◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dynamical Systems on Networks: Part II

Michael Y. Li University of Alberta

August 7, 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

- A network as a directed graph, examples
- Dynamical systems on networks, examples
- Global-stability problems for network dynamics
- Kirchhoff Matrix-Tree Theorem
- A general global stability result
- Application I: flight formation control of drones
- Application II: global synchronization of coupled oscillators

A Network as a Directed Graph

A directed graph $\mathcal{G} = (V, E, A)$ Vertex set: $V = \{1, 2, \dots, n\}$ Directed edge: (i, j) from vertex i to jWeights: $A = (a_{ij}), a_{ij} \neq 0 \iff (j, i)$ exists.

Given a nonnegative matrix, there corresponds a digraph \mathcal{G}_A , for which A is the weight matrix.

A Network of Autonomous Robotic Agents

HPC Control Protocol

Main Result

Examples of Networks

Examples of Networks

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

æ

Examples of Networks

・ロト ・聞ト ・ヨト ・ヨト

ж

Examples of Networks

Dynamical Systems on Networks

Given a digraph G = (V, E), a dynamical system can be defined over G.

Vertex dynamics: $u'_i = f_i(t, u_i), i = 1, \cdots, n.$ $u_i \in \mathbb{R}^{m_i}$ and $f_i : \mathbb{R} \times \mathbb{R}^{m_i} \to \mathbb{R}^{m_i}.$

 $\begin{array}{lll} \textbf{Connections:} & g_{ij} : \mathbb{R} \times \mathbb{R}^{m_i} \times \mathbb{R}^{m_j} \to \mathbb{R}^{m_i} \text{ influence of } j \text{ on } i \\ g_{ij} \equiv 0 & \Longleftrightarrow & (j, i) \text{ does not exist.} \end{array}$

Coupled system over G:

$$u'_i = f_i(t, u_i) + \sum_{j=1}^n g_{ij}(t, u_i, u_j), \quad i = 1, 2, ..., n.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Examples of Dynamical Systems on Networks

• Coupled Oscillators:

$$\ddot{\mathbf{x}}_i + \alpha \dot{\mathbf{x}}_i + f_i(\mathbf{x}_i) + \sum_{j=1}^n \epsilon_{ij}(\dot{\mathbf{x}}_i - \dot{\mathbf{x}}_j) = \mathbf{0},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Examples of Dynamical Systems on Networks

• Coupled Oscillators:

$$\ddot{x}_i + \alpha \dot{x}_i + f_i(x_i) + \sum_{j=1}^n \epsilon_{ij}(\dot{x}_i - \dot{x}_j) = 0,$$

• Dispersal of a single species among *n* patches

$$x'_{i} = x_{i}f_{i}(x_{i}) + \sum_{j=1}^{n} d_{ij}(x_{j} - \alpha_{ij}x_{i}), \qquad i = 1, 2, \dots, n.$$

Examples of Dynamical Systems on Networks

• Coupled Oscillators:

$$\ddot{x}_i + \alpha \dot{x}_i + f_i(x_i) + \sum_{j=1}^n \epsilon_{ij}(\dot{x}_i - \dot{x}_j) = 0,$$

• Dispersal of a single species among *n* patches

$$x'_{i} = x_{i}f_{i}(x_{i}) + \sum_{j=1}^{n} d_{ij}(x_{j} - \alpha_{ij}x_{i}), \qquad i = 1, 2, \dots, n.$$

• An *n*-patch predator-prey model

$$\begin{aligned} x_i' &= x_i(r_i - b_i x_i - e_i y_i) + \sum_{j=1}^n d_{ij}(x_j - \alpha_{ij} x_i), \\ y_i' &= y_i(-\gamma_i - \delta_i y_i + \epsilon_i x_i), \end{aligned} \qquad i = 1, 2, \dots, n.$$

Examples of Dynamical Systems on Networks cont'ed

• Cellular Neural Network and Lattice Dynamical Systems

Examples of Dynamical Systems on Networks cont'ed

• A Delayed Hopfield-Cohen-Grossberg Model of Neural Networks

$$rac{du_i(t)}{dt} = -u_i(t) + \sum_{i=1}^n J_{ij}fig(u_j(t- au)ig), \quad 1 \leq i \leq n$$

