A Research Story: Compound Equations and Dynamics. Part 3

James Muldowney, University of Alberta

July 25, 2019

Curves and Surfaces

A smooth curve γ in \mathbb{R}^{n} is a C^{1} function $s \rightarrow x(s), s \in I \subset \mathbb{R}$, $x(s) \in \mathbb{R}^{n}$.
A measure of the length of γ is

$$
I(\gamma)=\int_{\gamma} d l \stackrel{\text { def }}{=} \int_{I}\left\|\frac{d x}{d s}(s)\right\| d s
$$

where $\|\cdot\|$ is a norm on \mathbb{R}^{n}. For example, the euclidean norm $\|x\|=\sqrt{\left(x_{1}\right)^{2}+\cdots+\left(x_{n}\right)^{2}}$ gives the usual measure of length

$$
I(\gamma)=\int_{I} \sqrt{{\frac{d x_{1}}{d s}}^{2}+\cdots+{\frac{d x_{n}}{}{ }^{2}}_{d s}} d s
$$

A smooth 2-surface σ in \mathbb{R}^{n} is a C^{1} function $\left(s_{1}, s_{2}\right) \rightarrow x\left(s_{1}, s_{2}\right)$, $\left(s_{1}, s_{2}\right) \in U \subset \mathbb{R}^{2}, x\left(s_{1}, s_{2}\right) \in \mathbb{R}^{n}$.
A measure of the area of σ is

$$
a_{2}(\sigma)=\int_{\sigma} d a \stackrel{\text { def }}{=} \int_{U}\left\|x_{s_{1}} \wedge x_{s_{2}}\right\| d s_{1} d s_{2}
$$

where $x_{s_{i}}=\frac{\partial}{\partial s_{i}} x\left(s_{1}, s_{2}\right)$ and $\|\cdot\|$ is a norm on $\mathbb{R}^{\binom{n}{2}}$. If $\|\cdot\|$ is the Euclidean norm we have

$$
a_{2}(\sigma)=\int_{U} \sqrt{\sum_{1 \leq i<j \leq n} \frac{\partial\left(x_{i}, x_{j}\right)^{2}}{\partial\left(s_{1}, s_{2}\right)}} d s_{1} d s_{2}
$$

where

$$
\frac{\partial\left(x_{i}, x_{j}\right)}{\partial\left(s_{1}, s_{2}\right)}=\operatorname{det}\left[\begin{array}{ll}
\frac{\partial x_{i}}{\partial s_{1}} & \frac{\partial x_{i}}{\partial s_{2}} \\
\frac{\partial x_{j}}{\partial s_{1}} & \frac{\partial j_{j}}{\partial s_{2}}
\end{array}\right] .
$$

A smooth k-surface σ in \mathbb{R}^{n} is a C^{1} function $\left(s_{1}, \cdots, s_{k}\right) \rightarrow x\left(s_{1}, \cdots, s_{k}\right), s_{1}, \cdots, s_{k} \in U \subset \mathbb{R}^{k}, x\left(s_{1}, \cdots, s_{k}\right) \in \mathbb{R}^{n}$. A measure of the k-area of σ is

$$
a_{k}(\sigma)=\int_{\sigma} d a_{k} \stackrel{\text { def }}{=} \int_{U}\left\|x_{s_{1}} \wedge \cdots \wedge x_{s_{k}}\right\| d s_{1} \cdots d s_{k}
$$

where $x_{s_{i}}=\frac{\partial}{\partial s_{i}} x\left(s_{1}, \cdots, s_{k}\right)$ and $\|\cdot\|$ is a norm on $\mathbb{R}^{\binom{n}{k} \text {. If }\|\cdot\| \text { is the } . ~}$ Euclidean norm we have

$$
a_{k}(\sigma)=\int_{U} \sqrt{\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} \frac{\partial\left(x_{i_{1}}, \cdots, x_{i_{k}}\right)^{2}}{\partial\left(s_{1}, \cdots, s_{k}\right)}} d s_{1} d s_{2}
$$

