A Research Story: Compound Equations and Dynamics. Part 2

James Muldowney, University of Alberta

July 24, 2019

Exterior Products

Vector Space: $u \in \mathbb{X}$
Dual Space: $v \in \mathbb{X}^{*}=\mathcal{L}(\mathbb{X} \rightarrow \mathbb{R})$, the space of real linear functionals $v(u)$ on \mathbb{X}

Bilinear Map $\langle\cdot, \cdot\rangle: \mathbb{X}^{*} \times \mathbb{X} \rightarrow \mathbb{R}$

$$
\langle v, u\rangle=v(u)
$$

Multilinear Maps: $u^{1}, \cdots, u^{k} \in \mathbb{X}$. Define $u^{1} \wedge u^{2} \wedge \cdots \wedge u^{k}:\left(\mathbb{X}^{*}\right)^{k} \rightarrow \mathbb{R}$ by

$$
u^{1} \wedge u^{2} \wedge \cdots \wedge u^{k}\left(v_{1}, v_{2}, \cdots, v_{k}\right) \stackrel{\operatorname{def}}{=} \operatorname{det}\left[v_{i}\left(u^{j}\right)\right]=\operatorname{det}\left[\left\langle v_{i}, u^{j}\right\rangle\right]
$$

if $v_{i} \in \mathbb{X}^{*} i=1,2, \cdots, k$.
$\Lambda^{k} \mathbb{X}$ is the set of all finite linear combinations of the maps
$u^{1} \wedge u^{2} \wedge \cdots \wedge u^{k}$.

Similarly $v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}: \mathbb{X}^{k} \rightarrow \mathbb{R}$ is defined by

$$
v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}\left(u^{1}, u^{2}, \cdots, u_{k}\right) \stackrel{\operatorname{def}}{=} \operatorname{det}\left[\left\langle v_{i}, u^{j}\right\rangle\right] .
$$

and $\bigwedge^{k} \mathbb{X}^{*}$ is the set of all finite linear combinations of these.
The expression

$$
\left\langle v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}, u^{1} \wedge u^{2} \wedge \cdots \wedge u^{k}\right\rangle \stackrel{\operatorname{def}}{=} \operatorname{det}\left[\left\langle v_{i}, u^{j}\right\rangle\right]
$$

extended by linearity gives a bilinear map $\langle\cdot, \cdot\rangle: \Lambda^{k} \mathbb{X}{ }^{*} \times \Lambda^{k} \mathbb{X} \rightarrow \mathbb{R}$.

Let $\left\{e^{j}\right\}$ be a basis for \mathbb{X}. Define real functionals e_{i} on the basis by $\left\langle e_{i}, e^{j}\right\rangle=\delta_{i}^{j}$. Extend e_{i} to \mathbb{X} by linearity. if $u \in \mathbb{X}$, then

$$
v=\sum_{j} c_{j} e^{j}, \quad c_{i}=\left\langle e_{i}, v\right\rangle
$$

Moreover $\left\{e^{j_{1}} \wedge \cdots \wedge e^{j_{k}}\right\}$ is a basis for $\wedge^{k} \mathbb{X}$
Note that

$$
\left\langle e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}, e^{j_{1}} \wedge \cdots \wedge e^{j_{k}}\right\rangle=\delta_{(i)}^{(j)}
$$

If $v^{1}, \cdots, v^{k} \in \mathbb{X}$, then $v^{s}=\sum_{j} c_{j}^{s} e^{j}, \quad c_{i}^{s}=\left\langle e_{i}, v^{s}\right\rangle$ and

$$
\begin{align*}
v^{1} \wedge \cdots \wedge v^{k} & =\Sigma_{(j)} c_{(j)} e^{j_{1}} \wedge \cdots \wedge e^{j_{k}} \\
c_{(i)} & =\left\langle e_{i_{1}} \wedge \cdots \wedge e_{i_{k}}, v^{1} \wedge \cdots \wedge v^{k}\right\rangle \\
& =\operatorname{det}\left[\left\langle e_{i_{r}}, v^{s}\right\rangle\right], \quad r, s=1, \cdots, k \\
& =\operatorname{det}\left[c_{i_{r}}^{s}\right] \stackrel{\text { def }}{=} c_{i_{1} i_{2} \cdots i_{k}}^{12} \tag{1}
\end{align*}
$$