Examples of Dynamical Systems on Networks cont'ed

• A Delayed Hopfield-Cohen-Grossberg Model of Neural Networks

$$rac{du_i(t)}{dt} = -u_i(t) + \sum_{i=1}^n J_{ij}fig(u_j(t- au)ig), \quad 1 \leq i \leq n$$

• An Epidemic Model in Heterogeneous Populations

$$\begin{split} S'_i &= \Lambda_i - d_i^S S_i - \sum_{j=1}^n \beta_{ij} f_{ij}(S_i, I_j), \\ E'_i &= \sum_{j=1}^n \beta_{ij} f_{ij}(S_i, I_j) - (d_i^E + \epsilon_i) E_i, \quad i = 1, 2, \cdots, n. \\ I'_i &= \epsilon_i E_i - (d_i^I + \gamma_i) I_i. \end{split}$$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Research Questions

Assume:Independent vertex dynamics are simple or identicalInvestigate:If, what, how complex dynamic behaviours emerge

through network interactions.

Research Questions

Assume:Independent vertex dynamics are simple or identicalInvestigate:If, what, how complex dynamic behaviours emerge

through network interactions.

• Pattern formation

Research Questions

Assume: Independent vertex dynamics are simple or identical Investigate: If, what, how complex dynamic behaviours emerge through network interactions.

- Pattern formation
- Synchronization and clustering
- Phase transition and bifurcation

Research Questions

Assume: Independent vertex dynamics are simple or identical Investigate: If, what, how complex dynamic behaviours emerge through network interactions.

- Pattern formation
- Synchronization and clustering
- Phase transition and bifurcation
- Stability and control

Global Stability in Network Dynamics

Given a coupled system over a digraph G:

$$u'_i = f_i(t, u_i) + \sum_{j=1}^n g_{ij}(t, u_i, u_j), \quad i = 1, 2, ..., n.$$
 (1)

Assume: Each vertex $u'_i = f_i(t, u_i)$ is globally stable, as insured by a global Lyapunov function V_i .

Global Stability in Network Dynamics

Given a coupled system over a digraph G:

$$u'_i = f_i(t, u_i) + \sum_{j=1}^n g_{ij}(t, u_i, u_j), \quad i = 1, 2, ..., n.$$
 (1)

Assume: Each vertex $u'_i = f_i(t, u_i)$ is globally stable, as insured by a global Lyapunov function V_i .

Question: Under what conditions on the underlying network and coupling is the coupled system globally stable?

Of significance in disease control, stability of eco-systems, power distribution grids etc.

Main Result

Theorem [Z. Shuai and ML, 2009] Assume (1) There exist $F_{ii}(t, u_i, u_i)$ such that

•
$$V_i(u) \leq \sum_{j=1}^n a_{ij} F_{ij}(t, u_i, u_j), \quad t > 0, \ u_i \in D_i, \ u_j \in D_j, \ j = 1, \cdots, n.$$
(2)

(2) Along each directed cycle C of G,

$$\sum_{(r,s)\in E(\mathcal{C})}F_{rs}(t,u_r,u_s)\leq 0,\quad t>0,\ u_r\in D_r,\ u_s\in D_s. \tag{3}$$

Then there exist constants $c_i \ge 0$ such that $V(u) = \sum_{i=1}^{n} c_i V_i(u)$ satisfies

$$V(u) \leq 0, \quad u \in D_1 \times \cdots \times D_n.$$

Kirchhoff Matrix-Tree Theorem

Let (G, A) be a weighted digraph with weight matrix $A = (a_{ij})$. The Laplacian matrix of graph G is

$$L = \begin{bmatrix} \sum_{k \neq 1} a_{1k} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \sum_{k \neq 2} a_{2k} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \sum_{k \neq n} a_{nk} \end{bmatrix}$$

Let c_i be the cofactor of the *i*-th diagonal element of *L*.

