A Research Story: Compound Equations and Dynamics. Part I

James Muldowney, University of Alberta

July 22, 2019

IUSEP Edmonton ()

Compound Equations

July 22, 2019 1 / 20

Compound Matrices

 $m \times n$ matrix:

$$A = \left[\mathbf{a}_{i}^{j}
ight]$$
, $1 \leq i \leq m$, $1 \leq j \leq n$

 $p \times p$ minor:

$$a_{r_{1}...r_{p}}^{s_{1}...s_{p}}=\mathsf{det}\left[a_{r_{i}}^{s_{j}}
ight]$$
 , $1\leq i,j\leq p$,

minor of A determined by the rows $r_1, ..., r_p$ and the columns $s_1, ..., s_p$ examples:

$$\begin{aligned} \mathbf{a}_{11}^{12} &= \left| \begin{array}{c} \mathbf{a}_{1}^{1} & \mathbf{a}_{1}^{2} \\ \mathbf{a}_{1}^{1} & \mathbf{a}_{1}^{2} \end{array} \right| &= \mathbf{0} \\ \mathbf{a}_{12}^{12} &= \left| \begin{array}{c} \mathbf{a}_{1}^{1} & \mathbf{a}_{1}^{2} \\ \mathbf{a}_{2}^{1} & \mathbf{a}_{2}^{2} \end{array} \right|, \ \mathbf{a}_{13}^{12} &= \left| \begin{array}{c} \mathbf{a}_{1}^{1} & \mathbf{a}_{1}^{2} \\ \mathbf{a}_{3}^{1} & \mathbf{a}_{3}^{2} \end{array} \right| \end{aligned}$$

(日) (同) (三) (三)

$$\begin{array}{c} a_{123}^{123} = \left| \begin{array}{c} a_{1}^{1} & a_{1}^{2} & a_{1}^{3} \\ a_{2}^{1} & a_{2}^{2} & a_{2}^{3} \\ a_{2}^{1} & a_{2}^{2} & a_{2}^{3} \end{array} \right| = 0 \\ \\ a_{123}^{123} = \left| \begin{array}{c} a_{1}^{1} & a_{1}^{2} & a_{1}^{3} \\ a_{2}^{1} & a_{2}^{2} & a_{2}^{3} \\ a_{3}^{1} & a_{3}^{2} & a_{3}^{3} \end{array} \right|, \ a_{123}^{124} = \left| \begin{array}{c} a_{1}^{1} & a_{1}^{2} & a_{1}^{4} \\ a_{2}^{1} & a_{2}^{2} & a_{2}^{4} \\ a_{3}^{1} & a_{3}^{2} & a_{3}^{3} \end{array} \right|$$

2 1

0

1 1

IUSEP Edmonton ()

Compound Equations

July 22, 2019 3 / 20

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三目 - の々で

m = n > p, cofactor matrix:

$$A_{r_1...r_p}^{s_1...s_p}$$
 is the *cofactor* of $a_{r_1...r_p}^{s_1...s_p}$,

i.e. it is the *signed minor* determined by the rows complementary to rows $r_1, ..., r_p$ and by the columns complementary to columns $s_1, ..., s_p$ multiplied by $(-1)^{r_1+s_1+...+r_p+s_p}$.

If p = n, define

$$A_{12...n}^{12...n} = 1.$$

$$3 \times 3 \text{ matrix } A = \begin{bmatrix} a_1^1 & a_1^2 & a_1^3 \\ a_2^1 & a_2^2 & a_2^3 \\ a_3^1 & a_3^2 & a_3^3 \end{bmatrix}$$
:

$$\begin{aligned} \mathcal{A}_{1}^{1} &= \mathbf{a}_{23}^{23} = \left| \begin{array}{cc} \mathbf{a}_{2}^{2} & \mathbf{a}_{2}^{3} \\ \mathbf{a}_{3}^{2} & \mathbf{a}_{3}^{3} \end{array} \right|, \ \mathcal{A}_{2}^{3} &= -\mathbf{a}_{13}^{12} = - \left| \begin{array}{cc} \mathbf{a}_{1}^{1} & \mathbf{a}_{1}^{2} \\ \mathbf{a}_{3}^{1} & \mathbf{a}_{3}^{2} \end{array} \right| \\ \mathcal{A}_{12}^{12} &= \mathbf{a}_{3}^{3}, \ \mathcal{A}_{13}^{12} &= -\mathbf{a}_{2}^{3} \text{ and } \mathcal{A}_{123}^{123} = 1. \end{aligned}$$