Example:

$$
\left.\begin{array}{c}
v^{1}=\left[\begin{array}{l}
v_{1}^{1} \\
v_{2}^{1} \\
v_{3}^{1} \\
v_{4}^{1}
\end{array}\right], v^{2}=\left[\begin{array}{l}
v_{1}^{2} \\
v_{2}^{2} \\
v_{3}^{2} \\
v_{4}^{2}
\end{array}\right] \in \mathbb{R}^{4} \\
{\left[\begin{array}{c}
v_{12}^{12} \\
v_{13}^{12} \\
v_{14}^{12} \\
v_{23}^{12} \\
v^{1} \wedge v^{2}=[
\end{array}\right] \bigwedge^{2} \mathbb{R}^{4} \cong \mathbb{R}^{6}} \\
v_{24}^{12} \\
v_{34}^{12}
\end{array}\right] .
$$

Compound Operators

\mathbb{X}, \mathbb{Y} vector spaces, $A \in \mathcal{L}(\mathbb{X} \rightarrow \mathbb{Y})$
Multiplicative compound $A^{(k)} \in \mathcal{L}\left(\Lambda^{k} \mathbb{X} \rightarrow \Lambda^{k} \mathbb{Y}\right)$

$$
A^{(k)}\left(v^{1} \wedge \cdots \wedge v^{k}\right) \stackrel{\text { def }}{=} A v^{1} \wedge \cdots \wedge A v^{k}, \quad v^{j} \in \mathbb{X}
$$

extended by linearity to $\bigwedge^{k} \mathbb{X}$.
$\mathbb{X} \subset \mathbb{Y}$: Additive compound $A^{[k]} \in \mathcal{L}\left(\wedge^{k} \mathbb{X} \rightarrow \wedge^{k} \mathbb{Y}\right)$.

$$
A^{[k]}\left(v^{1} \wedge \cdots \wedge v^{k}\right) \stackrel{\text { def }}{=} \sum_{j=1}^{k} v^{1} \wedge \cdots \wedge A v^{j} \wedge \cdots \wedge v^{k}
$$

extended by linearity to $\bigwedge^{k} \mathbb{X}$.

Matrices

$$
C=A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

$$
\left[c_{r}^{s}\right]=\left\langle e_{r}, A e^{s}\right\rangle=\left[a_{r}^{s}\right]
$$

$$
C=A^{(k)}: \Lambda^{k} \mathbb{R}^{n} \rightarrow \Lambda^{k} \mathbb{R}^{m}
$$

$$
\begin{aligned}
c_{(r)}^{(s)} & =\left\langle e_{r_{1}} \wedge \cdots \wedge e_{r_{k}}, A^{(k)}\left(e^{s_{1}} \wedge \cdots \wedge e^{s_{k}}\right)\right\rangle \\
& =\left\langle e_{r_{1}} \wedge \cdots \wedge e_{r_{k}}, A e^{s_{1}} \wedge \cdots \wedge A e^{s_{k}}\right\rangle \\
& =\operatorname{det}\left\langle e_{r_{i}}, A e^{s_{j}}\right\rangle=\operatorname{det}\left[a_{r_{i}}^{s_{j}}\right] i=1, \cdots, k, j=1, \cdots, k \\
& =a_{r_{1} \cdots r_{k}}^{s_{1} \cdots r_{k}}
\end{aligned}
$$

$C=A^{[k]}: \Lambda^{k} \mathbb{R}^{n} \rightarrow \Lambda^{k} \mathbb{R}^{n}$. Replace $A^{(k)}$ by $A^{[k]}$ above

$$
c_{(r)}^{(s)}=\left\langle e_{r_{1}} \wedge \cdots \wedge e_{r_{k}}, \sum_{j=1}^{k} e^{s_{1}} \wedge \cdots \wedge A e^{s_{j}} \wedge \cdots \wedge e^{s_{k}}\right\rangle
$$

so that $c_{(r)}^{(s)}=a_{r_{1}}^{r_{1}}+\cdots+a_{r_{k}}^{r_{k}}$, if $(r)=(s) \cdot c_{(r)}^{(s)}=(-1)^{i+j} a_{r_{i}}^{s_{j}}$ if exactly one entry r_{i} in (r) does not occur in (s) and s_{j} does not occur in (r), $c_{(r)}^{(s)}=0$ if (r) differs from (s) in two or more entries.

