Algorithms of Wavelets and Framelets

Bin Han

Department of Mathematical and Statistical Sciences University of Alberta, Canada

Present at 2017 International Undergraduate Summer Enrichment Program at UofA

July 17, 2017

- Goal: introduction to wavelet theory through wavelet transforms.
- Algorithms for discrete wavelet/framelet transform
- Perfect reconstruction, sparsity, stability
- Multi-level fast wavelet transform
- Oblique extension principle
- Framelet transform for signals on bounded intervals

Declaration: Some figures and graphs in this talk are from various sources from Internet, or from published papers, or produced by matlab, maple, or C programming. [Details and sources of all graphs can be provided upon request of the audience.]

Notation

- $I(\mathbb{Z})$ for signals: all $v = \{v(k)\}_{k \in \mathbb{Z}} : \mathbb{Z} \to \mathbb{C}$.
- *l*₀(ℤ) for filters: all finitely supported sequences
 u = {*u*(*k*)}_{*k*∈ℤ} : ℤ → ℂ on ℤ.
- For $v = \{v(k)\}_{k \in \mathbb{Z}} \in I(\mathbb{Z})$, define

$$egin{aligned} & \mathbf{v}^{\star}(k) := \overline{\mathbf{v}(-k)}, \quad k \in \mathbb{Z}, \ & \widehat{\mathbf{v}}(\xi) := \sum_{k \in \mathbb{Z}} \mathbf{v}(k) e^{-ik\xi}, \quad \xi \in \mathbb{R}. \end{aligned}$$

• Convolution u * v and inner product:

$$[u * v](n) := \sum_{k \in \mathbb{Z}} u(k)v(n-k), \quad n \in \mathbb{Z},$$

 $\langle v, w \rangle := \sum_{k \in \mathbb{Z}} v(k)\overline{w(k)}, \quad v, w \in l_2(\mathbb{Z})$

Subdivision and Transition Operators

• The subdivision operator $S_u : I(\mathbb{Z}) \to I(\mathbb{Z})$:

$$[\mathcal{S}_u v](n) := 2 \sum_{k \in \mathbb{Z}} v(k) u(n-2k), \quad n \in \mathbb{Z}$$

• The transition operator $\mathcal{T}_u: I(\mathbb{Z}) \to I(\mathbb{Z})$ is

$$[\mathcal{T}_u v](n) := 2 \sum_{k \in \mathbb{Z}} v(k) \overline{u(k-2n)}, \quad n \in \mathbb{Z}.$$

Subdivision and Transition Operators

• The upsampling operator $\uparrow d : I(\mathbb{Z}) \to I(\mathbb{Z})$:

$$[v \uparrow d](n) := egin{cases} v(n/d), & ext{if } n/d ext{ is an integer;} \\ 0, & ext{otherwise,} \end{cases} n \in \mathbb{Z}$$

• the downsampling (or decimation) operator $\downarrow d : I(\mathbb{Z}) \rightarrow I(\mathbb{Z})$:

$$[v \downarrow d](n) := v(dn), \qquad n \in \mathbb{Z}.$$

• Subdivision and transition operators:

$$\mathcal{S}_u v = 2u * (v \uparrow 2)$$
 and $\mathcal{T}_u v = 2(u^* * v) \downarrow 2$.

- Let $u_0, \ldots, u_s \in I_0(\mathbb{Z})$ be filters for decomposition.
- For data $v \in I(\mathbb{Z})$, a 1-level framelet decomposition:

$$w_\ell := rac{\sqrt{2}}{2} \, \mathcal{T}_{u_\ell} v, \qquad \ell = 0, \dots, s,$$

where w_{ℓ} are called framelet coefficients.

