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1. To begin, think about the evolution in time of objects like

z (t) = x (t) ^ y (t) :

We know how to handle this in the case that x; y are both solutions of an equation
_x = A (t)x and that _z = A[2] (t) z: But, if _x = A (t)x and _y = B (t) y; what about
z (t)?

2. And then, what would you use it for? What would it mean if limt!1 x (t) ^ y (t) = 0
for some solutions x; y? Or for all solutions x and some y?

3. This question may be a bit general to start with so there may be some natural rela-
tionship that can be assumed between A (t) and B (t) :

4. You don�t have to stay with homogeneous equations or even linear equations, I suppose.

5. Theorem 1 of the following Muldowney-Samuylova paper considers objects of the form

z (t) = x1 (t) ^ x2 (t) ^ � � � ^ xk (t)

where
_xi = A (t)xi + f i (t) ; i = 1; � � �; k:

and each of these equations is assumed to have the same linear part. The theorem
is an example of what type of information we can get about the equations from the
wedges.

6. What would happen if we allow all the equations to have di¤erent linear parts as well

_xi = Ai (t)xi + f i (t) ; i = 1; � � �; k

and what does it say about the equations?
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ABSTRACT. The codimension of stable subspaces of cer-
tain function spaces arising from nonhomogeneous linear dif-
ferential equations is considered. The history of the problem
begins with a result on second order linear scalar equations by
a French mathematician Milloux in 1934 and continues with
Hartman, Coppel, Macki and Muldowney as well as many oth-
ers in the second half of the twentieth century. The PhD dis-
sertation of Wang (2008) discusses the question in infinite di-
mensional spaces. This and earlier studies deal exclusively with
homogeneous systems. Related questions for nonhomogeneous
systems of linear differential equations are considered here. The
evolution of k-volumes expressed as exterior products of solu-
tions plays a major role in the study.

Introduction Consider the linear ordinary differential equation

(1) x′ = A(t)x + f(t), t ≥ 0

where t 7→ A(t) is a n × n real matrix valued function, t 7→ f(t) is a
R

n valued function and t ∈ [0,∞). It is assumed that the functions A,
f are locally Lebesgue integrable on their domains, A, f ∈ locL1[0,∞).
A function t 7→ x(t) ∈ R

n is a solution of (1) if it is locally absolutely
continuous on [0,∞) and satisfies (1) almost everywhere.

A solution x(t) = x(t; ξ, f) of (1) is uniquely determined by x(0) = ξ
and f ∈ loc L1[0,∞). The map

(ξ, f) 7−→ x(·; ξ, f)

is linear in (ξ, f). Let

F = {x ∈ locAC([0,∞)) : x′ = A(t)x + f(t), f ∈ loc L1[0,∞)},
Keywords: Nonhomogeneous differential equations, stable subspaces, codimen-

sion, compound equations.
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X be any subspace of F and

X0 = {x ∈ X : lim
t→∞

x(t) = 0}.

We study the codimension of X0 in X . We begin with a brief review of
results on the dimension of zero tending solutions of the homogeneous
equation, e.g., when X is the subspace of F for which f = 0.

In 1934 Milloux [5] showed that, if 0 ≤ a(t) is a nondecreasing func-
tion for t ≥ 0, then there exists at least one nontrivial solution u = u(t)
of the second order scalar oscillator equation u′′ + a(t)u = 0 satisfy-
ing lim

t→∞
u(t) = 0 if and only if lim

t→∞
a(t) = ∞. The result of Milloux

was generalized by Hartman [3] and Coppel [1] to linear systems of n
differential equations

(2) y′ = A(t)y.

Hartman [3] proved that if limt→∞ |y(t)| exists and is finite for every
solution y(t), where | · | is the Euclidean norm, then there exists at least
one nontrivial solution y = y(t) satisfying limt→∞ y(t) = 0 if and only if
∫ ∞

0
trA(s) ds = −∞. The result was extended to any norm by a different

approach in Coppel [1, p. 60]. When a = a(t) is continuously differen-
tiable, the theorem of Milloux follows from the theorem of Hartman. It
also follows as a simple consequence of Proposition 5 below without the
differentiability assumption on the function a(t).

