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Curves and Surfaces
A smooth curve γ in Rn is a C 1 function s ! x (s) , s 2 I � R,
x (s) 2 Rn.
A measure of the length of γ is

l (γ) =
Z

γ
dl

def
=
Z
I

dxds (s)
 ds

where k�k is a norm on Rn. For example, the euclidean norm

kxk =
q
(x1)

2 + � � �+ (xn)2 gives the usual measure of length

l (γ) =
Z
I

s
dx1
ds

2

+ � � �+ dxn
ds

2

ds
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A smooth 2-surface σ in Rn is a C 1 function (s1, s2)! x (s1, s2) ,
(s1,s2) 2 U � R2, x (s1, s2) 2 Rn.
A measure of the area of σ is

a2 (σ) =
Z

σ
da

def
=
Z
U
kxs1 ^ xs2k ds1ds2

where xsi =
∂

∂si
x (s1, s2) and k�k is a norm on R(n2). If k�k is the Euclidean

norm we have

a2 (σ) =
Z
U

vuut ∑
1�i<j�n

∂ (xi , xj )
∂ (s1, s2)

2

ds1ds2

where
∂ (xi , xj )
∂ (s1, s2)

= det

"
∂xi
∂s1

∂xi
∂s2

∂xj
∂s1

∂xj
∂s2

#
.
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A smooth k-surface σ in Rn is a C 1 function
(s1, � � �, sk )! x (s1, � � �, sk ) , s1, � � �, sk 2 U � Rk , x (s1, � � �, sk ) 2 Rn.
A measure of the k-area of σ is

ak (σ) =
Z

σ
dak

def
=
Z
U
kxs1 ^ � � � ^ xsk k ds1 � � � dsk

where xsi =
∂

∂si
x (s1, � � �, sk ) and k�k is a norm on R(nk). If k�k is the

Euclidean norm we have

ak (σ) =
Z
U

vuut ∑
1�i1<���<ik�n

∂ (xi1 , � � �, xik )
∂ (s1, � � �, sk )

2

ds1ds2

where

∂ (xi1 , � � �, xik )
∂ (s1, � � �, sk )

= det

266664
∂xi1
∂s1

∂xi1
∂s2

� ∂xi1
∂sk

∂xi2
∂s1

∂xi2
∂s2

� ∂xi2
∂sk

� � � �
∂xik
∂s1

∂xik
∂s2

� ∂xik
∂sk

377775 .
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Nonlinear Di¤erential Equations
f 2 C 1 (Rn ! Rn)

ẋ = f (x) (N)

Solution : x (t) = φ (t) = φ (t, x0) , is uniquely determined by x (0) = x0
and, for simplicity, we will only consider equations for which solutions exist
for all t > 0

If φ (t, x0) = x0 for all t, then x0 is called an equilibrium.

If φ (t +ω) = φ (t) , ω > 0,the solution is periodic of period ω.

An orbit (positive semi-orbit) is a set fφ (t) : 0 � t < ∞g .

The orbit of an equilibrium is a single point.

The orbit of a periodic solution is a simple closed curve (Jordan curve)
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Linearization about a solution φ (t):

ẏ =
∂f
∂x
(φ (t)) y (L)

Solution is:

y (t) =
∂φ

∂x0
(t, x0) y (0) , x0 = φ (0)

Y (t) =
∂φ

∂x0
(t, x0) .fundamental matrix, Y (0) = I

"Proof": y = φ (t, x0) solves ẏ = f (y)

) ∂φ

∂t
(t, x0) = f (φ (t, x0))

Di¤erentiate with respect to x0

) ∂2φ

∂t∂x0
(t, x0) =

∂2φ

∂x0∂t
(t, x0) =

∂f
∂x
(φ (t, x0))

∂φ

∂x0
(t, x0)

) Ẏ =
∂f
∂x
(φ (t))Y
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The k�th compound equation of (L) is:

ż =
∂f
∂x

[k ]

(φ (t)) z (Lk )

Solution: z (t) = ∂φ
∂x0

(k )
(t, x0) z (0) , x0 = φ (0)

The case k = n of (Lk ) is the Liouville equation:

ż = div f (φ (t)) z (Ln)

Solution: z (t) = det ∂φ
∂x0
(t, x0) z (0) , x0 = φ (0)
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Suppose that D � Rn has �nite n-dimensional measure an (D) , then the
measure of φ (t,D) is

an (φ (t,D)) =
Z
x2φ(t ,D )

dx =
Z
x02D

����det ∂φ

∂x0
(t, x0)

���� dx0
(Ln)) det ∂φ

∂x0
(t, x0) = exp

hR t
0 div f (φ (s, x0)) ds

i
. So, for example, if

div f < 0 in Rn, then the measure of the set φ (t,D) decreases with time.