Grouping together, a framelet decomposition operator
 W: I(ℤ) → (I(ℤ))^{1×(s+1)}:

$$\mathcal{W}\mathbf{v} := rac{\sqrt{2}}{2}(\mathcal{T}_{u_0}\mathbf{v},\ldots,\mathcal{T}_{u_s}\mathbf{v}), \qquad \mathbf{v} \in I(\mathbb{Z}).$$

- Let $\tilde{u}_0, \ldots, \tilde{u}_s \in I_0(\mathbb{Z})$ be filters for reconstruction.
- A one-level framelet reconstruction by $\mathcal{V} : (I(\mathbb{Z}))^{1 \times (s+1)} \to I(\mathbb{Z})$:

$$\mathcal{V}(w_0,\ldots,w_s):=rac{\sqrt{2}}{2}\sum_{\ell=0}^s\mathcal{S}_{\widetilde{u}_\ell}w_\ell,\quad w_0,\ldots,w_s\in I(\mathbb{Z}).$$

- prefect reconstruction: VWv = v for any data v.
- A filter bank ({u₀,..., u_s}, {ũ₀,...ũ_s}) has the perfect reconstruction (PR) if VW = Id_{I(ℤ)}.

Perfect Reconstruction (PR) Property

Theorem

A filter bank $(\{u_0, \ldots, u_s\}, \{\tilde{u}_0, \ldots, \tilde{u}_s\})$ has the perfect reconstruction property, that is,

$$\mathbf{v} = \mathcal{V}\mathcal{W}\mathbf{v} = rac{1}{2}\sum_{\ell=0}^{s}\mathcal{S}_{ ilde{u}_{\ell}}\mathcal{T}_{u_{\ell}}\mathbf{v}, \qquad orall \mathbf{v} \in I(\mathbb{Z})$$

if and only if, for all $\xi \in \mathbb{R}$,

$$\overline{\widehat{u_0}(\xi)}\widehat{\widetilde{u_0}}(\xi) + \overline{\widehat{u_1}(\xi)}\widehat{\widetilde{u_1}}(\xi) + \dots + \overline{\widehat{u_s}(\xi)}\widehat{\widetilde{u_s}}(\xi) = 1,
\overline{\widehat{u_0}(\xi + \pi)}\widehat{\widetilde{u_0}}(\xi) + \overline{\widehat{u_1}(\xi + \pi)}\widehat{\widetilde{u_1}}(\xi) + \dots + \overline{\widehat{u_s}(\xi + \pi)}\widehat{\widetilde{u_s}}(\xi) = 0.$$

The perfect reconstruction (PR) condition can be equivalently rewritten into the following matrix form:

$$\begin{bmatrix} \widehat{\widetilde{u}_0}(\xi) & \cdots & \widehat{\widetilde{u}_s}(\xi) \\ \widehat{\widetilde{u}_0}(\xi+\pi) & \cdots & \widehat{\widetilde{u}_s}(\xi+\pi) \end{bmatrix} \begin{bmatrix} \widehat{u}_0(\xi) & \cdots & \widehat{u}_s(\xi) \\ \widehat{u}_0(\xi+\pi) & \cdots & \widehat{u}_s(\xi+\pi) \end{bmatrix}^* = I_2,$$

where I_2 denotes the 2 × 2 identity matrix and $A^* := \overline{A}^T$.

a filter bank $({u_0, \ldots, u_s}, {\tilde{u}_0, \ldots, \tilde{u}_s})$ has PR is called a dual framelet filter bank.

A dual framelet filter bank with s = 1 is called a biorthogonal wavelet filter bank, a nonredundant filter bank.

Proposition

Let $(\{u_0, \ldots, u_s\}, \{\tilde{u}_0, \ldots, \tilde{u}_s\})$ be a dual framelet filter bank. Then the following statements are equivalent:

(i)
$$\mathcal{W}$$
 is onto or \mathcal{V} is one-one;

(ii) $\mathcal{VW} = \mathrm{Id}_{I(\mathbb{Z})}$ and $\mathcal{WV} = \mathrm{Id}_{(I(\mathbb{Z}))^{1 \times (s+1)}}$, that is, \mathcal{V} and \mathcal{W} are inverse operators to each other;

(iii)
$$s = 1$$
.