The condition that limt→∞ |y(t)| should exist for all solutions is re-
strictive in that it depends on the existence of the limit for some norm
| · | and can be weakened. Macki and Muldowney [4] developed a new
approach and replaced the condition by the requirement that for all
solutions

(i) lim sup
t→∞

|y(t)| < ∞,

(ii) lim inf
t→∞

|y(t)| = 0 ⇒ lim
t→∞

y(t) = 0.
(L)

This means that solutions are bounded and either tend to 0 or are
bounded away from 0. Clearly the condition (L) holds under the Hartman-
Coppel condition that limt→∞ |y(t)| exists. But (L) is also satisfied, for
example, if (2) is uniformly stable. The condition of Hartman-Coppel
does not imply nor is it implied by uniform stability.

Muldowney [6] extended these results by showing that, if the condi-
tion (L) is satisfied by solutions of the system (2), then the subspace of its
solutions that satisfy limt→∞ y(t) = 0 has dimension at least (n− k +1)
if and only if all solutions of the associated k-th compound equation
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z′ = A[k](t)z (see Appendix) satisfy limt→∞ z(t) = 0. Equivalently,
if the solution space X of the homogeneous equation satisfies condition
(L), then codimX0 < k in X if and only if z′ = A[k](t)z is asymptotically
stable. In the case k = n the compound equation of (2) is z ′ = tr A(t)z
and this result gives the theorem of Macki and Muldowney.

Nonhomogeneous linear equations The following theorem is
the main result of this paper and was originally developed in the MSc
dissertation of Samuylova [8].

Theorem 1. Let xi(t) be a solution of

x′ = A(t)x + fi(t),

where fi ∈ L1[0,∞), i = 1, . . . , k. Suppose that the homogeneous equa-

tion

(3) y′ = A(t)y

is uniformly stable and that the k-th compound equation

z′ = A[k](t)z

is uniformly stable and asymptotically stable. Then there exist constants

c1, . . . , ck, not all equal zero, such that

lim
t→∞

(c1x1(t) + · · · + ckxk(t)) = 0,

and thus, if X is any linear subspace of {x ∈ F : f ∈ L1[0,∞)}, then

codimX0 < k in X .

Proposition 2. Suppose that the homogeneous equation (3) is uni-

formly stable and f ∈ L1([0,∞)). Then the solution space of the nonho-

mogeneous equation (1) satisfies condition (L).

Proof. Let x(t) be a solution of the equation (1), and let Y (t) denote
a fundamental matrix of the equation (3). The variation of parameters
formula implies that

x(t) = Y (t)

[

Y −1(t0)x(t0) +

∫ t

t0

Y −1(s)f(s) ds

]
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for any t ≥ t0. From uniform stability of (3) it follows that there exists
a positive constant K such that

(4) |Y (t)Y −1(s)| ≤ K for t ≥ s ≥ 0

and consequently

(5) |x(t)| ≤ K|x(0)| + K

t
∫

t0

|f(s)| ds.

Therefore x(t) is bounded and so property (L)(i) is satisfied. To verify
(L)(ii), let ε > 0. If lim inf t→∞ |x(t)| = 0, there exists t0 such that

|x(t0)| < ε/(2K) and also, since f ∈ L1([0,∞)), such that
t
∫

t0

|f(s)| ds <

ε/(2K) if t0 ≤ t. Therefore (5) implies |x(t)| < ε if t > t0. It follows
that limt→∞ |x(t)| = 0 and so x(t) satisfies (L)(ii).

Proposition 3. Suppose that the homogeneous equation (3) is uni-

formly stable and asymptotically stable and that f ∈ L1([0,∞)). Then all

solutions x = x(t) of the nonhomogeneous equation (1) satisfy lim
t→∞

x(t) =

0.

Proof. The variation of parameters formula for solutions of (1) gives

(6) x(t) = Y (t)

[

Y −1(0)x(0) +

T
∫

0

Y −1(s)f(s) ds +

∫ t

T

Y −1(s)f(s) ds

]

.