Kirchhoff Matrix-Tree Theorem

Let (G, A) be a weighted digraph with weight matrix $A = (a_{ij})$. The Laplacian matrix of graph G is

$$L = \begin{bmatrix} \sum_{k \neq 1} a_{1k} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \sum_{k \neq 2} a_{2k} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \sum_{k \neq n} a_{nk} \end{bmatrix}$$

Let c_i be the cofactor of the *i*-th diagonal element of *L*.

Theorem [Kirchhoff (1847)] Assume $n \ge 2$. Then

$$c_i = \sum_{\mathcal{T} \in \mathbb{T}_i} w(\mathcal{T}), \qquad i = 1, 2, \dots, n,$$
(4)

where \mathbb{T}_i is the set of all spanning trees \mathcal{T} of (\mathcal{G}, A) rooted at vertex *i*, and $w(\mathcal{T})$ is the weight of \mathcal{T} .

Reordering of a Double Sum

Proposition [Tree-Cycle-Identity, Z. Shuai and ML 2009] Let c_i be given by the Matrix-Tree Theorem. Then the following identity holds.

$$\sum_{i,j=1}^{n} c_i a_{ij} F_{ij}(x_i, x_j) = \sum_{\mathcal{Q} \in \mathbb{Q}} w(\mathcal{Q}) \sum_{(r,s) \in E(\mathcal{C}_{\mathcal{Q}})} F_{rs}(x_r, x_s), \quad (5)$$

where $F_{ij}(x_i, x_j), 1 \le i, j \le n$, are arbitrary functions, \mathbb{Q} is the set of all spanning unicyclic graphs \mathcal{Q} of (\mathcal{G}, A) , $w(\mathcal{Q})$ is the weight of \mathcal{Q} , and $\mathcal{C}_{\mathcal{Q}}$ denotes the oriented cycle of \mathcal{Q} .

Reordering of a Double Sum

Proposition [Tree-Cycle-Identity, Z. Shuai and ML 2009] Let c_i be given by the Matrix-Tree Theorem. Then the following identity holds.

$$\sum_{i,j=1}^{n} c_i a_{ij} F_{ij}(x_i, x_j) = \sum_{\mathcal{Q} \in \mathbb{Q}} w(\mathcal{Q}) \sum_{(r,s) \in E(\mathcal{C}_{\mathcal{Q}})} F_{rs}(x_r, x_s), \quad (5)$$

where $F_{ij}(x_i, x_j), 1 \le i, j \le n$, are arbitrary functions, \mathbb{Q} is the set of all spanning unicyclic graphs \mathcal{Q} of (\mathcal{G}, A) , $w(\mathcal{Q})$ is the weight of \mathcal{Q} , and $\mathcal{C}_{\mathcal{Q}}$ denotes the oriented cycle of \mathcal{Q} .

Proof: Note $w(\mathcal{T}) a_{ij} = w(\mathcal{Q})$, where \mathcal{Q} is the unicyclic graph obtained by adding an arc (j, i) to \mathcal{T} .

Main Result

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Proof of Main Theorem

$$\begin{split} \hat{V} &= \sum_{i=1}^{n} c_{i} \hat{V}_{i} \leq \sum_{i,j=1}^{n} c_{i} a_{ij} F_{ij}(t, u_{i}, u_{j}) \quad (\text{assumption (1)}) \\ &= \sum_{\mathcal{Q} \in \mathbb{Q}} w(\mathcal{Q}) \sum_{(r,s) \in E(\mathcal{C}_{\mathcal{Q}})} F_{rs}(t, u_{r}, u_{s}) \quad (\text{Proposition}) \\ &\leq 0. \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof of Main Theorem

$$\begin{split} & \stackrel{\bullet}{V} = \sum_{i=1}^{n} c_{i} \stackrel{\bullet}{V_{i}} \leq \sum_{i,j=1}^{n} c_{i} a_{ij} F_{ij}(t, u_{i}, u_{j}) \quad (\text{assumption (1)}) \\ & = \sum_{\mathcal{Q} \in \mathbb{Q}} w(\mathcal{Q}) \sum_{(r,s) \in E(\mathcal{C}_{\mathcal{Q}})} F_{rs}(t, u_{r}, u_{s}) \quad (\text{Proposition}) \\ & \leq 0. \end{split}$$

