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Penalized Methods

Ridge Regression

I The ridge regression coefficient estimates β̂R are the values that
minimize ∑

i

(
yi − β0 −

∑
j

βjxij

)2

+ λ
∑

j

β2
j ,

where λ is a tuning parameter, to be determined separately.
I The second term λ

∑
j β

2
j called a shrinkage penalty, is small when

βj, j ≥ 1 are close to zero, and so it has the effect t of shrinking the
estimates of βj towards zero.

I The tuning parameter λ serves to control the relative impact of these two
terms on the regression coefficient estimates.

I Selecting a good value for λ is critical; cross-validation is used for this.
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Penalized Methods

Credit data example

As λ increases, the coefficients are shrunken to zeros.
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Penalized Methods

Scaling of predictors

I The standard least squares coefficient estimates are scale equivariant:
multiplying Xj by a constant c simply leads to a scaling of the least
squares coefficient estimates by a factor of 1/c. In other words,
regardless of how the j-th predictor is scaled Xjβ̂j will remain the same.

I In contrast, the ridge regression coefficient estimates can change
substantially when multiplying a given predictor by a constant, due to the
sum of squared coefficient term in the penalty part of the ridge regression
objective function.

I Therefore, it is best to apply ridge regression after standardizing the
predictors, using the formula

x̃ij = xij
/√∑

i

(xij − x̄j)2/n.
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Penalized Methods

Credit data example

Simulated data with n = 50 observations, p = 45 predictors, all having nonzero
coefficient. Squared bias (black), variance (green), and test mean squared error
(purple) for the ridge regression predictions on a simulated data set. The horizontal
dashed lines indicate the minimum possible MSE. The purple crosses indicate the
ridge regression models for which the MSE is smallest.
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Penalized Methods

The LASSO

I Ridge regression, unlike subset selection, will generally select models
that involve just a subset of the variables, ridge regression will include all
p predictors in the final model.

I The LASSO is a relatively recent alternative to ridge regression that
overcomes this disadvantage. The lasso coefficient β̂L minimize the
quantity ∑

i

(
yi − β0 −

∑
j

βixij

)2

+ λ
∑

j

|βj|,

where λ is a tuning parameter.
I The LASSO uses l1 penalty instead of l2 (ridge regression).
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Penalized Methods

The LASSO

I As with ridge regression, the lasso shrinks the coefficient estimates
towards zero as λ increases.

I However, in the case of the lasso, the l1 penalty has the effect of forcing
some of the coefficient estimates to be exactly equal to zero when the
tuning parameter λ is sufficientl large. Thus performs variable selection.

I We say that the lasso yields sparse models — that is, models that involve
only a subset of the variables.

I Selecting a good value for λ is critical; cross-validation is again used for
this.
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Penalized Methods

Credit data example

As λ increases, the coefficients are shrunken to exact zeros.
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Penalized Methods

Ridge regression and the LASSO

I Why is it that the lasso, unlike ridge regression, results in coefficient
estimates that are exactly equal to zero?

I One can show that the lasso and ridge regression coefficient estimates
solve the problems

min
β

∑
i

(
yi − β0 −

∑
j

βixij

)2

, subject to
∑

j

|βj| ≤ c;

min
β

∑
i

(
yi − β0 −

∑
j

βixij

)2

, subject to
∑

j

β2
j ≤ c;
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Penalized Methods

Ridge regression and the LASSO

Linglong Kong (University of Alberta) SML Lecture II July 19, 2016 11/36



Penalized Methods

Credit data example
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Left: Plots of squared bias (black), variance (green), and test mean squared error
(purple) for the LASSO on a simulated data set. Right: Comparison of squared bias,
variance and test MSE between lasso (solid) and ridge (dashed). The purple crosses
indicate the LASSO models for which the MSE is smallest.
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Penalized Methods

Credit data example
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Left: Plots of squared bias (black), variance (green), and test mean squared error
(purple) for the LASSO on another simulated data set. Right: Comparison of squared
bias, variance and test MSE between lasso (solid) and ridge (dashed). The purple
crosses indicate the LASSO models for which the MSE is smallest.
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Penalized Methods

Conclusions

I These two examples illustrate that neither ridge regression nor the lasso
will universally dominate the other.