Note that in this case we have

det
$$A = a_i^1 A_i^1 + a_i^2 A_i^2 + a_i^3 A_i^3$$
, $i = 1, 2, 3$

and

$$0 = a_i^1 A_r^1 + a_i^2 A_r^2 + a_i^3 A_r^3$$
, if $i \neq r$.

 $n \times n$ matrix A: Laplace expansion

by rows det
$$A = \sum_{j=1}^{n} a_{j}^{j} A_{j}^{j}$$
, $i = 1, 2, \dots, n$
by columns det $A = \sum_{i=1}^{n} a_{i}^{j} A_{i}^{j}$, $j = 1, 2, \dots, n$

Compound Equations

If A is a $n \times n$ matrix and $1 \le k \le n$, then the Laplace expansions by minors are:

$$\det A = \sum_{1 \le s_1 < \ldots < s_k \le n} a_{r_1 \ldots r_k}^{s_1 \ldots s_k} A_{r_1 \ldots r_k}^{s_1 \ldots s_k}, \text{ if } 1 \le r_1 < \ldots < r_k \le n$$

$$\det A = \sum_{1 \le r_1 < \ldots < r_k \le n} a_{r_1 \ldots r_k}^{s_1 \ldots s_k} A_{r_1 \ldots r_k}^{s_1 \ldots s_k}, \text{ if } 1 \le s_1 < \ldots < s_k \le n$$

Note: $0 = \sum_{(s)} a_{r_1...r_k}^{s_1...s_k} A_{t_1...t_k}^{s_1...s_k}$, if $(r) \neq (t)$, and $0 = \sum_{(r)} a_{r_1...r_k}^{s_1...s_k} A_{r_1...r_k}^{t_1...t_k}$, if $(s) \neq (t)$.

 $n \times n$ matrix A: Cofactor matrix of A:

$$\operatorname{cof} A = \left[A_{i}^{j}\right], \ i, j = 1, ..., n$$

adjugate (or classical adjoint) matrix of A:

$$adjA = (cofA)^T$$

•

Properties:

$$A (adjA) = (adjA) A = (\det A) I$$
$$A^{-1} = \frac{1}{\det A} adjA$$
$$\det (cofA) = \det (adjA) = (\det A)^{n-1}$$

< ∃ >

Multiplicative Compounds

 $n \times m$ matrix A, $1 \le k \le \min\{n, m\}$ k-th multiplicative compound is the $\binom{n}{k} \times \binom{m}{k}$ matrix

$$A^{(k)} = \begin{bmatrix} a_{r_1 \dots r_k}^{s_1 \dots s_k} \end{bmatrix} = \begin{bmatrix} a_{(r)}^{(s)} \end{bmatrix}$$

The entry in the *r*-th row and the *s*-th column of $A^{(k)}$ is $a_{r_1...r_k}^{s_1...s_k} = a_{(r)}^{(s)}$, where $(r) = (r_1, ..., r_k)$ is the *r*-th member of the lexicographic ordering of the integers $1 \le r_1 < r_2 < ... < r_k \le m$ and $(s) = (s_1, ...s_k)$ is the *s*-th member in the lexicographic (dictionary) ordering of all *k*-tuples of the integers $1 \le s_1 < s_2 < ... < s_k \le n$:

Example:

$$A = \begin{bmatrix} a_1^1 & a_1^2 \\ a_2^1 & a_2^2 \\ \vdots & \vdots \\ a_m^1 & a_m^2 \end{bmatrix}_{m \times 2}, \ A^{(2)} = \begin{bmatrix} a_{12}^{12} \\ a_{13}^{12} \\ \vdots \\ a_{m-1,m}^{12} \end{bmatrix}_{\binom{m}{2} \times 1}$$

Binet-Cauchy Theorem:

$$AB = C \Rightarrow A^{(k)}B^{(k)} = C^{(k)}$$

Sylvester's Theorem:

$$\det A^{(k)} = (\det A)^{\binom{n-1}{k-1}}$$

・ロト ・日下 ・ 日下

Linear Differential Equations

 $\dot{x} = A(t) x \tag{L}$ $t \in [0, \infty), x \in \mathbb{R}^{n}, t \to A(t)_{n \times n} \text{ continuous.}$

A solution x(t) of (L) is uniquely determined by its value $x(t_0)$ at any point $t_0 \in [0, \infty)$.

