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Plan of the lectures

Today: introductory material.

What is optimal transport?
What is known? What sort of mathematics is involved?
Why should I care? What can I do with it? Applications?

Monday: a deeper look at one selected topic. At the end of today’s
talk, we can vote to decide on the topic. The choices include:

Matching theory (economics): what sort of patterns emerge
when agents match together (for instance, workers and firms
on the labour market, or husbands and wives on the marriage
market).
Density functional theory (physics/chemistry): how does a
system of electrons organize itself to minimize interaction
energy.
Curvature and entropy (geometry): How does curvature relate
to the behavior of densities along interpolations?

Both talks will focus on ideas and we will try to avoid getting
bogged down in too many details.
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Origins of optimal transport

Gaspard Monge (1781): How do I fill a hole with dirt as
efficiently as possible?
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Monge’s optimal transport problem

Data: two positive functions, f (x) and g(y) on regions
X ,Y ⊂ Rn, (the height of the dirt pile and depth of the hole)
and a cost function, c(x , y) (the cost per unit to transport
dirt from x to y).

Assume
∫
X f (x)dx =

∫
Y g(y)dy = 1 (ie, the total volume of

the pile and the hole are the same).
We look for a transport map T : X → Y so that, for each
A ⊆ Y ,

∫
T−1(A) f (x)dx =

∫
A g(y)dy (the total amount of dirt

moved into the set A is the same as the volume of that part
of the hole). In this case, we write T#f = g .
If T is a diffeomorphism, (ie. 1− 1, onto, smooth with a
smooth inverse), this means T satisfies the change of
variables equation: f (x) = | det DT (x)|g(T (x)).
Among all T ’s with this property, we seek to minimize∫

X
c(x ,T (x))f (x)dx .
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One dimensional optimal transport

Suppose n = 1: X ,Y ⊂ R.

Assume ∂2c
∂x∂y < 0 (e.g. c(x , y) = (x − y)2).

The solution must satisfy
c(x0,T (x0)) + c(x1,T (x1)) ≤ c(x0,T (x1)) + c(x1,T (x0)).
Why?

This means that if x1 > x0, then T (x1) ≥ T (x0). So T is a
monotone increasing function.

Therefore, choose T (x) so that∫ x

−∞
f (t)dt =

∫ T (x)

−∞
g(s)ds

For probabilistically minded people, this is T = (Fg )−1 ◦ Ff ,
where Fg and Ff are the cummulative distribution functions.
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Higher dimensions

Like a lot of mathematics, optimal transport is harder in
higher dimensions than one.

To state a higher dimensional analog of this result, we need to
review a bit about convex functions.

Recall: a function u : R→ R is convex if d2u
dx2

(x) > 0 for all x .

What about a function u : Rn → R?

In this case, the gradient ∇u(x) := ( ∂u
∂x1
, ∂u
∂x2
, ..., ∂u

∂xn
)(x) gives

us a vector at each x = (x1, x2, ..., xn). When can think of this
as a function ∇u : Rn → Rn.

The Hessian, D2u := ( ∂2u
∂xi∂xj

)ij is the symmetric n × n matrix

whose entries are the second derivatives of u .

A symmetric n × n matrix A is said to be positive definite if
V TAV ≥ 0 for all V ∈ Rn.

We say u : Rn → R is convex if D2u(x) is positive definite for
each x ∈ Rn.
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Optimal transport in higher dimensions: Brenier’s theorem

Suppose X ,Y ⊆ Rn and c(x , y) = |x − y |2 =
∑n

i=1(xi − yi )
2

(this is the cost function that turns out to give the cleanest
theory, and is also the most useful in applications).

Theorem (Brenier 1987)

There exists a unique solution T to Monge’s problem.
Furthermore, T (x) = ∇u(x) is the gradient of a convex function.

Note: in one dimension, this just means T (x) = du
dx (x),

implying T ′(x) = d2u
dx2

(x) ≥ 0. So T is increasing, as we saw
before.
It is not even obvious beforehand that there exists a map of
this form satisfying the constaint T#f = g . This fact alone (a
consequence of Brenier’s theorem) is important in some
applications (in these situations the optimization problem
doesn’t even show up; it is just the existence of the map T
that matters).
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Application: isoperimetric inequality

Isoperimetric inequality: The surface area of any set M ⊆ Rn is
greater than or equal to the surface area of a ball with the same
volume.