where

$$
\frac{\partial\left(x_{i_{1}}, \cdots, x_{i_{k}}\right)}{\partial\left(s_{1}, \cdots, s_{k}\right)}=\operatorname{det}\left[\begin{array}{cccc}
\frac{\partial x_{i_{1}}}{\partial s_{1}} & \frac{\partial x_{i_{1}}}{\partial s_{2}} & \cdot & \frac{\partial x_{i_{1}}}{\partial s_{k}} \\
\frac{\partial x_{i_{2}}}{\partial s_{1}} & \frac{\partial x_{i_{2}}}{\partial s_{2}} & \cdot & \frac{\partial x_{i_{2}}}{\partial s_{k}} \\
\cdot & \cdot & \cdot & \cdot \\
\frac{\partial x_{i_{k}}}{\partial s_{1}} & \frac{\partial x_{i_{k}}}{\partial s_{2}} & \cdot & \frac{\partial x_{i_{k}}}{\partial s_{k}}
\end{array}\right] .
$$

Nonlinear Differential Equations

$f \in C^{1}\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}\right)$

$$
\begin{equation*}
\dot{x}=f(x) \tag{N}
\end{equation*}
$$

Solution : $x(t)=\phi(t)=\phi\left(t, x_{0}\right)$, is uniquely determined by $x(0)=x_{0}$ and, for simplicity, we will only consider equations for which solutions exist for all $t>0$

If $\phi\left(t, x_{0}\right)=x_{0}$ for all t, then x_{0} is called an equilibrium.
If $\phi(t+\omega)=\phi(t), \omega>0$, the solution is periodic of period ω.
An orbit (positive semi-orbit) is a set $\{\phi(t): 0 \leq t<\infty\}$.
The orbit of an equilibrium is a single point.
The orbit of a periodic solution is a simple closed curve (Jordan curve)

Linearization about a solution $\phi(t)$:

$$
\begin{equation*}
\dot{y}=\frac{\partial f}{\partial x}(\phi(t)) y \tag{L}
\end{equation*}
$$

Solution is:

$$
\begin{aligned}
y(t) & =\frac{\partial \phi}{\partial x_{0}}\left(t, x_{0}\right) y(0), \quad x_{0}=\phi(0) \\
Y(t) & =\frac{\partial \phi}{\partial x_{0}}\left(t, x_{0}\right) \cdot \text { fundamental matrix, } Y(0)=I
\end{aligned}
$$

"Proof": $y=\phi\left(t, x_{0}\right)$ solves $\dot{y}=f(y)$

$$
\Rightarrow \frac{\partial \phi}{\partial t}\left(t, x_{0}\right)=f\left(\phi\left(t, x_{0}\right)\right)
$$

Differentiate with respect to x_{0}

$$
\begin{aligned}
& \Rightarrow \quad \frac{\partial^{2} \phi}{\partial t \partial x_{0}}\left(t, x_{0}\right)=\frac{\partial^{2} \phi}{\partial x_{0} \partial t}\left(t, x_{0}\right)=\frac{\partial f}{\partial x}\left(\phi\left(t, x_{0}\right)\right) \frac{\partial \phi}{\partial x_{0}}\left(t, x_{0}\right) \\
& \Rightarrow \quad \dot{Y}=\frac{\partial f}{\partial x}(\phi(t)) Y
\end{aligned}
$$

The k-th compound equation of (L) is:

$$
\begin{equation*}
\dot{z}=\frac{\partial f}{\partial x}^{[k]}(\phi(t)) z \tag{k}
\end{equation*}
$$

Solution: $z(t)={\frac{\partial \phi}{\partial x_{0}}}^{(k)}\left(t, x_{0}\right) z(0), x_{0}=\phi(0)$
The case $k=n$ of $\left(L_{k}\right)$ is the Liouville equation:

$$
\begin{equation*}
\dot{z}=\operatorname{div} f(\phi(t)) z \tag{n}
\end{equation*}
$$

Solution: $z(t)=\operatorname{det} \frac{\partial \phi}{\partial x_{0}}\left(t, x_{0}\right) z(0), x_{0}=\phi(0)$

