Geometric Analysis
Dr. Eric Woolgar ewoolgar@ualberta.ca
http: // www. math. ualberta.ca/n ewoolgar
Geometric Analysis = Geometry + Analysis (Calculus)

* Curves, surfaces, manifolds
* Curvature
* Applications: General relativity

Topology
Applied Mathematics
Information Theory
statistics

A project: Can you write a computer program to do this?
http:// a.carapetis. com/csf/
Today's topic: What is this webpage doing?
Answer: "Carve shortening flow"
To explain, first we Rave to study curves and their curvature.

Curvature
Graph of the function $x \mapsto f(x)$
Tangent line ("linear approximation") at (x_{0}, y_{0})

$$
y=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+y_{0}
$$

The osculating circle - Find a circle that
(i) passes through $\left(x_{0}, y_{0}\right)$,
(ii) has the same tangent line as $f(x)$ does at $\left(x_{0}, y_{0}\right)$, and
(iii) has the same second derivative (concavity/convexity) as $f(x)$ does at $\left(x_{0}, y_{0}\right)$
Notice: These are 3 conditions for the 3 free parameters a, b, c in the equation of a circle:

$$
(x-a)^{2}+(y-b)^{2}=c^{2} \ldots(x)
$$

Solution: Using (i), then $c^{2}=\left(x_{0}-a\right)^{2}+\left(y_{0}-b\right)^{2} \ldots$ (i)
Differmitiate (x) : $x-a+(y-b) y^{\prime}=0 \ldots(* *)$
But when $(x, y)=\left(x_{0}, y_{0}\right)$ then $y^{\prime}=f^{\prime}\left(x_{0}\right)$.

$$
\begin{equation*}
\Rightarrow\left(x_{0}-a\right)^{2}=\left(f^{\prime}\left(x_{0}\right)\right)^{2}\left(y_{0}-b\right)^{2} \tag{ii}
\end{equation*}
$$

Combine (i), (ii) $\Rightarrow c^{2}=\left[1+\left(f^{\prime}\left(x_{0}\right)\right)^{2}\right]\left(y_{0}-b\right)^{2} \ldots\left(i^{\prime}\right)$

Finally, differentiate $(x x)$ to get

$$
1+\left(y^{\prime}\right)^{2}+(y-b) y^{\prime \prime}=0
$$

At $\left(x_{0}, y_{0}\right)$ we have $y^{\prime}=f^{\prime}\left(x_{0}\right), y^{\prime \prime}=f^{\prime \prime}\left(x_{0}\right)$.

$$
\begin{aligned}
& \Rightarrow 1+\left(f^{\prime}\left(x_{0}\right)\right)^{2}+\left(y_{0}-b\right) f^{\prime \prime}\left(x_{0}\right)=0 \\
& \Rightarrow\left(y_{0}-b\right)^{2}\left(f^{\prime \prime}\left(x_{0}\right)\right)^{2}=\left[1+\left(f^{\prime}\left(x_{0}\right)\right)^{2}\right]_{-}^{2} \text { (iii) }
\end{aligned}
$$

Using ($i i^{\prime}$), we get:

$$
c^{2}=\left[1+\left(f^{\prime}\left(x_{0}\right)\right)^{2}\right]^{3} /\left(f^{\prime \prime}\left(x_{0}\right)\right)^{2} \ldots(\not \forall \nexists *)
$$

provided $f^{\prime \prime}\left(x_{0}\right) \neq 0$ (this happens, for example, at smooth points of inflection).
\times Now can find a, b in terms of $f^{\prime}\left(x_{0}\right), f^{\prime \prime}\left(x_{0}\right)$.

* The osculation circle is a "better" approximation to $x \mapsto f(x)$ at $\left(x_{0}, y_{0}\right)$.

$$
f(x)=\underbrace{\underbrace{f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)}_{\text {tangent lime approximation }}+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\ldots .}_{\text {quadratic approximation }}
$$

Small circle \Rightarrow large curvature
Large circh \Rightarrow small curvature

Define the curvature k to be the inverse of the radius of the osculating circle:

$$
k:=\frac{1}{c}=\frac{\left|f^{\prime \prime}\left(x_{0}\right)\right|}{\left[1+\left(f^{\prime}\left(x_{0}\right)\right)^{2}\right]^{3 / 2}}
$$