Our Theorem offers a systematic way to construct global Lyapunov functions for the coupled system, using individual Lyapunov functions for the vertex dynamics.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof of Main Theorem

$$\begin{split} & \stackrel{\bullet}{V} = \sum_{i=1}^{n} c_{i} \stackrel{\bullet}{V_{i}} \leq \sum_{i,j=1}^{n} c_{i} a_{ij} F_{ij}(t, u_{i}, u_{j}) \quad (\text{assumption (1)}) \\ & = \sum_{\mathcal{Q} \in \mathbb{Q}} w(\mathcal{Q}) \sum_{(r,s) \in E(\mathcal{C}_{\mathcal{Q}})} F_{rs}(t, u_{r}, u_{s}) \quad (\text{Proposition}) \\ & \leq 0. \end{split}$$

Our Theorem offers a systematic way to construct global Lyapunov functions for the coupled system, using individual Lyapunov functions for the vertex dynamics.

Is the theorem any good?

Application I: A Network of Coupled Oscillators

$$\ddot{x}_i + \alpha \dot{x}_i + f_i(x_i) + \sum_{j=1}^n \epsilon_{ij} (\dot{x}_i - \dot{x}_j) = 0, \qquad (6)$$

or in systems

$$\dot{x}_i = y_i,$$

$$\dot{y}_i = -\alpha_i y_i - f_i(x_i) - \sum_{j=1}^n \epsilon_{ij}(y_i - y_j).$$
(7)

Each vertex dynamics is given by a damped nonlinear oscillator

$$\ddot{x}_i + \alpha \dot{x}_i + f_i(x_i) = 0.$$

Assume that the damping $\alpha_i \ge 0$ and the potential energy $F_i(x_i) = \int^{x_i} f_i(s) ds$ has a strictly global minimum at $x_i = x_i^*$. Then $x = x_i^*$ is globally stable (using the Lyapunov function)

$$V_i(x_i, y_i) = F_i(x_i) + \frac{y_i^2}{2}$$

Application I: A Network of Coupled Oscillators

Theorem Assume $\alpha_k > 0$ for some k and digraph \mathcal{G} is strongly connected. Then $E^*(x_1^*, 0, x_2^*, 0, \cdots, x_n^*, 0)$ is globally asymptotically stable in \mathbb{R}^{2n} .

Proof. $V_i(x_i, y_i) = F_i(x_i) + \frac{y_i^2}{2}$

$$egin{aligned} & \hat{Y}_i = -lpha_i y_i^2 - \sum_{j=1}^n \epsilon_{ij} (y_i - y_j) y_i \ & \leq \sum_{j=1}^n \epsilon_{ij} [-rac{1}{2} (y_i - y_j)^2 - rac{1}{2} y_i^2 + rac{1}{2} y_j^2] \ & \leq \sum_{j=1}^n \epsilon_{ij} F_{ij} (y_i, y_j) \end{aligned}$$

where

$$F_{ij}(y_i, y_j) = -\frac{1}{2}y_i^2 + \frac{1}{2}y_j^2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Application II: A Single Species Model with Dispersal

$$x'_{i} = x_{i}f_{i}(x_{i}) + \sum_{j=1}^{n} d_{ij}(x_{j} - \alpha_{ij}x_{i}), \quad i = 1, 2, \dots, n.$$
(8)

Application II: A Single Species Model with Dispersal

$$x'_{i} = x_{i}f_{i}(x_{i}) + \sum_{j=1}^{n} d_{ij}(x_{j} - \alpha_{ij}x_{i}), \quad i = 1, 2, \dots, n.$$
(8)

Theorem [Z. Shuai and ML (2009)] Assume

- (1) matrix (d_{ij}) is irreducible;
- (2) $f'_i(x_i) \leq 0, x_i > 0, i = 1, 2, ..., n; \exists k, f'_k(x_k) \not\equiv 0$ in any open interval of \mathbb{R}^+ ;
- (3) system (8) is uniformly persistent;
- (4) solutions of (8) are uniformly bounded.