 $X(t)_{n \times m}$ is a solution matrix of (L) if $\dot{X}(t) = A(t) X(t)$

X(t) is a *fundamental matrix* of (L) if it is $n \times n$, non-singular and

$$\dot{X}(t) = A(t)X(t)$$

The columns of a fundamental matrix span the solution space of (L): x(t) is a solution of $(L) \iff$ there exists $c \in \mathbb{R}^n$ such that

$$x(t) = X(t) c.$$

Equivalently, the columns of X(t) are solutions of (L) which span the solution space of (L).

In particular, each column of X(t) is a solution of (L).

Suppose that X(t) is a fundamental matrix of (L), then a $n \times n$ matrix Y(t) is a fundamental matrix of (L) if and only if there is a constant non-singular matrix C such that Y(t) = X(t) C.

Any continuously differentiable $n \times n$ matrix X(t) is a fundamental matrix for *some* linear differential equation $(L) \iff X(t)$ is non-singular:

$$\begin{array}{rcl} A\left(t\right) &=& \dot{X}(t)X^{-1}\left(t\right) \\ \dot{X}\left(t\right) &=& A\left(t\right)X\left(t\right) \end{array}$$

Compound Differential Equations

Recall, from Sylvester's Theorem, det $X(t)^{(k)} = (\det X(t))^{\binom{n-1}{k-1}}$ so that det $X(t) \neq 0 \Rightarrow \det X^{(k)}(t) \neq 0$. So $Y(t) = X^{(k)}(t) = [x_{r_1 \dots r_k}^{s_1 \dots s_k}(t)]$ is a fundamental matrix for a $\binom{n}{k}$ -dimensional equation. The coefficient matrix in this equation is denoted $A^{[k]}$

$$\dot{y} = A^{[k]}(t) y \tag{k}$$

the k-th compound equation of (L). Note that $A^{[1]} = A$, $A^{[n]} = \operatorname{tr} A$

$$\dot{y} = A(t) y \tag{1}$$

$$\dot{y} = \operatorname{tr} A(t) y \tag{n}$$

In the case k = n, $X^{(n)}(t) = \det X(t)$, and (n) is the famous *Abel-Jacobi* scalar equation which gives

$$\det X\left(t
ight)=\det X\left(t_{0}
ight)\exp\left(\int_{t_{0}}^{t}\operatorname{tr}A\left(s
ight)ds
ight)$$

If X(t) is a $n \times m$ solution matrix of (L), then $Y(t) = X^{(k)}(t)$ is a $\binom{n}{k} \times \binom{m}{k}$ solution matrix of (k)Example:

$$X = \begin{bmatrix} x_1^1 & x_1^2 \\ x_2^1 & x_2^2 \\ \vdots & \vdots \\ x_m^1 & x_m^2 \end{bmatrix}_{m \times 2}, \ x^{(2)} = \begin{bmatrix} x_{12}^{12} \\ x_{13}^{12} \\ \vdots \\ x_{m-1,m}^{12} \end{bmatrix}_{\binom{m}{2} \times 1}$$

< ロト < 同ト < ヨト < ヨト

Additive Compounds

$$A = \left[\mathbf{a}_i^j
ight]$$
 , $1 \leq i,j \leq m = n$

 $C = A^{[k]}, 1 \leq k \leq m = n$ is called the k-th *additive compound* A

$$c_r^s = \begin{cases} a_{r_1}^{r_1} + \dots + a_{r_k}^{r_k}, & \{ \text{ if } (r) = (s) \\ (-1)^{i+j} a_{r_i}^{s_j}, & \\ 0, & \\ 0, & \\ \end{cases} \begin{cases} \text{ if exactly one entry } r_i \text{ in } (r) \\ \text{ does not occur in } (s) \text{ and } s_j \\ \text{ does not occur in } (r) \\ \text{ if } (r) \text{ differs from } (s) \text{ in two} \\ \text{ or more entries} \\ \end{cases}$$