Properties

1. The Binet-Cauchy identity:

$$
(A B)^{(k)}=A^{(k)} B^{(k)}
$$

$$
\begin{aligned}
& (A B)^{(k)} v^{1} \wedge \cdots \wedge v^{k}=(A B) v^{1} \wedge \cdots \wedge(A B) v^{k} \\
& =A\left(B v^{1}\right) \wedge \cdots \wedge A(B) v^{k}=A^{(k)}\left[\left(B v^{1}\right) \wedge \cdots \wedge(B) v^{k}\right] \\
& =A^{(k)}\left[B^{(k)} v^{1} \wedge \cdots \wedge v^{k}\right]=A^{(k)} B^{(k)} v^{1} \wedge \cdots \wedge v^{k}
\end{aligned}
$$

2. Additive property:

$$
\begin{gathered}
(A+B)^{[k]}=A^{[k]}+B^{[k]} \\
(A+B)^{[k]}\left(v^{1} \wedge \cdots \wedge v^{k}\right)=\sum_{j=1}^{k} v^{1} \wedge \cdots \wedge(A+B) v^{j} \wedge \cdots \wedge v^{k} \\
=\sum_{j=1}^{k} v^{1} \wedge \cdots \wedge A v^{j} \wedge \cdots \wedge v^{k}+\sum_{j=1}^{k} v^{1} \wedge \cdots \wedge B v^{j} \wedge \cdots \wedge v^{k} \\
=A^{[k]} v^{1} \wedge \cdots \wedge v^{k}+B^{[k]} v^{1} \wedge \cdots \wedge v^{k}=\left(A^{[k]}+B^{[k]}\right) v^{1} \wedge \cdots \wedge v^{k}
\end{gathered}
$$

3. Multiplicative-additive relationship

$$
\left.\frac{d}{d h}(I+h A)^{(k)}\right|_{h=0}=A^{[k]}
$$

Proof:
$(I+h A)^{(k)} v^{1} \wedge \cdots \wedge v^{k}=(I+h A) v^{1} \wedge \cdots \wedge(I+h A) v^{k}$
Differentiate using the product formula and set $h=0$

$$
\begin{aligned}
& \left.\frac{d}{d h}(I+h A)^{(k)}\right|_{h=0} v^{1} \wedge \cdots \wedge v^{k}=\sum_{j=1}^{k} v^{1} \wedge \cdots \wedge A v^{j} \wedge \cdots \wedge v^{k}= \\
& A^{[k]} v^{1} \wedge \cdots \wedge v^{k}
\end{aligned}
$$

4. Differential Equations: $L: \quad \dot{x}=A(t) x$,
$L_{k}: \dot{z}=A^{[k]}(t) z$
(i) If $x^{1}(t), \cdots, x^{k}(t)$ are solutions of L, then
$z(t)=x^{1}(t) \wedge \cdots \wedge x^{k}(t)$ is a solution of L_{k} since
$\dot{z}(t)=\sum_{j=1}^{k} x^{1}(t) \wedge \cdots \wedge \dot{x}^{j}(t) \wedge \cdots \wedge x^{k}(t)=$
$\sum_{j=1}^{k} x^{1}(t) \wedge \cdots \wedge A(t) x^{j}(t) \wedge \cdots \wedge x^{k}(t)=A^{[k]}(t) x^{1}(t) \wedge \cdots \wedge x^{k}(t)$
(ii) If $X(t)$ is a fundamental matrix for L, then $X^{(k)}(t)$ is a fundamental matrix of L_{k} since from (i), if $x^{i}(t)=X(t) c^{i}$ are solutions of L, $X^{(k)}(t) c^{1} \wedge \cdots \wedge c^{k}=X(t) c^{1} \wedge \cdots \wedge X(t) c^{k}$ is a solution of L_{k}
(iii) For any square matrix A
$A^{(1)}=A^{[1]}, \quad A^{(n)}=\operatorname{det} A, \quad A^{[n]}=\operatorname{tr} A$, $(\exp A)^{(k)}=\exp \left(A^{[k]}\right), \log (\exp A)^{(k)}=A^{[k]}$
$\dot{x}=A x$. A fundamental matrix $X(t)=\exp (A t)(A$ is constant $)$ and $X(0)=I$. The fundamental matrix $Z(t)$ of $\dot{z}=A{ }^{[k]} z, Z(0)=I$, is $Z(t)=\exp \left(A^{[k]} t\right)$ and also $Z(t)=X^{(k)}(t)=\exp (A t)^{(k)}$ so that $\exp (A t)^{(k)}=\exp \left(A^{[k]} t\right) ;$ let $t=1$.
5. Eigenvalues $n \times n$ matrix A
(i) If $\lambda_{1}, \cdots, \lambda_{n}$ are the eigenvalues of A, then the eigenvalues of $A^{(k)}$ and $A^{[k]}$ are $\lambda_{i_{1}} \lambda_{i_{2}} \cdots \lambda_{i_{k}}$ and $\lambda_{i_{1}}+\lambda_{i_{2}}+\cdots+\lambda_{i_{k}}$, respectively, $1 \leq i_{1}<\cdots<i_{k} \leq n$.
(ii) The corresponding eigenvectors of both $A^{(k)}$ and $A^{[k]}$ are $v_{i_{1}} \wedge v_{i_{2}} \wedge \cdots \wedge v_{i_{k}}$ if $v_{i_{1}}, v_{i_{2}}, \cdots, v_{i_{k}}$ are independent eigenvectors of A corresponding to $\lambda_{i_{1}}, \lambda_{i_{2}}, \cdots, \lambda_{i_{k}}$, respectively
(iii) Gers̆gorin disks for A :