Duality in $I_2(\mathbb{Z})$

Lemma

Let $u \in I_0(\mathbb{Z})$ be a finitely supported filter on \mathbb{Z} . Then $S_u : I_2(\mathbb{Z}) \to I_2(\mathbb{Z})$ is the adjoint operator of $\mathcal{T}_u : I_2(\mathbb{Z}) \to I_2(\mathbb{Z})$. More precisely,

$$\langle \mathcal{S}_{u}v,w\rangle = \langle v,\mathcal{T}_{u}w\rangle, \qquad \forall v,w \in I_{2}(\mathbb{Z}).$$
 (1)

The space $(l_2(\mathbb{Z}))^{1 \times (s+1)}$ has inner product:

$$\langle (w_0,\ldots,w_s), (\tilde{w}_0,\ldots,\tilde{w}_s) \rangle := \langle w_0, \tilde{w}_0 \rangle + \cdots + \langle w_s, \tilde{w}_s \rangle, \qquad w_0,\ldots,w_s,$$

and

$$\|(w_0,\ldots,w_s)\|^2_{(l_2(\mathbb{Z}))^{1\times(s+1)}} := \|w_0\|^2_{l_2(\mathbb{Z})} + \cdots + \|w_s\|^2_{l_2(\mathbb{Z})}.$$

Role of $\frac{\sqrt{2}}{2}$ in DFrT

Theorem

Let $u_0, \ldots, u_s \in I_0(\mathbb{Z})$. Then TFAE: (i) $\|\mathcal{W}v\|_{(l_2(\mathbb{Z}))^{1\times(s+1)}}^2 = \|v\|_{l_2(\mathbb{Z})}^2$ for all $v \in l_2(\mathbb{Z})$, that is, $\|\mathcal{T}_{u_0}v\|_{l_2(\mathbb{Z})}^2 + \cdots + \|\mathcal{T}_{u_s}v\|_{l_2(\mathbb{Z})}^2 = 2\|v\|_{l_2(\mathbb{Z})}^2, \quad \forall v \in l_2(\mathbb{Z});$ (ii) $\langle \mathcal{W}v, \mathcal{W}\tilde{v} \rangle = \langle v, \tilde{v} \rangle$ for all $v, \tilde{v} \in I_2(\mathbb{Z})$; (iii) the filter bank $(\{u_0, \ldots, u_s\}, \{u_0, \ldots, u_s\})$ has PR: $\begin{bmatrix} \widehat{u}_0(\xi) & \cdots & \widehat{u}_s(\xi) \\ \widehat{u}_0(\xi+\pi) & \cdots & \widehat{u}_s(\xi+\pi) \end{bmatrix} \begin{bmatrix} \widehat{u}_0(\xi) & \cdots & \widehat{u}_s(\xi) \\ \widehat{u}_0(\xi+\pi) & \cdots & \widehat{u}_s(\xi+\pi) \end{bmatrix}^* = I_2,$

 $\{u_0, \ldots, u_s\}$ with PR is called a tight framelet filter bank.

A tight framelet filter bank with s = 1 is called an orthogonal wavelet filter bank.

Proposition

Let $\{u_0, \ldots, u_s\}$ be a tight framelet filter bank. Then the following are equivalent:

- W is an onto orthogonal mapping satisfying ⟨Wv, Wṽ⟩ = ⟨v, ṽ⟩ for all v, ṽ ∈ l₂(ℤ);
- (a) for all $w_0, \ldots, w_s, \tilde{w}_0, \ldots, \tilde{w}_s \in I_2(\mathbb{Z})$,

$$\langle \mathcal{V}(w_0,\ldots,w_s), \mathcal{V}(ilde{w}_0,\ldots, ilde{w}_s) \rangle = \langle (w_0,\ldots,w_s), (ilde{w}_0,\ldots, ilde{w}_s) \rangle$$

3 s = 1.

Examples

To list a filter $u = \{u(k)\}_{k \in \mathbb{Z}}$ with support [m, n],

$$u = \{u(m),\ldots,u(-1),\underline{u(0)},u(1),\ldots,u(n)\}_{[m,n]},$$

• $\{u_0, u_1\}$ is the Haar orthogonal wavelet filter bank:

$$u_0 = \{ \frac{1}{2}, \frac{1}{2} \}_{[0,1]}, \qquad u_1 = \{ \frac{1}{2}, -\frac{1}{2} \}_{[0,1]}.$$
(2)

