscr{T}_{a} v\right](n)=v(2 n+1)+v(2 n), \quad\left[\mathscr{T}_{b} v\right](n)=v(2 n+1)-v(2 n), \quad n \in \mathbb{Z}
$$

Therefore, we have the wavelet coefficients:

$$
w_{0}=\frac{\sqrt{2}}{2}\{1,-2,56,114\}_{[0,3]}, \quad w_{1}=\frac{\sqrt{2}}{2}\{-1,0,64,-2\}_{[0,3]} .
$$

On the other hand, we have

$$
\left[\mathscr{S}_{a} \dot{w}_{0}\right](2 n)=\mathfrak{w}_{0}(n), \quad\left[\mathscr{S}_{a} \dot{w}_{0}\right](2 n+1)=\mathfrak{w}_{0}(n), \quad n \in \mathbb{Z}
$$

and

$$
\left[\mathscr{S}_{b} \dot{w}_{1}\right](2 n)=-\mathfrak{w}_{1}(n), \quad\left[\mathscr{S}_{b} \dot{w}_{1}\right](2 n+1)=\mathfrak{w}_{1}(n), \quad n \in \mathbb{Z} .
$$

Hence, we have

$$
\begin{aligned}
& \frac{\sqrt{2}}{2} \mathscr{S}_{a} w_{0}=\frac{1}{2}\{1,1,-2,-2,56,56,114,114\}_{[0,7]} \\
& \frac{\sqrt{2}}{2} \mathscr{S}_{b} w_{1}=\frac{1}{2}\{1,-1,0,0,-64,64,2,-2\}_{[0,7]}
\end{aligned}
$$

Clearly, we have the perfect reconstruction of the original input signal v :

$$
\frac{\sqrt{2}}{2} \mathscr{S}_{a} w_{0}+\frac{\sqrt{2}}{2} \mathscr{S}_{b} w_{1}=\{1,0,-1,-1,-4,60,58,56\}_{[0,7]}=v
$$

and the following energy-preserving identity

$$
\left\|w_{0}\right\|_{l_{2}(\mathbb{Z})}^{2}+\left\|w_{1}\right\|_{l_{2}(\mathbb{Z})}^{2}=\frac{16137}{2}+\frac{4101}{2}=10119=\|v\|_{l_{2}(\mathbb{Z})}^{2} .
$$

Next, let us describe how to efficiently implement discrete framelet/wavelet transform.

The subdivision operator and the transition operator in applications are often implemented through the widely used convolution operation in mathematics and engineering. For $u \in l_{0}(\mathbb{Z})$ and $v \in l(\mathbb{Z})$, the convolution $u * v$ is defined to be

$$
\begin{equation*}
[u * v](n):=\sum_{k \in \mathbb{Z}} u(k) v(n-k), \quad n \in \mathbb{Z} \tag{13}
\end{equation*}
$$

Note that $\widehat{u * v}(\xi)=\widehat{u}(\xi) \widehat{v}(\xi)$. To implement the subdivision and transition operators using the convolution operation, we also need the upsampling and downsampling operators on sequences in $l(\mathbb{Z})$. The downsampling (or decimation) operator $\downarrow \mathrm{d}: l(\mathbb{Z}) \rightarrow l(\mathbb{Z})$ and the upsampling operator $\uparrow \mathrm{d}: l(\mathbb{Z}) \rightarrow l(\mathbb{Z})$ with a sampling factor $d \in \mathbb{Z} \backslash\{0\}$ are given by

$$
[v \downarrow \mathrm{~d}](n):=v(\mathrm{~d} n) \quad \text { and } \quad[v \uparrow \mathrm{~d}](n):= \begin{cases}v(n / \mathrm{d}), & \text { if } n / \mathrm{d} \text { is an integer; } \tag{14}\\ 0, & \text { otherwise }\end{cases}
$$

for $n \in \mathbb{Z}$. For a sequence $v=\{v(k)\}_{k \in \mathbb{Z}}$, we denote its complex conjugate sequence reflected about the origin by v^{\star}, which is defined to be

$$
v^{\star}(k):=\overline{v(-k)}, \quad k \in \mathbb{Z}
$$

Note that $\widehat{v^{\star}}(\xi)=\overline{\widehat{v}(\xi)}$. Now the subdivision operator \mathscr{S}_{u} in (2) and the transition operator \mathscr{T}_{u} in (3) can be equivalently expressed as follows:

$$
\begin{equation*}
\mathscr{S}_{u} v=2(v \uparrow 2) * u \quad \text { and } \quad \mathscr{T}_{u} v=2\left(v * u^{\star}\right) \downarrow 2 \tag{15}
\end{equation*}
$$

For $u=\{u(k)\}_{k \in \mathbb{Z}}$ and $\gamma \in \mathbb{Z}$, we define the associated coset sequence $u^{[\gamma]}$ of u at the coset $\gamma+2 \mathbb{Z}$ by

$$
\begin{equation*}
\widehat{u^{[\gamma]}}(\xi):=\sum_{k \in \mathbb{Z}} u(\gamma+2 k) e^{-i k \xi}, \text { i.e., } u^{[\gamma]}=u(\gamma+\cdot) \downarrow 2=\{u(\gamma+2 k)\}_{k \in \mathbb{Z}} . \tag{16}
\end{equation*}
$$

Using the coset sequences of u, we can rewrite (15) as

$$
\begin{align*}
& {\left[\mathscr{S}_{u} v\right]^{[0]}=2 v * u^{[0]}, \quad\left[\mathscr{S}_{u} v\right]^{[1]}=2 v * u^{[1]},} \\
& \mathscr{T}_{u} v=2\left(v^{[0]} *\left(u^{[0]}\right)^{\star}+v^{[1]} *\left(u^{[1]}\right)^{\star}\right) . \tag{17}
\end{align*}
$$

Figure 2: Diagram of a two-level discrete framelet transform employing filter banks $\left\{\tilde{a} ; \tilde{b}_{1}, \ldots, \tilde{b}_{s}\right\}$ and $\left\{a ; b_{1}, \ldots, b_{s}\right\}$. Note that $\frac{\sqrt{2}}{2} \mathscr{T}_{\tilde{b}_{\ell}} v=\sqrt{2}\left(v * \tilde{b}_{\ell}^{\star}\right) \downarrow 2$ and $\frac{\sqrt{2}}{2} \downarrow b_{\ell} v=$ $\sqrt{2}(v \uparrow 2) * \tilde{b}_{\ell}$ for $\ell=1, \ldots, s$.