Parametrized Curves

$$
\begin{aligned}
& -\frac{d y}{d s}=\frac{d f}{d x} \frac{d x}{d s} \text { by chan rule. } \\
& \Rightarrow \frac{d f}{d x}=\frac{d y}{d s} / \frac{d x}{d s} \quad\left(\text { assume } \frac{d x}{d s} \neq 0\right) \ldots-[1]
\end{aligned}
$$

\rightarrow Now $\frac{d^{2} y}{d s^{2}}=\frac{d}{d s}\left(\frac{d f}{d x} \frac{d x}{d s}\right)=\left(\frac{d}{d s} \frac{d f}{d x}\right) \frac{d x}{d s}+\frac{d f}{d x} \frac{d^{2} x}{d s^{2}}$

$$
=\frac{d^{2} f}{d x^{2}}\left(\frac{d x}{d s}\right)^{2}+\left(\frac{d y / d s}{d x / d s}\right) \frac{d^{2} x}{d s^{2}}
$$

$$
\begin{aligned}
& \Rightarrow \frac{d^{2} f}{d x^{2}}=\frac{\frac{d^{2} y}{d s^{2}}-\frac{d y / d}{d x / d s} \frac{d^{2} x}{d s^{2}}}{(d x / d s)^{2}}=\frac{\frac{d x}{d s} \frac{d^{2} y}{d s^{2}}-\frac{d y}{d s} \frac{d^{2} x}{d s^{2}}}{(d x / d s)^{3}} \\
& \Rightarrow K=\frac{\left|\frac{d x}{d s} \frac{d^{2} y}{d s^{2}}-\frac{d y}{d s} \frac{d^{2} x}{d s^{2}}\right|}{\left(\frac{d x}{d s}\right)^{3}\left[1+\left(\frac{d y / d s}{d x / d s}\right)^{2}\right]^{3 / 2}} \\
& =\left[\frac{\left|\frac{d x}{d s} \frac{d^{2} y}{d s^{2}}-\frac{d y}{d s} \frac{d^{2} x}{d s^{2}}\right|}{\left[\left(\frac{d x}{d s}\right)^{2}+\left(\frac{d y}{d s}\right)^{2}\right]^{3 / 2}}\right.
\end{aligned}
$$

Think of $x y$-plane as lying in \mathbb{R}^{3}

$$
\begin{aligned}
& \vec{r}(s)=(x(s), y(s), 0) \\
& \vec{r}^{\prime}(s)=\left(x^{\prime}(s), y^{\prime}(s), 0\right) \\
& \vec{r}^{\prime \prime}(s)=\left(x^{\prime \prime}(s), y^{\prime \prime}(s), 0\right) \\
& \Rightarrow k= \pm \frac{\left|\vec{r}^{\prime \prime}(s) \times \vec{r}^{\prime \prime}(s)\right|}{\left|\vec{r}^{\prime}(s)\right|^{3}}
\end{aligned}
$$

Examples:

1. Circle centred at origin, radius a.

$$
\begin{aligned}
& x(\theta)=a \cos \theta \\
& y(\theta)=a \sin \theta
\end{aligned} \Rightarrow x^{\prime}(\theta)=-a \sin \theta \Rightarrow \begin{aligned}
& y^{\prime}(\theta)=a \cos \theta
\end{aligned} \Rightarrow x^{\prime \prime}(\theta)=-a \cos \theta
$$

2. Spiral curve $x(\theta)=\theta \cos \theta$

$$
\begin{gathered}
y(\theta)=\theta \sin \theta \\
\theta \in[0, \infty)
\end{gathered}
$$