Vol(M) = Vol(BR(0)) =⇒ S(M) ≥ S(BR(0))

Proof:

Take f (x) = χM , g(y) = χBR(0).

∇u(x) the Brenier map
=⇒ det(D2u(x)) = f (x)/g(∇u(x)) = 1 (change of
variables).

Geometric mean dominates arithmetic mean (as u is convex,
D2u has positive eigenvalues)
=⇒ det1/n(D2u(x)) ≤ 1

n∆u(x)
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Proof

1

n
S(BR(0))R = Vol(BR(0)) = Vol(M)

=

∫
M

1dnx

=

∫
M

det1/n(D2u(x))dx

≤
∫
M

1

n
∆u(x)dx

=
1

n

∫
∂M
∇u(x) · ~Ndn−1S(x)

≤ 1

n

∫
∂M

Rdn−1S(x)

=
1

n
S(M)R
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Comments on the proof

The isoperimetric inequality is a very classical, but proving it
using conventional or elementary methods is pretty difficult.

The optimal transport proof is easy; everything in the proof is
first or second year mathematics (except Brenier’s theorem)!

We prove an inequality about surfaces/curves/bodies in Rn by
working with simple inequalities under the integral sign
(geometric-arithmetic mean, Cauchy-Schwartz on Rn).

This is a common theme in applications of optimal transport
in geometry.
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Some background on the theory

How do we prove Brenier’s theorem?

More generally, what tools do we use to understand solutions
to optimal transport problems?
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Kantorovich’s relaxed version

Kantorovich (1942) was interested in the optimal allocation of
resources. Given a distribution of mines f (x) producing iron
and a distribution g(y) of factories consuming iron, and a cost
c(x , y) to move iron from point x to y , which mine should
supply which factory to minimize the total transport cost?

Monge-Kantorovich problem: Minimize∫
X×Y

c(x , y)γ(x , y)dxdy

among functions (actually, a generalization of functions)
γ(x , y) ≥ 0 such that

∫
X γ(x , y)dx = g(y) and∫

Y γ(x , y)dy = f (x).

Interpretation: γ(x , y) represents the amount of iron that
goes from mine x to factory y . In Monge’s version, each mine
x can supply only one factory y = T (x), but that is not true
here: mine x can split its iron among several, or even infinitely
many, factories. This is a relaxation of Monge’s problem.
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Interpretation: γ(x , y) represents the amount of iron that
goes from mine x to factory y . In Monge’s version, each mine
x can supply only one factory y = T (x), but that is not true
here: mine x can split its iron among several, or even infinitely
many, factories. This is a relaxation of Monge’s problem.
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Kantorovich’s relaxed version (cont’d)

This is now a linear minimization problem (an infinite
dimensional linear program), and is much easier to deal with
technically than Monge’s functional,

∫
X c(x ,T (x))f (x)dx and

constraint T#f = g (ie, f (x) = | det DT (x)|g(T (x))).

Kantorvich duality: the Kantorovich problem is equivalent
(dual) to maximizing∫

X
u(x)f (x)dx +

∫
Y

v(y)g(y)dy

among functions u(x) and v(y) that satisfy
u(x) + v(y) ≤ c(x , y).

Kantorovich shared the Nobel prize in 1975 with Tjalling
Koopmans for developing this theory.
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Idea of proof of Brenier’s Theorem

For c(x , y) = |x − y |2, the solutions to the dual problem turn
out to be (more or less) convex functions. The constraint is
saturated along the solutions (ie, u(x) + v(y) = c(x , y) when
x and y are coupled together).

Differentiating, after some manipulation, yields,

∇u(x) = y

which basically means there is only one y = ∇u(x) := T (x)
which gets coupled to x .
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Some applications

Optimal transport has many diverse applications, in PDE, fluid
mechanics, statistics, image recognition, operations research,
functional/geometric inequalites, meteorology, finance...