Because (3) is asymptotically stable, limt→∞ |Y (t)| = 0 and therefore

(7) lim
t→∞

Y (t)

[

Y −1(0)x(0) +

T
∫

0

Y −1(s)f(s) ds

]

= 0

for each T > 0. Uniform stability of (3), (4) and f ∈ L1([0,∞)) imply
that, if ε > 0, T can be chosen sufficiently large that

(8)

∣

∣

∣

∣

Y (t)

∫ T

0

Y −1(s)f(s) ds

∣

∣

∣

∣

≤ K

t
∫

T

|f(s)| ds < ε

if t ≥ T . Thus, by (6), (7) and (8), limt→∞ x(t) = 0.
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Remark 4. If the homogeneous equation (3) is asymptotically stable
and, for some f(t), there is a solution x0(t) of the nonhomogeneous
equation (1) such that limt→∞ x0(t) = 0, then all solutions of the equa-
tion (1) satisfy limt→∞ x(t) = 0. This follows from the fact that for
any solution x(t) of the nonhomogeneous equation (1) x(t) − x0(t) is
a solution of the corresponding homogeneous equation (3). When the
equation (3) is asymptotically stable the Remark implies that, for a fixed
function f(t), either all solutions of (1) tend to 0 as t → ∞ or none
does.

The proof of the main theorem relies on the following proposition
regarding linear spaces of Rn-valued functions on [0,∞), [7]. This result
was extended by Wang to linear spaces of functions x : [0,∞) → V ,
where V is any vector space [9]. We give the proof of the proposition,
as it is basic for Theorem 1.

Proposition 5 (Muldowney, 1990). Let X be a linear space of func-

tions x : [0,∞) → R
n that satisfies (L). Then

codimX0 < k ⇐⇒ X (k)
0 = X (k).

Here X (k) denotes the k-th exterior power of X , 1 6 k 6 n, which is
defined by

X (k) = sp {x1 ∧ · · · ∧ xk : xi ∈ X}.
and X0 and X (k)

0 denote subspaces of X and X (k), respectively, defined
by

X0 =
{

x ∈ X : lim
t→∞

x(t) = 0
}

,

X (k)
0 =

{

w ∈ X (k) : lim
t→∞

w(t) = 0
}

.

Proof. Suppose codimX0 < k. Let x1, x2, . . . , xk be any elements
of X . Then there is a nontrivial x ∈ sp {x1, x2, . . . , xk} such that
limt→∞ x(t) = 0. Without loss of generality

x(t) = c1x1(t) + · · · + ckxk(t),

where c1, . . . , ck ∈ R, c1 6= 0. Then y = x1 ∧ x2 ∧ · · · ∧ xk = 1
c1

x ∧
x2 ∧ · · · ∧ xk and inequality (12) from the Appendix imply |y(t)| ≤

c
|c1|

|x(t)||x2(t)| · · · |xk(t)|. From here it follows that limt→∞ y(t) = 0, by

(L)(i). Thus X (k)
0 = X (k).
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Conversely, suppose X (k)
0 = X (k). Let x1, x2, . . . , xk be any elements

of X . Then y = x1 ∧ x2 ∧ · · · ∧ xk satisfies limt→∞ y(t) = 0. Now (L)(i)
implies that there exists a sequence ti → ∞ such that limi→∞ X(ti) = C
exists, where X is the n × k matrix whose columns are x1, x2, . . . , xk.
We have C(k) = limi→∞ X (k)(ti) = 0 so that rkC < k and there exists
a nonzero vector ξ ∈ R such that Cξ = 0. Therefore x = Xξ satisfies
limi→∞ x(ti) = limi→∞ X(ti)ξ = Cξ = 0, which implies limt→∞ x(t) =
0, by (L)(ii). Thus codimX0 < k.

Proposition 5 implies that, for any subspace X of F that satisfies
(L), the set X0 of solutions x(t) in X that tend to zero at infinity has
codimension at most k in X if and only if