$$
\left|z-a_{i}^{i}\right| \leq \sum_{j \neq i}\left|a_{i}^{j}\right|
$$

contain the eigenvalues λ_{i} of A
(iv) Gers̆gorin disks for $A^{(k)}$:

$$
\left|z-a_{i_{1} \cdots i_{k}}^{i_{1} \cdots i_{i}}\right| \leq \sum_{(j) \neq(i)}\left|\begin{array}{c}
j_{1} \cdots j_{k} \\
a_{i_{1} \cdots i_{k}}^{j}
\end{array}\right|
$$

contain the products $\lambda_{i_{1}} \lambda_{i_{2}} \cdots \lambda_{i_{k}}$
(v) Gers̆gorin disks for $A^{[k]}$:

$$
\left|z-\left(a_{i_{1}}^{i_{1}}+\cdots+a_{i_{k}}^{i_{k}}\right)\right| \leq \sum_{j \notin(i)}\left(\left|a_{i_{1}}^{j}\right|+\cdots+\left|a_{i_{k}}^{j}\right|\right)
$$

contain the sums $\lambda_{i_{1}}+\lambda_{i_{2}}+\cdots+\lambda_{i_{k}}$

Courant-Fischer

(vi) A a real positive definite symmetric matrix, eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$

$$
\lambda_{1}=\max \frac{x^{*} A x}{x^{*} x}, x \in \mathbb{R}^{n}, x \neq 0
$$

$$
\lambda_{1} \lambda_{2} \cdots \lambda_{k}=\max \frac{y^{*} A^{(k)} y}{y^{*} y}, y=x^{1} \wedge x^{2} \wedge \cdots \wedge x^{k}, y \neq 0
$$

$$
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}=\max \frac{y^{*} A^{[k]} y}{y^{*} y}, y=x^{1} \wedge x^{2} \wedge \cdots \wedge x^{k}, y \neq 0
$$

C any positive definite symmetric, $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}(C)$, are the eigenvalues of C. Courant-Fischer implies

$$
\begin{gathered}
\lambda_{1}(A B) \leq \lambda_{1}(A) \lambda_{1}(B) \\
\lambda_{1}(A+B) \leq \lambda_{1}(A)+\lambda_{1}(B)
\end{gathered}
$$

It follows from the compound matrices that

$$
\begin{aligned}
& \lambda_{1} \lambda_{2} \cdots \lambda_{k}(A B) \leq \lambda_{1} \lambda_{2} \cdots \lambda_{k}(A) \lambda_{1} \lambda_{2} \cdots \lambda_{k}(B) \\
& {\left[\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}\right](A+B) } \\
\leq & {\left[\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}\right](A)+\left[\lambda_{1}+\lambda_{2}+\cdots+\lambda_{k}\right](B) }
\end{aligned}
$$

Dimension Problems

If the differential equation

$$
\dot{x}=A(t) x
$$

satisfies certain technical conditions*

$$
\operatorname{dim}\left\{x(t): \lim _{t \rightarrow \infty} x(t)=0\right\} \geq n-k+1
$$

if and only if all solutions of $\dot{z}=A^{[k]}(t) z$ satisfy

$$
\lim _{t \rightarrow \infty} z(t)=0
$$

So for example, with $k=n$ and the technical conditions*, there exists at least one non-zero solution $x(t)$ of $\dot{x}=A(t) \times$ such that $\lim _{t \rightarrow \infty} x(t)=0$ if and only if $\int_{0}^{\infty} \operatorname{tr} A(s) d s=-\infty$. In this case

$$
A^{[n]}(t)=\operatorname{tr} A(t)
$$

and the solutions of the scalar equation $\dot{z}=\operatorname{tr} A(t) z$ are $z(t)=z(0) \exp \left(\int_{0}^{t} \operatorname{tr} A(s) d s\right)$.

