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Introduction

Stigler’s seven pillars of statistical wisdom

I What is statistics - It is what statisticians do
I Stigler’s seven pillars of statistical wisdom

I Aggregation
I The law of diminishing information
I Likelihood
I Intercomparison
I Regression and multivariate analysis
I Design
I Models and Residuals

I http://blogs.sas.com/content/iml/2014/08/05/stiglers-seven-pillars-of-statistical-wisdom/

I Stigler’s law of eponymy: No scientific discovery is named after its
original discoverer. by Robert K. Merton (Matthew effect)
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Introduction

Statistics

I Quote of the Day, New York Times, August 5, 2009
“I keep saying that the sexy job in the next 10 years will be statisticians.
And I’m not kidding." HAL VARIAN, chief economist at Google.
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Introduction

Machine Learning

I Wikipedia: Machine learning is a subfield of computer science that
evolved from the study of pattern recognition and computational learning
theory in artificial intelligence.

I Machine learning is closely related to computational statistics; a
discipline that aims at the design of algorithms for implementing
statistical methods on computers.

I Machine learning and pattern recognition can be viewed as two facets of
the same field.

I Machine learning tasks are typically classified into three broad
categories, supervised learning, unsupervised learning, and
reinforcement learning.
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Introduction

Alphago

I Artificial intelligence pioneered by University of Alberta graduates
masters Chinese board game

I Augment Monte Carlo Search Tree (MCST) with deep neural networks
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Introduction

Statistical Machine Learning

I This courses is not exactly statistics, nor exactly machine learning.
I So what do we do in this course? Statistical machine learning!
I Statistical machine learning merges statistics with the computational

sciences - computer science, systems science and optimization.
http://www.stat.berkeley.edu/~statlearning/.

I Statistical machine learning emphasizes models and their interpretability,
and precision and uncertainty.
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Introduction

Supervised Learning

I Data: response Y and covariate X.
I In the regression problem, Y is quantitative (e.g. price and blood

pressure).
I In the classification problem, Y takes categorical data (e.g. survived/died,

digits 0− 9).
I In regression, techniques include linear regression, model selection,

nonlinear regression, ...
I In classification, techniques include logistic regression, linear and

quadratic discriminant analysis, support vector machine, ...
I There are many other supervised learning methods, like tree-based

methods, Ensembles (Bagging, Boosting, Random forests), and so on.

Linglong Kong (University of Alberta) SML Lecture I July 18, 2016 8/48



Introduction

Unsupervised Learning

I No response, just a set of covariates.
I objective is more fuzzy - find groups of samples that behave similarly,

find features that behave similarly, find linear combinations of features
with the most variation.

I Difficult to know how well your are doing.
I Different from supervised learning, but can be useful as a pre-processing

step for supervised learning.
I Methods include cluster analysis, principal component analysis,

independent component analysis, factor analysis, canonical correlation
analysis, ...
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Statistical Machine Learning

Seeing the data
I They say a picture is worth 1000 (10000) words

Vancouver 2010 final Canada vs. USA
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Statistical Machine Learning

Statistical Machine Learning

I Given response Yi and covariates Xi = (x1i, x2i, · · · , xpi)
T , we model the

relationship
Yi = f (Xi) + εi,

where f is an unknown function and ε is random error with mean zero.
I A Simple example

10 12 14 16 18 20 22

2
0

3
0

4
0

5
0

6
0

7
0

8
0

Years of Education

In
co

m
e

10 12 14 16 18 20 22

2
0

3
0

4
0

5
0

6
0

7
0

8
0

Years of Education

In
co

m
e

Linglong Kong (University of Alberta) SML Lecture I July 18, 2016 11/48



Statistical Machine Learning

Estimate or learn the relationship

I Statistical machine learning is to estimate the relationship f , or using
data to learn f . Why?

I To make prediction for the response Y for a new value of X;
I To make inference on the relationship between Y and X, say, which x

actually affect Y , positive or negative, linearly or more complicated.
I Prediction Interested in predicting how much money an individual will donate based

on observations from 90,000 people on which we have recorded over 400 different

characteristics.