Suppose that $D \subset \mathbb{R}^{n}$ has finite n-dimensional measure $a_{n}(D)$, then the measure of $\phi(t, D)$ is

$$
a_{n}(\phi(t, D))=\int_{x \in \phi(t, D)} d x=\int_{x_{0} \in D}\left|\operatorname{det} \frac{\partial \phi}{\partial x_{0}}\left(t, x_{0}\right)\right| d x_{0}
$$

$\left(L_{n}\right) \Rightarrow \operatorname{det} \frac{\partial \phi}{\partial x_{0}}\left(t, x_{0}\right)=\exp \left[\int_{0}^{t} \operatorname{div} f\left(\phi\left(s, x_{0}\right)\right) d s\right]$. So, for example, if $\operatorname{div} f<0$ in \mathbb{R}^{n}, then the measure of the set $\phi(t, D)$ decreases with time.

When $n=2$ this observation implies that no simply connected region where $\operatorname{div} f<0$ can contain a non-trivial periodic orbit of (L). This is known as Bendixson's Condition. Most textbooks prove this as a very nice application of Green's Theorem.

Stability of the linearized equations (L) and its compounds $\left(L_{k}\right)$ have many implications for the dynamics of (N)

If $\gamma_{0}: x=x_{0}(s), 0 \leq s \leq 1$ is a curve in \mathbb{R}^{n}, then $\gamma_{t}: x=\phi\left(t, x_{0}(s)\right)$, $0 \leq s \leq 1$ is also a curve in \mathbb{R}^{n} for each $t \geq 0$.

$$
\begin{aligned}
I \gamma_{0} & =\int_{0}^{1}\left\|\frac{d}{d s} x_{0}(s)\right\| d s \\
I \gamma_{t} & =\int_{0}^{1}\left\|\frac{d}{d s} \phi\left(t, x_{0}(s)\right)\right\| d s=\int_{0}^{1}\left\|\frac{\partial \phi}{\partial x_{0}}\left(t, x_{0}(s)\right) \frac{d}{d s}\left(x_{0}(s)\right)\right\| d s \\
& \leq \int_{0}^{1}\left\|\frac{\partial \phi}{\partial x_{0}}\left(t, x_{0}(s)\right)\right\|\left\|\frac{d}{d s}\left(x_{0}(s)\right)\right\| d s
\end{aligned}
$$

We can conclude for example that, if $\left\|\frac{\partial \phi}{\partial x_{0}}\left(t, x_{0}\right)\right\| \underset{t \rightarrow \infty}{\rightarrow} 0$ uniformly with respest to $x_{0} \in \mathbb{R}^{n}$, then

- there is at most one equilibrium of (N) and,
- any equilibrium attracts all other orbits

If $\sigma_{0}:\left(s_{1}, s_{2}\right) \rightarrow x\left(s_{1}, s_{2}\right)$ is a 2-surface in \mathbb{R}^{n} then so also is σ_{t} : $\left(s_{1}, s_{2}\right) \rightarrow \phi\left(t, x\left(s_{1}, s_{2}\right)\right)$.

We can use similar ideas to get higher dimensional Bendixson Conditions to rule out the existence of periodic orbits. These are conditions on $\left(L_{2}\right)$ that typically imply that some measure of surface area decreases in the dynamics. Another related type of condition would imply that $a_{2} \sigma_{t} \underset{t \rightarrow \infty}{\rightarrow} 0$.

The central idea is to observe that a periodic orbit γ is invariant in the dynamics, $\phi(t, \gamma)=\gamma$. So, if Σ_{0} is any surface which has γ as its boundary, then $\Sigma_{t}=\phi\left(t, \Sigma_{0}\right)$ is also a surface with γ as boundary. But if, among all surfaces with boundary γ, Σ_{0} is a surface with minimum area and (N) diminishes area we would contradict the minimality of Σ_{0}. So no such invariant closed curve can exist.