• $(\{u_0, u_1\}, \{\tilde{u}_0, \tilde{u}_1\})$ is a biorthogonal wavelet filter bank, where

$$\begin{split} & u_0 = \{ -\frac{1}{8}, \frac{1}{4}, \frac{3}{4}, \frac{1}{4}, -\frac{1}{8} \}_{[-2,2]}, \ u_1 = \{ \frac{1}{4}, -\frac{1}{2}, \frac{1}{4} \}_{[0,2]}, \\ & \tilde{u}_0 = \{ \frac{1}{4}, \frac{1}{2}, \frac{1}{4} \}_{[-1,1]}, \ \tilde{u}_1 = \{ \frac{1}{8}, \frac{1}{4}, -\frac{3}{4}, \frac{1}{4}, \frac{1}{8} \}_{[-1,3]}. \end{split}$$

Illustration: I

Apply the Haar orthogonal filter bank to

$$\nu = \{1, 0, -1, -1, -4, 60, 58, 56\}_{[0,7]}$$

Note that

$$[\mathcal{T}_{u_0}v](n) = v(2n) + v(2n+1), \quad [\mathcal{T}_{u_1}v](n) = v(2n) - v(2n+1), \ n \in \mathbb{Z}.$$

We have the wavelet coefficients:

$$w_0 = \frac{\sqrt{2}}{2} \{1, -2, 56, 114\}_{[0,3]}, \quad w_1 = \frac{\sqrt{2}}{2} \{1, 0, -64, -2\}_{[0,3]}.$$

Note that

$$egin{aligned} &[\mathcal{S}_{u_0} \, \mathring{w}_0](2n) = \, \mathring{w}_0(n), \,\, [\mathcal{S}_{u_0} \, \mathring{w}_0](2n+1) = \, \mathring{w}_0(n), \,\, n \in \mathbb{Z} \ &[\mathcal{S}_{u_1} \, \mathring{w}_1](2n) = \, \mathring{w}_1(n), \,\, [\mathcal{S}_{u_1} \, \mathring{w}_1](2n+1) = - \, \mathring{w}_1(n), \,\, n \in \mathbb{Z}. \end{aligned}$$

Hence, we have

$$\frac{\sqrt{2}}{2}S_{u_0}w_0 = \frac{1}{2}\{1, 1, -2, -2, 56, 56, 114, 114\}_{[0,7]}, \\ \frac{\sqrt{2}}{2}S_{u_1}w_1 = \frac{1}{2}\{1, -1, 0, 0, -64, 64, -2, 2\}_{[0,7]}.$$

Clearly, we have the perfect reconstruction of v:

$$rac{\sqrt{2}}{2}\mathcal{S}_{u_0}w_0+rac{\sqrt{2}}{2}\mathcal{S}_{u_1}w_1=\{1,0,-1,-1,-4,60,58,56\}_{[0,7]}=v_0$$

and the following energy-preserving identity

$$\|w_0\|_{l_2(\mathbb{Z})}^2 + \|w_1\|_{l_2(\mathbb{Z})}^2 = \frac{16137}{2} + \frac{4101}{2} = 10119 = \|v\|_{l_2(\mathbb{Z})}^2.$$

Diagram of 1-level DFrTs

Figure: Diagram of a one-level discrete framelet transform using a dual framelet filter bank $(\{u_0, \ldots, u_s\}, (\tilde{u}_0, \ldots, \tilde{u}_s\}).$

- One key feature of DFrT is its sparse representation for smooth or piecewise smooth signals.
- It is desirable to have as many as possible negligible framelet coefficients for smooth signals.
- Smooth signals are modeled by polynomials. Let $p : \mathbb{R} \to \mathbb{C}$ be a polynomial: $p(x) = \sum_{n=0}^{m} p_n x^n$.
- a polynomial sequence $p|_{\mathbb{Z}}: \mathbb{Z} \to \mathbb{C}$ by $[p|_{\mathbb{Z}}](k) = p(k), k \in \mathbb{Z}$.
- $\mathbb{N}_0 := \mathbb{N} \cup \{0\}.$