Then system (8) has a globally asymptotically stable positive equilibrium E^* .

Application II: A Single Species Model with Dispersal

$$x'_{i} = x_{i}f_{i}(x_{i}) + \sum_{j=1}^{n} d_{ij}(x_{j} - \alpha_{ij}x_{i}), \quad i = 1, 2, \dots, n.$$
(8)

Theorem [Z. Shuai and ML (2009)] Assume

- (1) matrix (d_{ij}) is irreducible;
- (2) $f'_i(x_i) \leq 0, x_i > 0, i = 1, 2, ..., n; \exists k, f'_k(x_k) \not\equiv 0$ in any open interval of \mathbb{R}^+ ;
- (3) system (8) is uniformly persistent;
- (4) solutions of (8) are uniformly bounded.

Then system (8) has a globally asymptotically stable positive equilibrium E^* .

Note: Lu and Tacheuchi (1993) proved the result under the assumption $f'_i(x_i) < 0$, $x_i > 0$ for all *i*, using the theory of monotone dynamical systems.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Application III: An n-Patch Predator-Prey Model

$$x'_{i} = x_{i}(r_{i} - b_{i}x_{i} - e_{i}y_{i}) + \sum_{j=1}^{n} d_{ij}(x_{j} - \alpha_{ij}x_{i}), \quad i = 1, 2, ..., n.$$
(9)
$$y'_{i} = y_{i}(-\gamma_{i} - \delta_{i}y_{i} + \epsilon_{i}x_{i}),$$

Application III: An *n*-Patch Predator-Prey Model

$$x'_{i} = x_{i}(r_{i} - b_{i}x_{i} - e_{i}y_{i}) + \sum_{j=1}^{n} d_{ij}(x_{j} - \alpha_{ij}x_{i}), \quad i = 1, 2, ..., n.$$
(9)
$$y'_{i} = y_{i}(-\gamma_{i} - \delta_{i}y_{i} + \epsilon_{i}x_{i}),$$

Theorem [Z. Shuai and ML (2009)] Assume that (d_{ij}) is irreducible, and that $\exists k$ such that $b_k \delta_k > 0$. Then the positive equilibrium E^* , whenever it exists, is unique and globally asymptotically stable in the positive cone \mathbb{R}^{2n}_+ .

Application III: An *n*-Patch Predator-Prey Model

$$x'_{i} = x_{i}(r_{i} - b_{i}x_{i} - e_{i}y_{i}) + \sum_{j=1}^{n} d_{ij}(x_{j} - \alpha_{ij}x_{i}), \quad i = 1, 2, ..., n.$$
(9)
$$y'_{i} = y_{i}(-\gamma_{i} - \delta_{i}y_{i} + \epsilon_{i}x_{i}),$$

Theorem [Z. Shuai and ML (2009)] Assume that (d_{ij}) is irreducible, and that $\exists k$ such that $b_k \delta_k > 0$. Then the positive equilibrium E^* , whenever it exists, is unique and globally asymptotically stable in the positive cone \mathbb{R}^{2n}_+ .

Kuang and Tacheuchi (1994) proved the two-patch case.

Application III: An *n*-Patch Predator-Prey Model

$$x'_{i} = x_{i}(r_{i} - b_{i}x_{i} - e_{i}y_{i}) + \sum_{j=1}^{n} d_{ij}(x_{j} - \alpha_{ij}x_{i}), \quad i = 1, 2, ..., n.$$
(9)
$$y'_{i} = y_{i}(-\gamma_{i} - \delta_{i}y_{i} + \epsilon_{i}x_{i}),$$

Theorem [Z. Shuai and ML (2009)] Assume that (d_{ij}) is irreducible, and that $\exists k$ such that $b_k \delta_k > 0$. Then the positive equilibrium E^* , whenever it exists, is unique and globally asymptotically stable in the positive cone \mathbb{R}^{2n}_+ .