The following are Bendixson conditions for various measures of 2-surface area. Each reduces to the classical result when $n=2$:

$$
\begin{gathered}
\lambda_{1}+\lambda_{2}<0(\text { RA Smith }) \\
\max _{r \neq s}\left\{\frac{\partial f_{r}}{\partial x_{r}}+\frac{\partial f_{s}}{\partial x_{s}}+\sum_{q \neq r, s}\left(\left|\frac{\partial f_{r}}{\partial x_{q}}\right|+\left|\frac{\partial f_{s}}{\partial x_{q}}\right|\right)\right\}<0 \\
\max _{r \neq s}\left\{\frac{\partial f_{r}}{\partial x_{r}}+\frac{\partial f_{s}}{\partial x_{s}}+\sum_{q \neq r, s}\left(\left|\frac{\partial f_{q}}{\partial x_{r}}\right|+\left|\frac{\partial f_{q}}{\partial x_{s}}\right|\right)\right\}<0 \\
\lambda_{n-1}+\lambda_{n}>0 \\
\min _{r \neq s}\left\{\frac{\partial f_{r}}{\partial x_{r}}+\frac{\partial f_{s}}{\partial x_{s}}-\sum_{q \neq r, s}\left(\left|\frac{\partial f_{r}}{\partial x_{q}}\right|+\left|\frac{\partial f_{s}}{\partial x_{q}}\right|\right)\right\}>0 \\
\min _{r \neq s}\left\{\frac{\partial f_{r}}{\partial x_{r}}+\frac{\partial f_{s}}{\partial x_{s}}-\sum_{q \neq r, s}\left(\left|\frac{\partial f_{q}}{\partial x_{r}}\right|+\left|\frac{\partial f_{q}}{\partial x_{s}}\right|\right)\right\}>0
\end{gathered}
$$

$\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ are the eigenvalues of $\frac{1}{2}\left(\frac{\partial f}{\partial x}^{*}+\frac{\partial f}{\partial x}\right)$

General Compounds

M Fiedler, Czech Math J 24(1974), pp 392-402
$\mathbb{X} \subset \mathbb{Y}$: General compound $A^{[k]} \in \mathcal{L}\left(\wedge^{k} \mathbb{X} \rightarrow \wedge^{k} \mathbb{Y}\right) .0 \leq m \leq k$

$$
\begin{gathered}
A^{[k, m]}\left(v^{1} \wedge \cdots \wedge v^{k}\right) \stackrel{\text { def }}{=} \sum_{\left(\varepsilon_{1}, \cdots, \varepsilon_{k}\right)} A^{\varepsilon_{1}} v^{1} \wedge A^{\varepsilon_{2}} v^{2} \wedge \cdots \wedge A^{\varepsilon_{k}} v^{k} \\
\varepsilon_{i} \in\{0,1\}, \quad \varepsilon_{1}+\cdots+\varepsilon_{k}=m, \quad A^{0}=I \\
A^{[k, 0]}=I^{(k)}, \quad A^{[k, 1]}=A^{[k]}, \quad A^{[k, k]}=A^{(k)} \\
\left.D_{h}^{m}(I+h A)^{(k)}\right|_{t=0}=m!A^{[k, m]}
\end{gathered}
$$

$$
\begin{aligned}
& \left.D_{h}^{m}(I+h A)^{(k)}\right|_{t=0}=m!A^{[k, m]} \\
& (I+h A)^{(k)}= \\
& =\sum_{m=0}^{k} h^{m} A^{[k, m]} \\
& =h A^{[k, 1]}+h^{2} A^{[k, 2]}+\cdots+h^{k} A^{[k, k]}
\end{aligned}
$$

If $\lambda_{1}, \cdots, \lambda_{n}$ are the eigenvalues of A with eigenvectors v^{1}, \cdots, v^{n}, then the eigenvalues of $(I+h A)^{(k)}$ are
$h\left(\lambda_{i_{1}}+\cdots+\lambda_{i_{k}}\right)+h^{2}\left(\lambda_{i_{1}} \lambda_{i_{2}}+\cdots+\lambda_{i_{k-1}} \lambda_{i_{k}}\right)+\cdots+h^{k}\left(\lambda_{i_{1}} \lambda_{i_{2}} \cdots \lambda_{i_{k}}\right)$
with eigenvectors $v^{i_{1}} \wedge v^{i_{2}} \wedge \cdots \wedge v^{i_{k}}$.