I In general, one might expect the lasso to perform better when the
response is a function of only a relatively small number of predictors.

I However, the number of predictors that is related to the response is never
known a priori for real data sets.

I A technique such as cross-validation can be used in order to determine
which approach is better on a particular data set.
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Support Vector Machine

Separable Hyperplanes

I Imagine a situation where you have a two class classification problem
with two predictors X1 and X2.

I Suppose that the two classes are linearly separable i.e. one can draw a
straight line in which all points on one side belong to the first class and
points on the other side to the second class.

I Then a natural approach is to find the straight line that gives the biggest
separation between the classes i.e. the points are as far from the line as
possible

I This is the basic idea of a support vector classifier.
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Support Vector Machine

Hyperplane

I A hyperplane in p dimensions is a flat affine subspace of dimension
p− 1.

I In general the equation for a hyperplane has the form

β0 + β1X1 + · · ·+ βpXp = 0.

I In p = 2 dimensions a hyperplane is a line.
I If β0 = 0, the hyperplane goes through the origin, otherwise not.
I The vector β = (β1, · · · , βp) is called the normal vector — it points in a

direction orthogonal to the surface of a hyperplane.
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Support Vector Machine

Hyperplane in 2 Dimensions
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Support Vector Machine

Separating Hyperplane
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I If f (X) = β0 + β1X1 + · · ·+ βpXp, then f (X) > 0 for points on one side
of the hyperplane, and f (X) < 0 for points on the other.

I If we code the colored points as Yi = +1 as blue and Yi = −1 as purple,
then if Yi · f (Xi) > 0 for all i, f (X) = 0 defines a Separating Hyperplane.
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Support Vector Machine

Hard Margin

I Among all separating hyperplanes, find the
one that makes the biggest gap or margin
between the two classes.

I Constrained optimization problem

maximizeβ0,β1,··· ,βp M

subject to
p∑

j=1

β2
j = 1

yi(β0 + β1X1 + · · ·+ βpXp) ≥ M

for i = 1, · · · , n.
−1 0 1 2 3

−
1

0
1

2
3

X1

X
2

I This can be rephrased as a convex quadratic program, and solved
efficiently. The function svm() in package e1071 solves this problem
efficiently.
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Support Vector Machine

Hard Margin

I The data on the left are not
separable by a linear boundary.

I In general it is true for n < p.
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Support Vector Machine

Hard Margin
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I Sometimes the data are separable, but noisy. This can lead to a poor
solution for the maximal-margin (hard margin) classifier. boundary.
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Support Vector Machine

Soft Margin
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I The support vector classifier maximizes a soft margin.

maximizeβ0,β1,··· ,βp;ε1,···εn M; subject to
p∑

j=1

β2
j = 1

yi(β0 + β1X1 + · · ·+ βpXp) ≥ M(1− εi)

εi ≥ 0,
n∑

i=1

εi ≤ C.
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Support Vector Machine

C is a regularization parameter
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I C is a regularization parameter and represent the price we need to pay to
separate the two classes.
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Support Vector Machine

Support Vectors

I Only those support vectors determine the optimization solution for both hard
margin and soft margin.
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Support Vector Machine

Linear boundary can fail
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I Sometime a linear boundary simply won’t work, no matter what value of C.

I For example, in the situation shown above.

I What do we do? the kernel trick!!!
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Support Vector Machine

Feature Expansion

Linglong Kong (University of Alberta) SML Lecture II July 19, 2016 26/36



Support Vector Machine

Feature Expansion

I Enlarge the space of features by including transformations; for example
X2

1 ,X
3
2 ,X1X2,X1X2

2 , · · · , Hence go from a p-dimensional space to a
M > p dimensional space.