When n = 2 this observation implies that no simply connected region
where div f < 0 can contain a non-trivial periodic orbit of (L). This is
known as Bendixson�s Condition. Most textbooks prove this as a very nice
application of Green�s Theorem.
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Stability of the linearized equations (L) and its compounds (Lk ) have
many implications for the dynamics of (N)

If γ0: x = x0 (s) , 0 � s � 1 is a curve in Rn, then γt : x = φ (t, x0 (s)) ,
0 � s � 1 is also a curve in Rn for each t � 0.

lγ0 =
Z 1

0

 dds x0 (s)
 ds

lγt =
Z 1

0

 dds φ (t, x0 (s))

 ds = Z 1

0

 ∂φ

∂x0
(t, x0 (s))

d
ds
(x0 (s))

 ds
�

Z 1

0

 ∂φ

∂x0
(t, x0 (s))

  dds (x0 (s))
 ds

We can conclude for example that, if
 ∂φ

∂x0
(t, x0)

 !
t!∞

0 uniformly with

respest to x0 2 Rn, then

there is at most one equilibrium of (N) and,

any equilibrium attracts all other orbits
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If σ0 : (s1, s2)! x (s1, s2) is a 2-surface in Rn then so also is σt :
(s1, s2)! φ (t, x (s1, s2)) .

We can use similar ideas to get higher dimensional Bendixson Conditions
to rule out the existence of periodic orbits. These are conditions on (L2)
that typically imply that some measure of surface area decreases in the
dynamics. Another related type of condition would imply that a2σt !

t!∞
0.

The central idea is to observe that a periodic orbit γ is invariant in the
dynamics, φ (t,γ) = γ. So, if Σ0 is any surface which has γ as its
boundary, then Σt = φ (t,Σ0) is also a surface with γ as boundary. But if,
among all surfaces with boundary γ, Σ0 is a surface with minimum area
and (N) diminishes area we would contradict the minimality of Σ0.So no
such invariant closed curve can exist.
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The following are Bendixson conditions for various measures of 2-surface
area. Each reduces to the classical result when n = 2 :

λ1 + λ2 < 0 (RA Smith)

maxr 6=s
n

∂fr
∂xr
+ ∂fs

∂xs
+∑q 6=r ,s

���� ∂fr
∂xq

���+ ��� ∂fs
∂xq

����o < 0
maxr 6=s

n
∂fr
∂xr
+ ∂fs

∂xs
+∑q 6=r ,s

���� ∂fq
∂xr

���+ ��� ∂fq
∂xs

����o < 0
λn�1 + λn > 0

minr 6=s
n

∂fr
∂xr
+ ∂fs

∂xs
�∑q 6=r ,s

���� ∂fr
∂xq

���+ ��� ∂fs
∂xq

����o > 0
minr 6=s

n
∂fr
∂xr
+ ∂fs

∂xs
�∑q 6=r ,s

���� ∂fq
∂xr

���+ ��� ∂fq
∂xs

����o > 0
λ1 � λ2 � � � � � λn are the eigenvalues of 12

�
∂f
∂x
�
+ ∂f

∂x

�
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General Compounds

M Fiedler, Czech Math J 24(1974), pp 392 - 402

X � Y: General compound A[k ] 2 L
�
^kX ! ^kY

�
. 0 � m � k

A[k ,m]
�
v1 ^ � � � ^ v k

�
def
= ∑

(ε1,���,εk )
Aε1v1 ^ Aε2v2 ^ � � � ^ Aεk v k

εi 2 f0, 1g , ε1 + � � �+ εk = m, A
0 = I

A[k ,0] = I (k ), A[k ,1] = A[k ], A[k ,k ] = A(k )

Dmh (I + hA)
(k )
���
t=0

= m!A[k ,m]
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Dmh (I + hA)
(k )
���
t=0

= m!A[k ,m]

(I + hA)(k ) =
k

∑
m=0

hmA[k ,m]

= hA[k ,1] + h2A[k ,2] + � � �+ hkA[k ,k ]

If λ1, � � �,λn are the eigenvalues of A with eigenvectors v1, � � �, vn, then
the eigenvalues of (I + hA)(k ) are

h (λi1 + � � �+ λik ) + h
2 �λi1λi2 + � � �+ λik�1λik

�
+ � � �+ hk (λi1λi2 � �λik )

with eigenvectors v i1 ^ v i2 ^ � � � ^ v ik .
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