Additivity:

$$(A+B)^{[k]} = A^{[k]} + B^{[k]}$$

- ∢ ∃ →

э

Examples: n = 2:

$$A^{[1]} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = A$$
$$A^{[2]} = a_{11} + a_{22} = \operatorname{tr} A$$

n = 3 :

$$A^{[1]} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = A$$
$$A^{[2]} = \begin{bmatrix} a_{11} + a_{22} & a_{23} & -a_{13} \\ a_{32} & a_{11} + a_{33} & a_{12} \\ -a_{31} & a_{21} & a_{22} + a_{33} \end{bmatrix}$$

 $A^{[3]} = a_{11} + a_{22} + a_{33} = \text{tr}A$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

n = 4 :

$$A^{[2]} = \begin{bmatrix} a_{11} + a_{22} & a_{23} & a_{24} & -a_{13} & -a_{14} & 0 \\ a_{32} & a_{11} + a_{33} & a_{34} & a_{12} & 0 & -a_{14} \\ a_{42} & a_{43} & a_{11} + a_{44} & 0 & a_{12} & a_{13} \\ -a_{31} & a_{21} & 0 & a_{22} + a_{33} & a_{34} & -a_{24} \\ -a_{41} & 0 & a_{21} & a_{43} & a_{22} + a_{44} & a_{23} \\ 0 & -a_{41} & a_{31} & -a_{42} & a_{32} & a_{33} + a_{44} \end{bmatrix}$$

$$A^{[3]} = \begin{bmatrix} a_{11} + a_{22} + a_{33} & a_{34} & -a_{24} & a_{14} \\ a_{43} & a_{11} + a_{22} + a_{44} & a_{23} & -a_{13} \\ -a_{42} & a_{32} & a_{11} + a_{33} + a_{44} & a_{12} \\ a_{41} & -a_{31} & a_{21} & a_{22} + a_{33} + a_{44} \end{bmatrix}$$

$$A^{[4]} = a_{11} + a_{22} + a_{33} + a_{44} = trA$$

■ のへで

イロン イヨン イヨン イヨン

Geometrical Interpretation

Solutions $x^{1}(t)$, $x^{2}(t)$ of (L) with n = 3 may be interpreted as oriented line segments in \mathbb{R}^3 whose projections on a basis e^1 , e^2 , e^3 are $\begin{vmatrix} x_1^1(t) \\ x_2^1(t) \\ 1 \end{vmatrix}$, $\begin{vmatrix} x_1^2(t) \\ x_2^2(t) \\ x_2^2(t) \end{vmatrix}$ and whose evolution in time is governed by (L). If $X(t) = \begin{bmatrix} x_1^1(t) & x_1^2(t) \\ x_2^1(t) & x_2^2(t) \\ x_1^1(t) & x_2^2(t) \end{bmatrix}, \text{ then } X^{(2)}(t) = \begin{bmatrix} x_{12}^{12} \\ x_{13}^{12} \\ x_{12}^{12} \end{bmatrix} \text{ satisfies (2) and}$ may be considered as an oriented 2-dimensional parallelogram in ${\mathbb R}^3$ whose projection onto the (e^i, e^j) coordinate plane, i < j, is a parallelogram with area x_{ii}^{12} .

If $x^1(t), \dots, x^k(t)$ are considered as an ordered set of oriented line segments in \mathbb{R}^n changing with time, then $y(t) = x_{r_1 r_2 \cdots r_k}^{12 \cdots k}(t)$ may be interpreted as the projection of the corresponding k-dimensional oriented parallelopiped in \mathbb{R}^n onto the k-dimensional coordinate subspace spanned by e_{r_1}, \dots, e_{r_k} .

$$(\exp A)^{(k)} = \exp\left(A^{[k]}\right)$$

$$\frac{d}{dt} \left(I + tA \right)^{(k)} \Big|_{t=0} = A^{[k]}$$

The last expression is sometimes taken as the definition of $A^{[k]}$