I Inference Wish to predict median house price based on 14 variables. Probably want to

understand which factors have the biggest effect on the response and how big the effect

is.
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Statistical Machine Learning

Estimate or learn the relationship

I How estimate or learn f ?
I Parametric methods say, linear regression (Chapter 3)

Yi = β0 + β1x1i + β2x2i + · · ·+ βpxpi,

by certain loss function, e.g. ordinary least squares (OLS).
I Nonparametric methods, say, spline expansion (Chapter 5) and kernel

smoothing (Chapter 6) methods.
I Nonparametric methods are more felxible but need more data to obtain

an accurate estimation.
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Statistical Machine Learning

Tradeoff between accuracy and interpretability
I The simpler, the better - parsimony or Occam’s razor.
I A simple method is much easier to interpret, e.g. linear regression model.
I A simple model is possible to achieve more accurate prediction without

overfitting. It seems counter intuitive though.
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Statistical Machine Learning

Quality of fit

I A common measure of accuracy is the mean squared error (MSE),

MSE = 1/n
∑

i

(
Yi − Ŷi

)2
,

where Ŷi is the prediction using the training data.
I In general, we minimize MSE and care how the method works for new

data, we call it test data.
I More flexible models could have lower MSE for training data but higher

test MSE.
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Statistical Machine Learning

Levels of flexibility
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I Black - Truth; Orange - Linear Estimate; Blue - smoothing spline; Green
- smoothing spline (more flexible)

I RED - Test MSE; Grey - Training MSE; Dashed - Minimum possible test
MSE (irreducible error)
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Statistical Machine Learning

Bias and Variance tradeoff

I There are always two competing forces that govern the choice of
learning method i.e. bias and variance.

I Bias refers to the error that is introduced by modeling a real life problem
(that is usually extremely complicated) by a much simpler problem.

I The more flexible/complex a method is the less bias it will generally
have.

I Variance refers to how much your estimate for f would change by if you
had a different training data set.

I Generally, the more flexible a method is the more variance it has.
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Statistical Machine Learning

Bias and Variance tradeoff

I For a new observation Y at X = X0, the expected MSE is

E
[(

Y − Ŷ|X0
)2
]
= E

[(
f (X0) + ε− f̂ (X0)

)2
]
= Bias2

[
f̂ (X0)

]
+ Var

[
f̂ (X0)

]
+ Var[ε].

I What this means is that as a method gets more complex the bias will
decrease and the variance will increase but expected test MSE may go up
or down!
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Simple Linear Regression

Simple Linear Regression
I Linear regression is a simple approach to supervised learning. It assumes

that the dependence of Y on X1,X2, · · · ,Xp is linear.
I True regression functions are never linear! although it may seem overly

simplistic, linear regression is extremely useful both conceptually and
practically.
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Simple Linear Regression

Simple Linear Regression

I Simple Linear Regression Model (SLR) has the form of

Y = β0 + β1X + ε,

where β0 and β1 are two unknown parameters (coefficients), called
intercept and slope, respectively, and ε is the error term.

I Given the estimates β̂0 and β̂1 , the estimated regression line is

y = β̂0 + β̂1x.

I For X = x, we predict Y by ŷ = β̂0 + β̂1x, where the hat symbol denotes
an estimated value.
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Simple Linear Regression

Estimate the parameters

I Let (yi, xi) be the i-th observation and ŷi = β̂0 + β̂1xi, we call ei = yi− ŷi

the ith residual.
I To estimate the parameters, we minimized the residual sums of squares

(RSS),

RSS =
∑

i

e2
i =

∑
i

(
yi − β̂0 − β̂1xi,

)2
.

I Denote ȳ =
∑

i yi/n and x̄ =
∑

i xi/n. The minimized values are

β̂1 =

∑
i(yi − ȳ)(xi − x̄)∑

i(xi − x̄)2 =

(
r

√∑
i(yi − ȳ)2√∑
i(xi − x̄)2

)
,

β̂0 = ȳ− β̂1x̄.
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Simple Linear Regression

Example
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I Advertising data: the least square fit for the regression of sales and TV.
I Each grey line segment represents an error, and the fit makes a

compromise by averaging their squares.
I In this case a linear fit captures the essence of the relationship, although

it is somewhat deficient in the left of the plot.
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Simple Linear Regression

Assess the coefficient estimates
I The standard error of an estimator reflects how it varies under repeated

sampling.

SE(β̂1) =

√
σ2∑

(xi − x̄)2 , SE(β̂0) =

√
σ2

(
1
n

+
x̄2∑

(xi − x̄)2

)
,

where σ2 = Var(ε).
I A 95% confidence interval is defined as a range of values such that with

95% probability, the range will contain the true unknown value of the
parameter.

I It has the form
β̂1 ± 2 · SE(β̂1).