I’ll briefly describe three selected applications here. At the end
of the lecture, we’ll vote on which one is the most interesting,
and discuss the winner in more depth on Monday.

Brendan Pass (U. Alberta) An introduction to optimal transport



Choice one: matching theory in economics

Matching theory with transferable utility: How do (for
instance) workers and firms match together on the labour
market? Assume that payments of any amount can be
negotiated between agents. What patterns emerge when we
look for stable matchings?

Here, stability means that no pair of unmatched agents would
both be better off if they left their current partners and
teamed up together.

What on earth does this have to do with optimal transport?
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Choice one: matching theory in economics (continued)

Briefly, stable matching is a sort of balancing
problem....these are often related to variational, or
minimization/maximization problems (like optimal
transport).

As a simple example, trying to minimize a function f (x) of
one variable is related to finding a point where it’s derivative
vanishes, f ′(x) = 0 (a sort of balancing).

As another example, finding an equilibrium point in a physical
system (ie, a point where the forces balance) is related to
finding a point that minimizes the potential energy.

According to the late Nobel laureate Gary Becker, most
important problems in economics can be viewed as matching
problems.

Their work on matching theory garnered Alvin Roth and Lloyd
Shapley the 2012 Nobel Prize in economics.
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Choice two: density functional theory in physics

Consider a system of interacting electrons (for example, an
atom). Semi-classically, the position of each electron can be
thought of as a probability density. Given the probability
density of each individual electron, what correlation, or
alignment of the densities leads to the lowest total energy?

This semi-classical density functional theory problem turns out
to be an optimal transport problem, with the cost function
given by the Coulomb interaction energy, c(x , y) = 1

|x−y | .

The development of density functional theory earned Walter
Kohn the Nobel prize in chemistry in 1998. 12 of the 100
most cited papers in the history of science are on this topic
(and two of the top 10).
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Choice three: Ricci curvature and entropy in geometry

Curvature quantifies how geometric spaces (for example,
curved surfaces) differ from flat spaces. How do distances and
volumes change as we move along staight lines (geodesics)?

Where does optimal transport fit in? Well, it gives a way to
measure the distance between two probability densities sitting
on one of these spaces. This is turn, gives us a notion of
geometry on the space of all probability densities on a curved
space (this is a new extra fancy, extra abstract curved space).
The behaviour of certain functionals as continuously
interpolate between probability densities in this fancy, abstract
geometry is intimately linked with curvatuve. One of the
important functionals is entropy, which measures how spread
out the density is.

One of the pioneers of this field, Cedric Villani, won the Fields
medal in 2010.
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Vote!

Matching theory (economics).

Density functional theory (physics/chemistry).

Ricci curvature and entropy (geometry).

Brendan Pass (U. Alberta) An introduction to optimal transport



Vote!

Matching theory (economics).

Density functional theory (physics/chemistry).

Ricci curvature and entropy (geometry).

Brendan Pass (U. Alberta) An introduction to optimal transport



Vote!

Matching theory (economics).

Density functional theory (physics/chemistry).

Ricci curvature and entropy (geometry).

Brendan Pass (U. Alberta) An introduction to optimal transport



Vote!

Matching theory (economics).

Density functional theory (physics/chemistry).

Ricci curvature and entropy (geometry).

Brendan Pass (U. Alberta) An introduction to optimal transport



Some references

C. Villani. Topics in optimal transportation. AMS, 2003.

C. Villani. Optimal transport: old and new. Springer, 2009.

F. Santambrogio. Optimal transport for applied
mathematicians. Birkhauser, 2015.

L.C. Evans. Partial differential equations and the
Monge-Kantorovich mass transfer. In ”Current developments
in mathematics,” (ed. by S.T. Yau et al). Int. Press, 1997.

N. Guillen and R. McCann. Five lectures on optimal
transportation: geometry, regularity and applications. In
”Analysis and Geometry of Metric Measure Spaces: Lecture
Notes of the Seminaire de Mathematiques Superieure (SMS)
Montreal 2011,” (ed. by G. Dafni et al). AMS, 2013.

Brendan Pass (U. Alberta) An introduction to optimal transport