$$
\Rightarrow x^{\prime}(\theta)=-\theta \sin \theta+\cos \theta
$$

$$
y^{\prime}(\theta)=\theta \cos \theta+\sin \theta
$$

$$
\begin{aligned}
& \Rightarrow x^{\prime \prime}(\theta)=-\theta \cos \theta-2 \sin \theta \\
& y^{\prime \prime}(\theta)=-\theta \sin \theta+2 \cos \theta \\
& \Rightarrow x^{\prime}(\theta) y^{\prime \prime}(\theta)-y^{\prime}(\theta) x^{\prime \prime}(\theta)=(-\theta \sin \theta+\cos \theta)(-\theta \sin \theta+2 \cos \theta) \\
&-(\theta \cos \theta+\sin \theta)(-\theta \cos \theta-2 \sin \theta) \\
&= \theta^{2} \sin ^{2} \theta+2 \cos ^{2} \theta+\theta^{2} \cos ^{2} \theta+2 \sin ^{2} \theta \\
&= 2+\theta^{2} \\
& {\left[\left(x^{\prime}(\theta)\right)^{2}+\left(y^{\prime}(\theta)\right)^{2}\right]^{3 / 2}=} {\left[\theta^{2} \sin ^{2} \theta+\operatorname{con}^{2} \theta+\theta^{2} \cos ^{2} \theta+\sin ^{2} \theta\right]^{3 / 2} } \\
&=\left(1+\theta^{2}\right)^{3 / 2}
\end{aligned}
$$

$$
\Rightarrow k=\frac{2+\theta^{2}}{\left(1+\theta^{2}\right)^{3 / 2}} \sim \frac{1}{\theta} \text { for } \operatorname{largn} \theta \cdot v
$$

Unit tangent $\vec{T}(s)=\frac{\vec{r}^{\prime}(s)}{\left|\vec{r}^{\prime}(s)\right|}$ so that $|\vec{T}(s)|=1$.
vector

Now $\frac{d}{d s}\left|\vec{F}^{\prime}(s)\right|$

$$
\begin{aligned}
& =\frac{1}{2\left|\vec{r}^{\prime}(s)\right|} \frac{d}{d s}\left(\vec{r}^{\prime} \cdot \vec{r}^{\prime}\right) \\
& =\frac{\vec{r}^{\prime}}{\left|\vec{r}^{\prime}\right|} \cdot \frac{d}{d s}\left(\vec{r}^{\prime}\right)=\frac{\vec{r}^{\prime} \cdot \vec{r}^{\prime \prime}}{\left|\vec{r}^{\prime}\right|} \\
\Rightarrow \frac{d}{d s} \vec{T} & =\frac{d}{d s}\left(\frac{\vec{r}^{\prime}}{\mid \overrightarrow{r^{\prime}}}\right)=\frac{\vec{r}^{\prime \prime}\left|\vec{r}^{\prime}\right|-\vec{r}^{\prime} \frac{d}{d s}\left(\left|\vec{r}^{\prime}\right|\right)}{\left|\vec{r}^{\prime}\right|^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\vec{r}^{\prime \prime}}{\left|\vec{r}^{\prime}\right|}-\frac{\left(\vec{r}^{\prime} \cdot \vec{r}^{\prime \prime}\right) \vec{r}^{\prime}}{\left|\vec{r}^{\prime}\right|^{3}} \\
& =\frac{\left(\vec{r}^{\prime} \cdot \vec{r}^{\prime}\right) \vec{r}^{\prime \prime}-\left(\vec{r}^{\prime} \cdot \vec{r}^{\prime \prime}\right) \vec{r}^{\prime}}{\left|\vec{r}^{\prime}\right|^{3}} \vec{r}^{\prime} \times \vec{r}^{\prime \prime} \\
& =\frac{\vec{r}^{\prime} \times\left(\vec{r}^{\prime \prime} \times \vec{r}^{\prime}\right)}{\left|\vec{r}^{\prime}\right|^{3}} \theta^{\prime \prime / 2} \vec{r}^{\prime} \\
\Rightarrow\left|\frac{d \vec{T}}{d s}\right| & =\frac{\left|\vec{r}^{\prime} \times\left(\vec{r}^{\prime \prime} \times \vec{r}^{\prime}\right)\right|}{\left|\vec{r}^{\prime}\right|^{3}}=\frac{\left|\vec{r}^{\prime}\right|\left|\vec{r}^{\prime \prime} \times \vec{r}^{\prime}\right|}{\left|\vec{r}^{\prime}\right|^{3}} \sin \theta \\
& =\frac{\left|\vec{r}^{\prime \prime} \times \vec{r}^{\prime}\right|}{\left|\vec{r}^{\prime}\right|^{2}}= \pm K\left|\vec{r}^{\prime}\right| \\
\Rightarrow K & = \pm\left|\frac{d \vec{T}}{d s}\right| /\left|\frac{d \vec{r}}{d s}\right|
\end{aligned}
$$

$\Rightarrow K$ measures
(i) the (inverse of the) radius of the osculating circle.
(ii) the rate of change of the unit tangent vector along the curve
Remarle: Often we choose the parameter s sothet $\left|\frac{d \vec{r}}{d s}\right|=1$. Then s is called an arclength parameter.
Curves parametrized by an arclength parameters are called unit speed curves.