I For the advertising data, the 95% confidence interval for β1 is
[0.042, 0.053], which means, there is approximately 95% chance this
interval contains the true value of β1 (under a scenario where we got
repeated samples like the present sample).
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Simple Linear Regression

Hypothesis testing

I Standard errors can also be used to perform hypothesis tests on the
coefficients. The most common hypothesis test involves testing the null
hypothesis of

H0: There is no relationship between X and Y versus the alternative
hypothesis

HA: There is some relationship between X and Y .
I Mathematically, we test

H0 : β1 = 0 versus HA : β1 6= 0,

since if β0 = 0 then the model reduces to Y = β0 + ε, and X is not
associated with Y .
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Simple Linear Regression

Hypothesis testing
I To test the null hypothesis, we compute a t-statistics,

t =
β̂1 − 0

SE
(
β̂1

) .
I This statistics follows tn−2 under the null hypothesis β1 = 0.
I Using statistical software, it is easy to compute the probability of

observing any value equal to |t| or larger. We call this probability the
p-value.

I Results for the advertising data

Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.032594 0.457843 15.36 <2e-16 ***
TV 0.047537 0.002691 17.67 <2e-16 ***
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
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Simple Linear Regression

Measure of fit
I We compute the Residual Standard Error

RSE =

√
1

n− 2
RSS =

√
1

n− 2

∑
i

(yi − ŷi)2,

where the residual sum-of-squares is RSS =
∑

i(yi − ŷi)
2.

I R-squared or fraction of variance explained is

R2 =
TSS− RSS

TSS
= 1− RSS

TSS
,

where TSS =
∑

i(yi − ȳ)2 is the total sum of squares.
I It can be shown that in this simple linear regression setting that R2 = r2,

where r is the correlation between Y and X:

r =

∑
i(yi − ȳ)(xi − x̄)√∑

i(yi − ȳ)2
√∑

i(xi − x̄)2
=

(
β̂1

√∑
i(xi − x̄)2√∑
i(yi − ȳ)2

)
.
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Simple Linear Regression

R code

> TVadData = read.csv(’... Advertising.csv’)
> attach(TVadData)
> TVadlm = lm(Sales~TV)
> summary(TVadlm)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 7.032594 0.457843 15.36 <2e-16 ***
TV 0.047537 0.002691 17.67 <2e-16 ***
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 3.259 on 198 degrees of freedom
Multiple R-squared: 0.6119,Adjusted R-squared: 0.6099
F-statistic: 312.1 on 1 and 198 DF, p-value: < 2.2e-16
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Multiple Linear Regression

Multiple Linear Regression

I Multiple Linear Regression has more than one covariates,

Y = β0 + β1X1 + · · ·+ βpXp + ε,

where usually ε ∼ N(0, σ2).
I We interpret βj as the average effect on Y of a one unit increase in Xj,

while holding all the other covariates fixed.
I In the advertising example, the model becomes

Sales = β0 + β1 × TV + β2 × Radio + β3 × Newspaper + ε.
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Multiple Linear Regression

Coefficient Interpretation

I The ideal scenario is when the predictors are uncorrelated — a balanced
design.

I Each coefficient can be estimated and tested separately.
I Interpretations such as a unit change in Xj is associated with a βj change in

Y , while all the other variables stay fixed, are possible.
I Correlations amongst predictors cause problems.

I The variance of all coefficient tends to increase, sometimes dramatically.
I Interpretations become hazardous — when Xj changes, everything else

changes.

I Claims of causality should be avoided for observational data.
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Multiple Linear Regression

The woes of regression coefficients

Data Analysis and Regression, Mosteller and Tukey 1977
I A regression coefficient βj estimates the expected change in Y per unit

change in Xj, with all other predictors held fixed. But predictors usually
change together!

I Example: Y total amount of change in your pocket; X1 = # of coins;
X2 = # of pennies, nickels and dimes. By itself, regression coefficient of
Y on X2 will be > 0. But how about with X1 in model?

I Y = number of tackles by a football player in a season; W and H are his
weight and height. Fitted regression model is Y = β0 + 0.50W − 0.10H.
How do we interpret β̂2 < 0?
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Multiple Linear Regression

Two quotes by famous Statisticians

1919 - 2013 (aged 93)

I Essentially, all models are wrong, but some are useful.
George Box

I The only way to find out what will happen when a complex system is
disturbed is to disturb the system, not merely to observe it passively.
Fred Mosteller and John Tukey, paraphrasing George Box
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Multiple Linear Regression

Coefficient estimation

I Given the estimates β̂0, β̂1, · · · , and β̂p , the estimated regression line is

y = β̂0 + β̂1x1 + · · ·+ β̂pxp.