I Fit a support-vector classifier in the enlarged space.
I This results in non-linear decision boundaries in the original space.
I Example: Suppose we use (X1,X2,X2

1 ,X
2
2 ,X1X2) instead of just (X1,X2).

Then the decision boundary would be of the form

β0 + β1X1 + β2X2 + β3X2
1 + β4X2

2 + β5X1X2 = 0.

I This leads to nonlinear decision boundaries in the original space
(quadratic conic sections).
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Support Vector Machine

Cubic Polynomials

I Here we use a basis expansion of
cubic polynomials — from 2
variables to 9.

I The support-vectorclassifier in the
enlarged space solves the problem
in the lower-dimensional space

I The decision boundary is

β0+β1X1+β2X2+β3X2
1 +β4X2

2 +β5X1X2+β6X3
1 +β7X3

2 +β8X1X2
2 +β9X2

1X2 = 0.
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Support Vector Machine

Nonlinearities and Kernels

I Polynomials (especially high-dimensional ones) get wild rather fast.
I There is a more elegant and controlled way to introduce nonlinearities in

support vector classifier — through the use of kernels.
I Before we discuss these, we must understand the role of inner products

in support vector classifier.
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Support Vector Machine

Inner products and kernels
I Inner product between vectors

〈xi, xi′〉 =
∑

j

xijxi”j.

I The linear support vector classifier can be represented as

f (x) = β0 +
∑

i

αi〈x, xi〉

I To estimate parameters α1, · · · , αn and β0, all we need are
(n

2

)
inner

products 〈x, xi〉 between all pairs of training observations.
I It turns out that most of the α̂i can be zero

f (x) = β0 +
∑
i∈S

α̂i〈x, xi〉,

where S is the support set of indices i such that α̂i > 0.
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Support Vector Machine

Kernels and Support Vector Machine

I If we can compute inner products between observations, we can fit a
support vector classifier — can be very abstract!

I Some special kernel function can do this for us. E.g.

K(xi, xi′) = (1 +
∑

j

xijxi”j)
2

computes the inner products needed for d dimensional polynomials —(p+d
d

)
basis functions!

I The solotion has the form

f (x) = β0 +
∑
i∈S

α̂iK(x, xi).
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Support Vector Machine

Radial Kernel

I The radial Kernel has the format

K(xi, xi′) = exp

(
−γ
∑

j

(xij − xi′j)
2

)
,

where γ is tuning parameter.

I The decision bounady is,

f (x) = β0 +
∑
i∈S

α̂iK(x, xi),

implicit feature space; very high
dimensional.

I Controls variance by squaring down
most dimenions severely.
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Support Vector Machine

Example - Heart Data
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ROC curves on Training data

I ROC curve is obtained by changing the threshold 0 to threshold t in
f̂ (X) > t, and recording false positive and true positive rates as t varies.
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Support Vector Machine

Example - Heart Data
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ROC curves on Testing data
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Support Vector Machine

SVMs: More than 2 classes

I The SVM as defined works for K = 2 classes. What do we do if we have
K > 2 classes?

I OVA - One versus All. Fit K different 2-class SVM classifiers
f̂k(x), k = 1, · · · ,K; each class versus the rest. Classify x∗ to the class
for which f̂k(x∗) is largest.

I OVO - One versus One. Fit all
(K

2

)
pairwise classifiers f̂kl(x). Classify x∗

to the class that wins the most pairwise competitions.
I Which one to choose? If K is not too large, use OVO.
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Software and Remark

Summary and Remark

I Install software R, if necessary, play demos, browse documentation.
I In my opinion, the best way to learn in this course is to try everything in

R.
I Once it works, then think why, and how to write it in your own way.
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