Kuang and Tacheuchi (1994) proved the two-patch case.

$$V_i(x_i, y_i) = \epsilon_i(x_i - x_i^* \ln x_i) + e_i(y_i - y_i^* \ln y_i)$$

Application IV: A Multi-group Delayed Epidemic Model $S'_{i} = \Lambda_{i} - d_{i}^{S}S_{i} - \sum_{j=1}^{n} \beta_{ij}S_{i}I_{j}(t - \tau_{j}),$ $i = 1, 2, \cdots, n. \quad (10)$ $I'_{i} = \sum_{j=1}^{n} \beta_{ij}S_{i}I_{j}(t - \tau_{j}) - (d_{i}^{I} + \gamma_{i})I_{i},$

Application IV: A Multi-group Delayed Epidemic Model $S'_{i} = \Lambda_{i} - d_{i}^{S}S_{i} - \sum_{j=1}^{n} \beta_{ij}S_{i}I_{j}(t - \tau_{j}),$ $i = 1, 2, \cdots, n. \quad (10)$ $I'_{i} = \sum_{j=1}^{n} \beta_{ij}S_{i}I_{j}(t - \tau_{j}) - (d_{i}^{I} + \gamma_{i})I_{i},$

Theorem [Z. Shuai and ML (2009)] Assume that $B = (\beta_{ij})$ is irreducible. If $R_0 > 1$, then the unique endemic equilibrium P^* for system (10) is globally asymptotically stable in $\overset{\circ}{\Theta}$.

Application IV: A Multi-group Delayed Epidemic Model $S'_{i} = \Lambda_{i} - d_{i}^{S}S_{i} - \sum_{j=1}^{n} \beta_{ij}S_{i}I_{j}(t - \tau_{j}),$ $i = 1, 2, \cdots, n. \quad (10)$ $I'_{i} = \sum_{j=1}^{n} \beta_{ij}S_{i}I_{j}(t - \tau_{j}) - (d'_{i} + \gamma_{i})I_{i},$

Theorem [Z. Shuai and ML (2009)] Assume that $B = (\beta_{ij})$ is irreducible. If $R_0 > 1$, then the unique endemic equilibrium P^* for system (10) is globally asymptotically stable in $\overset{\circ}{\Theta}$.

When n = 1, C. McCluskey proved the global stability with Lyapunov function

$$V_{i} = (S_{i} - S_{i}^{*} + S_{i}^{*} \ln \frac{S_{i}}{S_{i}^{*}}) + (I_{i} - I_{i}^{*} - I_{i}^{*} \ln \frac{I_{i}}{I_{i}^{*}}) + \sum_{j=1}^{n} \beta_{ji} S_{i}^{*} \int_{0}^{\tau_{j}} \left(I_{j}(t-r) - I_{j}^{*} - I_{j}^{*} \ln \frac{I_{j}(t-r)}{I_{j}^{*}} \right) dr.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A video on Youtube https://www.youtube.com/watch?v=QmWD76jwjbQ GRASP Lab, University of Pennsylvania Each robotic agent has position vector $r_i = (x_i, y_i) \in \mathbb{R}^2$ and velocity vector $v_i = \dot{r}_i = (\dot{x}_i, \dot{y}_i)$.

The system's evolution is governed by Newton's equation

$$\begin{array}{ll} \dot{r}_i = & v_i, \\ \dot{v}_i = & u_i, \end{array} \qquad i = 1, \cdots, n. \eqno(11)$$

Here

- u_i , $i = 1, \dots, n$, define the control protocol
- Formation control is achieved through communications among agents
- Network represents the communication graph (topology)
- A complete communication graph is too costly.

Hierarchical Potential Clustering (HPC) Protocol

Proposed by J. Maidens and ML:

- 1) Divide the agents into clusters
- 2) Assign a leader to each cluster
- 3) Implement an artificial potential scheme (with a complete graph) within each cluster
- 4) Implement a velocity consensus scheme among the cluster leaders.