lim
t→∞

x1(t) ∧ · · · ∧ xk(t) = 0

for xi(t) ∈ X , i = 1, . . . , k. If x′
i = A(t)xi + fi(t), then, by the prop-

erty (13) of A[k](t) (see Appendix),

(x1 ∧ · · · ∧ xk)
′
=

k
∑

1

x1 ∧ · · · ∧ x′
i ∧ · · · ∧ xk

=

k
∑

1

x1 ∧ · · · ∧ (A(t)xi + fi(t)) ∧ · · · ∧ xk

=
k

∑

1

x1 ∧ · · · ∧ A(t)xi ∧ · · · ∧ xk

+

k
∑

1

x1 ∧ · · · ∧ fi(t) ∧ · · · ∧ xk

= A[k](t) (x1 ∧ · · · ∧ xk) +

k
∑

1

x1 ∧ · · · ∧ fi(t) ∧ · · · ∧ xk ,

and w = x1 ∧ · · · ∧ xk satisfies

(9) w′ = A[k](t)w +

k
∑

1

x1 ∧ · · · ∧ fi(t) ∧ · · · ∧ xk.

Proof of Theorem 1. Let X = {x ∈ F : f ∈ L1[0,∞)}, and let xi(t) ∈
X , i = 1, . . . , k. By Proposition 2, X satisfies (L). To apply Proposi-
tion 5, we should demonstrate that solutions w = w(t) of (9) tend to
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zero at infinity. Since X satisfies (L)(i), there exists a positive constant
K such that

|x1(s) ∧ · · · ∧ fi(s) ∧ · · · ∧ xk(s)| ≤ c|x1(s)| · · · |fi(s)| · · · |xk(s)|
≤ K|fi(s)|, i = 1, . . . , k,

where c is a constant depending on the norm (see (12), Appendix).

Therefore, if fi ∈ L1([0,∞)), i = 1, . . . , k, then
∑k

1 x1 ∧ · · · ∧ fi ∧ · · · ∧
xk ∈ L1([0,∞)). Thus, since (3) is uniformly stable and asymptoti-
cally stable, Proposition 3 implies limt→∞ w(t) = 0. Thus, by apply-
ing Proposition 5, we conclude that codim X0 < k in X , or, equiv-
alently, there exist constants c1, . . . , ck, not all equal zero, such that
limt→∞(c1x1(t) + · · · + ckxk(t)) = 0.

Consider the scalar second order differential equation

(10) v′′ + a(t)v = e(t).

If a is locally Lebesgue integrable, then the locally absolutely continuous
solution v = v(t; v0, v1, e) is uniquely determined by v(0) = v0, v′(0) =
v1 and e provided e is also locally integrable. The solution depends
linearly on (v0, v1, e).

Corollary 6. Suppose that 0 < a is nondecreasing on [0,∞). Then for

any solutions vi of

v′′ + a(t)v = ei(t),

where ei/
√

a ∈ L1[0,∞), i = 1, 2, there exist constants c1 and c2, |c1|+
|c2| 6= 0, such that

lim
t→∞

(c1v1(t) + c2v2(t)) = 0

if and only if limt→∞ a(t) = ∞.

The corollary follows from Theorem 1 by reducing the equation (10)
to an equivalent system (1), where

x =

(

v

v′/a
1

2

)

, A =

[

0 a
1

2

−a
1

2 −a′/2a

]

, f =

(

0

e/a
1

2

)

.

In the case of a monotone nondifferentiable function a(t) an approxima-
tion of a(t) by C1 functions can be applied.
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Corollary 6 includes the theorem of Milloux mentioned in the In-
troduction. Though it cannot be reduced to the result of Milloux, for
example if v1(t) = v(t; 0, 0, e1) and v2(t) = v(t; 0, 0, e2) are both taken
with homogeneous initial conditions. It was proved later by Armellini,
Hartman, Sansone and Tonelli that if limt→∞ a(t) = ∞ and log a(t) has
“regular growth,” then every solution u = u(t) of the equation

(11) u′′ + a(t)u = 0

must satisfy limt→∞ u(t) = 0.“Regular growth” means roughly that the
growth does not occur only in t-sets that are meager as t → ∞. (see,
for example, [2])

Milloux showed that not all solutions of (11), that are solutions v =
v(t; v0, v1, 0) of (10), necessarily tend to zero [5]. In the following exam-
ple we consider the complementary linear subspace of solutions v(t; 0, 0, e)
with homogeneous initial conditions v(0) = v0, v′(0) = 0. It follows
from Corollary 6 that, if e1, e2 are any two functions with e1/

√
a ∈

L1([0,∞)), e2/
√

a ∈ L1([0,∞)), there exist constants c1, c2 such that
limt→∞ v(t; 0, 0, c1e1 + c2e2) = 0 or, equivalently,

v′′ + a(t)v = c1e1(t) + c2e2(t), v(0) = v′(0) = 0

implies limt→∞ v(t) = 0. We show by an example that the corollary
is nontrivial on this subspace also by constructing a function 0 < a(t)
which is nondecreasing on [0,∞) and a function e(t) such that e/

√
a ∈

L1([0,∞)) and there exists a solution v = v(t) of (10) for which
limt→∞ v(t) does not exist.