Bibliography

1. P Constantin, C Foias, Global Lyapunov exponents, P Constantin, C Foias, Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations, Comm Pur Appl Math 38 (1985), 1-27.
2. P Constantin, C Foias \& R Temam, Attractors representing turbulent flows, AMS Memoirs, Vol 53 (1985), No314
3. WB Demidowitsch, Eine verallgemeinerung des kriterium von Bendixson, ZAngewMathMech, 46(2)(1996), 145-146.
4. M Fiedler, Additive compound matrices and inequality for eigenvalues of stochastic matrices, CzechMathJ, 99(1974), 392-402.
5. MY Li, Geometrical Studies on the Global Asymptotic Behaviour of Dissipative Dynamical Systems, University of Alberta PhD thesis, 1993.
6. MY Li, Bendixson's criterion for autonomous systems with an invariant linear subspace, RockyMountainJMath 25(1995), 351-363.
7. MY Li, Dulac criteria for autonomous systems having an invariant affine manifold, JMathAnalApplications 199(1996), 374-190.
8. MY Li, Bendixson's criterion for autonomous systems with invariant linear subspaces, RockyMountainJMath 25(1995), 351-363.
9. MY Li, Dulac criteria for autonomous systems having an invaraiant affine manifold, JMathAnalAppl 199(1996), 374-390.
10. MY Li and JS Muldowney, On Bendixson's criterion, JDiffEquations 106(1994), 27-39.
11. MY Li and JS Muldowney, Lower bounds for the Hausdorff dimension of attractors, JDynamics\&DifferentialEqns 7(1995), 457-469.
12. MY Li and JS Muldowney, On RA Smith's autonomous convergence theorem, RockyMountainJMath 25(1995), 365-379.
13. MY Li and JS Muldowney, Poincaré's stability condition for quasi-periodic orbits, CanadianAppliedMathQuarterly 6(1998), 367-381.
14. MY Li and JS Muldowney, Dynamics of differential equations on invariant manifolds, JDifferentialEquations 168(2000), 295-320.
15. MY Li and L Wang, A criterion for stability of matrices, JMathAnalApplications 225(1998), 249-264.
16. D London, On derivations arising in differential equations, Linear and Multililnear Algebra 4 (1976), 179-189.
17. CC McCluskey, Bendixson Criteria for Difference Equations. University of Alberta MSc thesis, 1996
18. CC McCluskey, Global stability in epidemiological models University of Alberta PhD thesis, 2002.
19. CC McCluskey and JS Muldowney, Stabilty implications of Bendixson's criterion, SIAM Review 40(1998), 931-934.
20. CC McCluskey and JS. Muldowney, Bendixson-Dulac Criteria for Difference Equations. Journal of Dynamics and Differential Equations. 10 (1998), 567-575.
21. C. C. McCluskey and J. S. Muldowney. Stability implications of Bendixson's conditions for difference equations. In B. Aulbach, S. Elaydi, and G. Ladas, editors, New Progress in Difference Equations, pages 181-188, 2004.
22. JS Muldowney, On the dimension of the zero or infinity tending sets for linear differential equations, Proc AMS 83 (1981), 705-709.
23. JS Muldowney, Dichotomies and asymptotic behaviour for linear differential systems, Trans AMS 283 (1984), 465-484.
24. JS Muldowney, Compound matrices and ordinary differential equations, RockyMountainJMath 20(1990), 857-872.
25. B Schwarz, Totally positive differential systems, Pacific J Math 32(1970), 203-229
26. RA Smith, Some applications of Hausdorff dimension inequalities for ordinary differential equations, ProcRoySocEdinburgh 104A (1986), 235-259.
27. R Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, vol 68, Springer-Verlag, New York, 1988.
28. H Wielandt, Topics in the analytic theory of matrices, Lecture Notes prepared by RR Meyer, University of Wisconsin, Madison, 1967
29. B Wards, Dynamics of differential equations on invariant manifolds, University of Alberta MSc thesis, 2005.
30. Q Wang, Compound operators and infinite dimensional dynamical systems, University of Alberta PhD thesis, 2008.
31. E Samuylova, On the dimension of stable solution subspaces of differential equations, University of Alberta MSc thesis, 2009.