HPC Protocol: control within a cluster *i*

For $j \neq 1$, (i.e. r_{ij} is not a leader in cluster *i*)

$$u_{ij} = -\nabla_{r_{ij}} P_{ij} - \sum_{k} \frac{(\theta_{ij} - \theta_{ik})||\mathbf{v}_{ij}||}{||\mathbf{r}_{ij} - \mathbf{r}_{ik}||} \hat{n}(ij),$$

where

$$P_{ij} = \sum_{k=1}^{n_i} P_{ij}^{ik}$$

controls distance of agents in the cluster and

$$heta_{ij} = an^{-1} \Big(rac{\dot{y}_{ij}}{\dot{x}_{ij}} \Big)$$

is the heading of agent (i, j).

HPC Protocol: control among leaders

For j = 1, (i.e., r_{i1} is the leader in cluster i), we add additional force to control there heading

$$u_{i1} = -\nabla_{r_{i1}} P_{i1} - \sum_{k} \frac{(\theta_{i1} - \theta_{ik})||v_{i1}||}{||r_{i1} - r_{ik}||} \hat{n}(i1) + \sum_{h \in N_i} b_{ih}(v_{h1} - v_{i1})$$

where matrix $B = (b_{ij})$ is any nonnegative irreducible matrix. The correspond communication graph G_B among leaders is strongly connected.

Formation Stabilization Problem

Definition A control protocol is said to solve the formation stabilization problem if solutions of (11) converge asymptotically to a state such that

(a) the relative positions of each agent (i, j) within a cluster are such that a local minimum of the total vertex potential P_{ij} is achieved,

(b) the headings of any two agents (i, j) and (h, k) satisfy $\theta_{ij} = \theta_{hk}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Main Result

Theorem (J. Maidens and ML, 2013)

Given any clustering scheme, the HPC protocol solves the formation stabilization problem provided that the leader communication graph G_B is strongly connected.

Main Result

Theorem (J. Maidens and ML, 2013)

Given any clustering scheme, the HPC protocol solves the formation stabilization problem provided that the leader communication graph G_B is strongly connected.

An example graph that is strongly connected:

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Main Result

Theorem (J. Maidens and ML, 2013)

Given any clustering scheme, the HPC protocol solves the formation stabilization problem provided that the leader communication graph G_B is strongly connected.

An example graph that is not strongly connected:

イロト 不得 トイヨト イヨト

э

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Simulations

• Clustering without control protocol

- Video 1
- Clustering without leader control
 - Video 2
 - Video 3
- Clustering with leader control
 - Video 4
 - Video 5

A Network of Autonomous Robotic Agents

HPC Control Protocol

Main Result

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Synchronization

Synchronization of metronomes: a video

https://www.youtube.com/watch?v=Aaxw4zbULMs

Coupled Oscillators Revisited

Consider a system of coupled oscillators:

$$\ddot{x}_i + f_i(x_i) + \sum_{j=1}^n \epsilon_{ij}(\dot{x}_i - \dot{x}_j) = 0,$$

Assume that $f_i(x_i)$ and $F_i(x_i) = \int_i^x f_i(t)dt$ satisfy (C_1) $f_i(x_i)x_i > 0$, $x_i \neq 0, i = 1, 2, \cdots, n$, (C_2) $F_i(x_i) \rightarrow \infty$ as $|x_i| \rightarrow \infty, i = 1, 2, \cdots, n$.

Both (C_1) and (C_2) are satisfied for $f_i(x_i) = x_i^3$.

Global Synchronization

Definition: System (29) is said to achieve global synchronization if, for every solution x(t) of system (29) and all $1 \le i, j \le n$,

$$\dot{x}_i(t)-\dot{x}_j(t)=0.$$

Question: Under what conditions of matrix $A = (a_{ij})$ does the system (29) achieves global synchronization?

A Theorem

Theorem (P. Du and ML 2015)

In system (29), suppose that the direct graph G_A is strongly connected, and assumptions (C_1) and (C_2) are satisfied. Then system (29) achieves global synchronization.

For the proof, considering the equivalent system

$$\begin{aligned} \dot{x}_i &= y_i \\ \dot{y}_i &= -f_i(x_i) + \sum_{j=1}^n \epsilon_{ij}(y_j - y_i) \end{aligned}$$

Using Lyapunov functions:

$$V_i=\frac{1}{2}y_i^2+F_i(x_i),$$

and

$$V=\sum_{i=1}^n c_i V_i.$$