I We estimate all the coefficients βi, i = 0, 1, · · · , p as the values that
minimize the sum of squared residuals

RSS =
∑

i

(yi − ŷi)
2,

where ŷi = β̂0 + β̂1x1 + · · ·+ β̂pxp is the predicted values.

I This is done using standard statistical software. The values β̂0, β̂1, · · · ,
and β̂p that minimize RSS are the multiple least squares regression
coefficient estimates.
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Multiple Linear Regression

Estimation Example

X1

X2

Y
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Multiple Linear Regression

Inference

I Is at least one predictor useful?

F =
(TSS− RSS)/p
RSS/(n− p− 1)

∼ Fp,n−p−1.

I What about an individual coefficient, say if βi useful?

t =
β̂i − 0

SE
(
β̂i

) ∼ tn−p−1.

I For given x1, · · · , xp, what is the prediction interval (PI) of the
corresponding y?

I What about the estimation interval (CI) of y?
I What is the difference — PI, individual and CI, average, PI wider than

CI.
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Multiple Linear Regression

Advertising example
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.938889 0.311908 9.422 <2e-16 ***
TV 0.045765 0.001395 32.809 <2e-16 ***
Radio 0.188530 0.008611 21.893 <2e-16 ***
Newspaper -0.001037 0.005871 -0.177 0.86
---
Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

Residual standard error: 1.686 on 196 degrees of freedom
Multiple R-squared: 0.8972,Adjusted R-squared: 0.8956
F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16

> predict(TVadlm, newdata, interval="c", level=0.95)
fit lwr upr

1 20.52397 19.99627 21.05168
> predict(TVadlm, newdata, interval="p", level=0.95)

fit lwr upr
1 20.52397 17.15828 23.88967
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Multiple Linear Regression

Indicator Variables

I Some predictors are not quantitative but are qualitative, taking a discrete
set of values.

I These are also called categorical predictors or factor variables.
I Example: investigate difference in credit card balance between males

and females, ignoring the other variables. We create a new variable,

xi =

{
1 if i-th person is female,
0 if i-th person is male

.

I Resulting model

yi = β0 + β1xi + εi =

{
β0 + β1 + εi if i-th person is female,
β0 + εi if i-th person is male

.

I Interpretation and more than two levels (categories)?
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Multiple Linear Regression

Indicator Variables

I In general, if we have k levels, we need (k − 1) indicator variables.
I For example, we have 3 levels — A,B, and C for a covariate x,

xA =

{
1 if x is A,
0 if x is not A

; xB =

{
1 if x is B,
0 if x is not B

.

I If x is C, then xA = xB = 0. We call C as baseline.
I βA is the contrast between A and C and βB is the contrast between B and

C.
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Classical Model Selection

Why Model Selection

I In many situations, many predictors are available. Some times, the
number of predictors is even larger than the number of observations
(p > n). We follow Occam’s razor (aka Ockham’s razor), the law of
parsimony, economy, or succinctness, to include only the important
predictors.

I The model will become simpler and easier to interpret (unimportant
predictors are eliminated).

I Cost of prediction is reduced-there are fewer variables to measure.
I Accuracy of predicting new values of y may improve.
I Recall MSE(prediction) = Bias(prediction)2 + Var (prediction).
I Variable selection is a trade off between the bias and variance.
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Classical Model Selection

How to select model in Linear Regression

I Subset Selection. We identify a subset of the p predictors that we believe
to be related to the response. We then fit a model using least squares on
the reduced set of variables. Best subset and stepwise model selection.

I Shrinkage. We fit a model involving all p predictors, but the estimated
coefficients are shrunken towards zero relative to the least squares
estimates. This shrinkage (also known as regularization) has the effect of
reducing variance and can also perform variable selection.

I Dimension Reduction. We project the p predictors into a M-dimensional
subspace, where M < p. This is achieved by computing M different
linear combinations, or projections, of the variables. Then these M
projections are used as predictors to fit a linear regression model by least
squares.
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Classical Model Selection

Best subset selection

I Fit all possible models (2p − 1) and select a single best model from
according certain criteria.

I Possible criteria include adjusted R2, cross-validated prediction error, Cp,
AIC, or BIC.

I We consider the adjusted R2 statistics

R2
adj = 1− SSE/(n− q− 1)

SST/(n− 1)
,

where q is the number of predictors in the model.
I Adjusted R2 criterion: we pick the best model by maximizing the

adjusted R2 over all 2p − 1 models.
I R2 is suitable for selecting the best model as it always select the largest

model to have smallest training error while we need to have small testing
error.
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Classical Model Selection

AIC Criterion

I The AIC statistics for a model is defined as

AIC = −2l(y) + 2(q + 1)
LM
= n log(SSE/n) + 2(q + 1),

where l(y) is log-likelihood of y and q is the number of predictors in the
model.