Example. First, we construct a function a(t) such that there exist
solutions u1(t) and u2(t) of the homogeneous equation (11) for which
limt→∞ u1(t) does not exist and limt→∞ u2(t) = 0.

Let a(t) be the step-function defined by a(0) = 1 and a(t) = j2 for
t ∈ (tj−1, tj ], j = 1, 2, . . . , where t0 = 0, tj = π

2 + 2π(j − 1), j ≥ 1 (see
Figure 1). If u1(0) = 0, u′

1(0) = 1, then u1(t) = sin(t) for t ∈ [0, π
2 ] and

u1(t) = d1 sin(2t) + d2 cos(2t) for t ∈ (π
2 , π

2 + 2π], where d1, d2 are two
constants. As u1(

π
2 ) = 1 and u′

1(
π
2 ) = 0, we get u1(t) = − cos(2t) for

t ∈ (π
2 , π

2 + 2π]. Since the length of all the intervals is 2π, by the same
argument, we have

u1(t) =







(−1)k sin(jt), (tj−1, tj ], j = 2k + 1,

(−1)k cos(jt), (tj−1, tj ], j = 2k.
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Hence u1(tj) = 1, j = 1, 2, . . . , and limt→∞ u1(t) does not exist. Simi-
larly, by choosing u2(0) = 1 and u′

2(0) = 0 we get

u2(t) =







(−1)k

j sin(jt), (tj−1, tj ], j = 2k,

(−1)k

j cos(jt), (tj−1, tj ], j = 2k + 1.

Therefore, limt→∞ u2(t) = 0.

FIGURE 1: The graph of function a(t).

The solution v(t) of the nonhomogeneous equation (10) can be written
in the form

v(t) = u1(t)

∫ t

0

u2(s)e(s) ds − u2(t)

∫ t

0

u1(s)e(s) ds.

Let F1(t) = u1(t)
∫ t

0
u2(s)e(s) ds and F2(t) = u2(t)

∫ t

0
u1(s)e(s) ds. De-

fine e(t) = 1 for t ∈ [t0, t1] and e(t) = (−1)k+1/j for t ∈ (tj−1 +
πk/j, tj−1 + π(k + 1)/j], k = 0, . . . , 2j − 1, j ≥ 2 (see Figure 2). Then
e/
√

a ∈ L1([0,∞)). Hence

∣

∣F1(tn)
∣

∣ =

∣

∣

∣

∣

u1(tn)

∫ tn

0

u2(s)e(s) ds

∣

∣

∣

∣

=

n
∑

j=1

∫ tj

tj−1

|u2(s)|
j

ds

=

n
∑

j=1

2

j

∫ π/j

0

sin(js) ds = 4

n
∑

j=1

1

j2
=

2

3
π2.
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FIGURE 2: The graph of function e(t).

Since u2(tn) = 0, n = 1, 2, . . . , we have

F2(tn) = u2(tn)

∫ tn

0

u1(s)e(s) ds = 0.

Then limt→∞ v(tn) = 2π2/3. Similarly, F1(tn + π/(2(n + 1))) = 0,

lim
n→∞

∣

∣

∣

∣

F2

(

tn +
π

2(n + 1)

)
∣

∣

∣

∣

= lim
n→∞

(
∫ π/2

0

sin(s) ds +
1

n + 1

∫ π/(n+1)

0

sin(ns) ds

)

= 1,

n = 1, 2, . . . . So, limn→∞ v(tn + π
2(n+1) ) = 1. Therefore, limt→∞ v(t)

does not exist.

Appendix This appendix lists some properties of compound ma-
trices used throughout the paper. A survey on compound matrices with
further references may be found in [7].