A curvature flow:

$\vec{v}=$ unit normal vector
(i) $|\vec{\nu}|=1$
(ii) $\vec{v} \perp \vec{T}$
(iii) \vec{v} points toward centre of osculating
circle circle.

The curve-skortening flow is $\vec{x}(s, t)$ when

$$
\frac{\partial \vec{X}}{\partial t}=|k| \vec{v}
$$

$$
t_{1}<t_{2}<t_{3}<t_{4}
$$

See the demonstration at a.carapetis.com/csf/

Space Curves: Curves in \mathbb{R}^{3}
Parametric form: $\quad t \mapsto \vec{r}(t)=(x(t), y(t), z(t))$
$t=$ parameter (not the t of the curve shortening flow)
e.g. Circular helix;

arclength of a space cure: $s(t)=\int_{0}^{t}\left|\vec{r}^{\prime}\right| d t$
For Relix (above),

$$
\begin{aligned}
& \bar{r}^{\prime}=(-a \sin t, a \cos t, 1) \\
& \left|\vec{r}^{\prime}\right|=\sqrt{a^{2}+1} \\
& S=\sqrt{a^{2}+1} t
\end{aligned}
$$

Arclength parametrization: a parameter U is an are length parameter if $\left|\vec{r}^{\prime}(u)\right|=1$.
e.g. In abovexample, use $t=5 / \sqrt{a^{2}+1}$ to wite

$$
\bar{r}(s)=\left(a \cos \frac{s}{\sqrt{a^{2}+1}}, a \sin \frac{s}{\sqrt{a^{2}+1}}, \frac{s}{\sqrt{a^{2}+1}}\right)
$$

Then

$$
\vec{r}^{\prime}(s)=\left(\frac{-a}{\sqrt{a^{2}+1}} \sin \frac{s}{\sqrt{a^{2}+1}}, \frac{a}{\sqrt{a^{2}+1}} \cos \frac{s}{\sqrt{a^{2}+1}}, \frac{1}{\sqrt{a^{2}+1}}\right)
$$

and so $\left|\vec{r}^{\prime}(s)\right|=\frac{a^{2}+1}{a^{2}+1}=1 . \Rightarrow s$ is an arclengtl parameter and $F(s)$ is unit speed.

Curvature of a space curve: $\vec{T}=\vec{r}^{\prime}(s)=$ unit tangent vector.
Then the curvatures is

$$
k=|d \vec{T} / d s|
$$

Torsion: This measures how muck the osculating circhs "tip" on "tilt" as thy move along the curve.

Exercise: For the circular helix

$$
\vec{r}(s)=\left(a \cos \frac{s}{\sqrt{a^{2}+b^{2}}}, a \sin \frac{s}{\sqrt{a^{2}+b^{2}}}, \frac{b s}{\sqrt{a^{2}+b^{2}}}\right)
$$

$a \neq 0, b \neq 0$ are constants, find $\{\vec{T}(s), \vec{N}(s), \vec{B}(s)\}$ and $K(s), \tau(s)$.

Solution:

$$
\begin{aligned}
& \vec{r}^{\prime}=\frac{1}{\sqrt{a^{2}+b^{2}}}\left(-a \sin \frac{s}{\sqrt{a^{2}+b^{2}}}, a \cos \frac{s}{\sqrt{a^{2}+b^{2}}}, b\right) \\
& \left|\vec{r}^{\prime}\right|=1 \text { so } \vec{T}=\vec{r}^{\prime}=\frac{1}{\sqrt{a^{2}+b^{2}}}\left(\square^{\prime \prime}-\right) \\
& \frac{d \vec{T}}{d s}=-\frac{1}{a^{2}+b^{2}}\left(a \cos \frac{s}{\sqrt{a^{2}+b^{2}}}, a \sin \frac{s}{\sqrt{a^{2}+b^{2}}}, 0\right) \\
& K=\left|\frac{d \vec{T}}{d s}\right|=\frac{a}{a^{2}+b^{2}} \\
& \vec{N}=\frac{1}{\pi} \frac{d \vec{T}}{d s}=-\left(\cos \frac{s}{\sqrt{a^{2}+b^{2}}} \sin \frac{s}{} 0\right) \text { so th pecten } \\
& \text { pointing to centre } \\
& \text { ofoscalating circa } \\
& \text { is always horizontal } \\
& \text { Then } \frac{d \vec{B}}{d s}=\frac{b}{\left(a^{2}+b^{2}\right)}\left(\cos \frac{s}{\sqrt{a^{2}+b^{2}}}, \sin \frac{s}{\sqrt{a^{2}+b^{2}}}, 0\right)=\frac{-b}{\left(a^{2}+b^{2}\right)} \vec{N}
\end{aligned}
$$

But $\frac{d \vec{B}}{d s}=-\bar{N}$ from $+C$ matrix equation on the last page.

$$
\Rightarrow \quad \tau=b /\left(a^{2}+b^{2}\right)
$$

Fundamental Theorem of Space Curves:

Let $\vec{r}_{1}(s), s \in I$, and $\vec{r}_{2}(s), s \in I$ be two space curves parametrized by anclength s taking values in the same interval $I \subseteq \mathbb{R}$.

If the respective curvatures and torsions agree

$$
\left.\begin{array}{l}
K_{1}(s)=K_{2}(s) \\
\tau_{1}(s)=\tau_{2}(s)
\end{array}\right\} \text { for all } s \in I
$$

then \vec{r}_{1} and r_{2} are congruent (i.e., they ans the same curve up to a rotation and translation.

Consider the curve shortening flow

$$
\begin{equation*}
\frac{\left.\partial \vec{X}_{(} \theta, t\right)}{\partial t}=\beta \kappa \vec{N} \tag{*}
\end{equation*}
$$

Here $\vec{X}(\theta, t)$ is a flowing curve. That means that if t has a fixed constant value, say $t=0$ for example, then $\vec{X}(\theta, 0)=\binom{x(\theta, 0)}{y(\theta, 0)}$ is a parametrized curve in \mathbb{R}^{2}, with parameter θ. The curvature of the curve is κ and \vec{N} is the unit normal vector pointing from the curve toward the centre of the asculating circle. Finally, $\beta>0$ is a constant.
The first question should be easy, the next one medium, and the last one a bit more difficult:

1. Consider a circle, flowing according to equation (*). Write the flowing circle as

$$
\vec{X}(\theta, t)=a(t)(\cos \theta, \sin \theta), \theta \in[0,2 \pi] .
$$

Say the flow begins at $t=0$, with initial condition $a(0)=a_{0}>0$. How long does it take for the circle to disappear? (i.e., at what t-value does the radius $a(t)$ become zero? Answer in terms of β and a_{0}.)
2. Consider the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,0<a<b
$$

Now let this ellipse evolve under the mean curvature flow (*). It disappears in some time T where $\frac{\beta}{b}<T<\frac{\beta}{a}$. Explain this (hint: use circles, and use the answer to the first question).
3. Let

$$
\vec{X}(s, t)=\binom{x(s, t)}{y(s, t)}=\binom{\arccos \frac{t}{\sqrt{\sqrt{t}^{2}+s^{2}}}}{\ln t-\ln \sqrt{t^{2}+s^{2}}-t}, t \in[0, \infty), s \in[0, \infty) .
$$

Here arccos means the inverse function to cos, sometimes denoted by $\cos ^{-1}$. At each fixed t, this is a curve. For example, at $t=1$, this is the curve

$$
\vec{X}(s, 1)=\vec{X}(s)=\binom{\arccos \frac{1}{\sqrt{1+s^{2}}}}{-1-\ln \sqrt{1+s^{2}}}, s \in[0, \infty) .
$$

(Try to sketch this curve.) Show that $\vec{X}(s, t)$ obeys equation $(*)$ (i.e., treating t as constant, compute κ and \vec{N}; then compare $\kappa \vec{N}$ to $\left.\frac{\partial \vec{X}}{\partial t}\right)$. As t increases, the curve $s \mapsto X(s, t)$ moves simply by translating downward. Can you see why?