I The first part of AIC statistic decreases as the number of predictors in the
model q increases.

I The second part increases as q increases. This part is to penalize larger
models.

I The AIC statistics is not necessary to decrease or increase as q increases.
I AIC criterion: pick the best model by minimizing AIC criterion over all

models.

Linglong Kong (University of Alberta) SML Lecture I July 18, 2016 41/48



Classical Model Selection

BIC Criterion

I The BIC statistics for a model is defined as

BIC = −2l(y) + log(n)(q + 1)
LM
= n log(SSE/n) + log(n)(q + 1),

where l(y) is log-likelihood of y and q is the number of predictors in the
model.

I Similar to AIC statistics, the BIC statistics adds the second part to
penalize larger models.

I BIC criterion: pick the best model by minimizing BIC criterion over all
models.

I The only difference between AIC and BIC is the coefficient for the
second part.

I The BIC criterion can guarantee that we can pick all the important
predictors as n −→∞, while the AIC criterion cannot.
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Classical Model Selection

Cross-Validation
I The idea of cross-validation (CV) criterion is to find a model which

minimizes the prediction/testing error.
I For i = 1, . . . , n, delete the i-th observation from the data and the linear

regression model. Let β̂−i denote the LSE for β. Predict yi using
ŷ−i = Xβ̂−i.

I CV criterion: pick the best model by minimizing the
CV =

∑n
i=1(yi − ŷ−i)

2 statistics over all the models.
I We did not use yi to get β̂−i and we predict yi as if it were new

“observation”.
I So CV statistics is simplified to

CV =

n∑
i=1

(
ri

1− hii

)2

,

where hii is the ii-th element of the hat matrix H = X(XTX)−1XT .
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Classical Model Selection

Mallow’s Cp Statistic

I The Cp statistics is another statistic which penalizes larger model. In the
original definition, p is the number of predictors in the model.
Unfortunately, we use q to denote the number of predictors. In the
following we use the notation Cq instead.

I The Cq statistics for a given model is defined as

Cq =
SSE(q)

SSE(p)/(n− p− 1)
− (n− 2(q + 1)).

I It can be shown that Cq ≈ q + 1, if all the important predictors are in the
model.

I Cq criterion: pick the model such that Cq is close to q + 1 and also q is
small (we like simpler model).

I In linear model, under Gaussian error assumption Cp criterion is
equivalent to AIC.
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Classical Model Selection

Backward Elimination

I Backward elimination starts with all p predictors in the model. Delete
the least significant predictor.

I Fit the model containing all the p predictors
y = β0 + β1x1 + · · ·+ βpxp + ε and for each predictor calculate the
p-value of the single F-test. Other criteria, say, AIC, BIC, Cp, apply as
well.

I Check whether the p-values for all the p predictors are smaller than α,
called alpha to drop.

I If yes, stop the algorithm and all the p predictors are treated as important.
I If not, delete the least significant variable, i.e., the variable with the

largest p-value and repeat checking.
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Classical Model Selection

Forward Selection
I Forward Selection starts with no predictor in the model. Pick the most

significant predictor.
I Fit p simple linear regression models

y = β0 + β1xj, j = 1, . . . , p.

For each predictor, we calculate the p-value of the single F-test for the
hypothesis H0 : β1 = 0. Other criteria, say, AIC, BIC, Cp, apply as well.

I Choose the most significant predictor, denoted by x(1) such that the
p-value of the F-test statistic for the hypothesis H0 : β1 = 0 is smallest.

I If the p-value for the most significant predictor is larger than α (alpha to
enter). We stop and no predictor is needed.

I If not, the most significant predictor is added in the model and we repeat
choosing.
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Classical Model Selection

Stepwise selection

I A disadvantage of backward elimination is that once a predictor is
removed, the algorithm does not allow it to be reconsidered.

I Similarly, with forward selection once a predictor is in the model, its
usefulness is not re-assessed at later steps.

I Stepwise selection, a hybrid of the backward elimination and the forward
selection, allows the predictors enter and leave the model several times.

I Forward stage: Do Forward Selection until stop.
I Backward stage: Do Backward Elimination until stop.
I Continue until no predictor can be added and no predictor can be

removed according to the specified α to enter and α to drop.
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Software and Remark

Summary and Remark

I Install software R, if necessary, play demos, browse documentation.
I In my opinion, the best way to learn in this course is to try everything in

R.
I Once it works, then think why, and how to write it in your own way.
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