Definition 7. If u1, . . . , uk ∈ R
n, 1 ≤ k ≤ n, let uj

i be the i component
of uj with respect to the standard basis in R

n. For 1 ≤ i ≤
(

n
k

)

, let
(i) denote the i-th element in the lexicographic ordering of the k-tuples
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(i) = (i1, . . . , ik) such that 1 ≤ i1 < · · · < ik ≤ n. Then the exterior

product

α = u1 ∧ · · · ∧ uk

may be represented as the element of R
N , N =

(

n
k

)

, whose i component
is

αi = u1...k
i1...ik

= det [uj
ir

], 1 ≤ r, j ≤ k.

Traditionally a vector u is thought of as a directed line segment.
Then the vector α can be geometrically interpreted as the oriented par-
allelepiped spanned by u1, . . . , uk. If u1, . . . , uk ∈ R

n and | · | is any norm
on R

N , then there is a positive constant c depending on the norm such
that

(12) |u1 ∧ · · · ∧ uk| ≤ c|u1| · · · |uk|.

Let A = [aj
i ] be a m×n matrix, and let aj1...jk

i1...ik
= det [ajs

ir
], 1 ≤ r, s ≤ k,

where 1 ≤ i1 < · · · < ik ≤ m, 1 ≤ j1 < · · · < jk ≤ n.

Definition 8. The k-th multiplicative compound A(k) of A is the
(

m
k

)

×
(

n
k

)

matrix whose entries, written in lexicographic order, are aj1...jk

i1...ik
.

The main properties of the multiplicative compounds are

• If u1, . . . , uk ∈ R
n, then

A(k)(u1 ∧ · · · ∧ uk) = Au1 ∧ · · · ∧ Auk.

• The previous property implies the multiplicative identity

(AB)(k) = A(k)B(k)

for any matrices A and B of dimension consistent with the matrix
multiplication. It is known as the Binet-Cauchy Identity. This is the
motivation for the term multiplicative compound.

Definition 9. If m = n, the k-th additive compound A[k] of A is the
(

n
k

)

×
(

n
k

)

matrix defined by

A[k] =
d

dt
(I + tA)

(k)
∣

∣

∣

t=0
= lim

t→0

1

t

[

(I + tA)
(k) − I(k)

]

.

The main properties of the additive compounds are
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• If u1, . . . , uk ∈ R
n, then

(13) A[k](u1 ∧ · · · ∧ uk) =

k
∑

r=1

u1 ∧ · · · ∧ Aur ∧ · · · ∧ uk.

• If A and B are n×n matrices, then the previous property implies the
additive identity

(A + B)[k] = A[k] + B[k].

Hence the term additive compound.

For a general n × n matrix A

A(1) = A[1] = A, A(n) = det A and A[n] = trA.

In the case of a 2×2 matrix A(2) = a12
12 = det A and A[2] = a1

1+a2
2 = trA.

The connection between compound matrices and differential equa-
tions is as follows. Consider a linear differential equation

(14) y′ = A(t)y

where t 7→ A(t) is a n × n matrix valued function. Suppose that
y1(t), . . . , yk(t) are solutions of (14). Then z(t) = y1(t) ∧ · · · ∧ yk(t)
satisfies

z′(t) =

k
∑

i=1

y1(t) ∧ · · · ∧ (yi(t))′ ∧ · · · ∧ yk(t)

=

k
∑

i=1

y1(t) ∧ · · · ∧ A(t)yi(t) ∧ · · · ∧ yk(t)

= A[k](t)z(t).

The equation

(15) z′ = A[k](t)z

is called the k-th compound equation of (14). If Y (t) is a fundamental
matrix of (14), then its k-th multiplicative compound Y (k)(t) is a fun-
damental matrix of (15). Indeed, any solution of (14) can be written as
Y (t)c where c ∈ R

n. Let c1, . . . , ck ∈ R
n. Then Y (t)c1, . . . , Y (t)ck are

solutions of (14) and z(t) = Y (t)c1 ∧ · · · ∧ Y (t)ck = Y (k)(t)c1 ∧ · · · ∧ ck

is a solution of (15). Therefore Y (k)(t) is a fundamental matrix of (15).
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