Polynomial Differentiation Operator

• Polynomial differentiation operator:

$$p(x - i\frac{d}{d\xi})\mathbf{f}(\xi) := \sum_{n=0}^{\infty} p_n \left(x - i\frac{d}{d\xi}\right)^n \mathbf{f}(\xi).$$
$$p(x - i\frac{d}{d\xi})\mathbf{f}(\xi) = \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} p^{(n)}(x) \mathbf{f}^{(n)}(\xi)$$
$$= \sum_{n=0}^{\infty} \frac{x^n}{n!} p^{(n)} \left(-i\frac{d}{d\xi}\right) \mathbf{f}(\xi).$$

• Generalized product rule for differentiation:

$$p(x-i\frac{d}{d\xi})(\mathbf{g}(\xi)\mathbf{f}(\xi)) = \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} \mathbf{g}^{(n)}(\xi) p^{(n)}(x-i\frac{d}{d\xi}) \mathbf{f}(\xi).$$
$$\left[p(-i\frac{d}{d\xi})(e^{ix\xi}\mathbf{f}(\xi)) \right] \Big|_{\xi=0} = \left[p(x-i\frac{d}{d\xi})\mathbf{f}(\xi) \right] \Big|_{\xi=0}.$$

Lemma

Let $u = \{u(k)\}_{k \in \mathbb{Z}} \in I_0(\mathbb{Z})$. Then for any polynomial $p \in \Pi$, p * u is a polynomial with deg $(p * u) \leq deg(p)$,

$$[p * u](x) = \sum_{k \in \mathbb{Z}} p(x - k)u(k) = \left[p\left(x - i\frac{d}{d\xi}\right)\widehat{u}(\xi) \right] \Big|_{\xi=0}$$
$$= \sum_{n=0}^{\infty} \frac{(-i)^n}{n!} p^{(n)}(x)\widehat{u}^{(n)}(0) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \left[p^{(n)}\left(-i\frac{d}{d\xi}\right)\widehat{u}(\xi) \right] \Big|_{\xi=0}.$$

Moreover, $p * (u \uparrow 2) = [p(2 \cdot) * u](2^{-1} \cdot)$,

$$\mathsf{p}^{(n)} * u = [\mathsf{p} * u]^{(n)}, \quad \mathsf{p}(\cdot - y) * u = [\mathsf{p} * u](\cdot - y), \ \forall \ y \in \mathbb{R}$$

For smooth functions f and g, it is often convenient to use the following big ${\mathscr O}$ notation:

$$\mathbf{f}(\xi) = \mathbf{g}(\xi) + \mathscr{O}(ert \xi - \xi_0 ert^m), \qquad \xi o \xi_0$$

to mean that the derivatives of **f** and **g** at $\xi = \xi_0$ agree to the orders up to m - 1:

$$\mathbf{f}^{(n)}(\xi_0) = \mathbf{g}^{(n)}(\xi_0), \qquad \forall \ n = 0, \dots, m-1.$$

Theorem

Let
$$u \in l_0(\mathbb{Z})$$
. Then for any polynomials $\sum_{\mathcal{T}_u p} \widehat{\mathcal{T}_u p} = 2[p * u^*](2 \cdot) = p(2 \cdot) * u^* = \sum_{\mathcal{T}_u} \widehat{\mathcal{T}_u p}^{(n)}(2 \cdot) \overline{u^{(n)}(0)},$
where u is a finitely supported sequence on \mathbb{Z} such that
 $\hat{u}(\xi) = 2\overline{u(\xi/2)} + \mathcal{O}(|\xi|^{\deg(p)+1}), \quad \xi \to 0.$
In particular, for any integer $m \in \mathbb{N}$, TFAE:
 $\mathcal{T}_u p = 0$ for all polynomial sequences $p \in \Pi_{m-1};$
 $\mathcal{T}_u q = 0$ for some $q \in \Pi$ with $\deg(q) = m - 1;$
 $\hat{u}(\xi) = \mathcal{O}(|\xi|^m)$ as $\xi \to 0;$
 $\hat{u}(\xi) = (1 - e^{-i\xi})^m \mathbf{Q}(\xi)$ for some 2π -periodic trigonometric
polynomial $\mathbf{Q}.$

- We say that a filter *u* has *m* vanishing moments if any of items (1)-(4) in Theorem holds.
- Most framelet coefficients are zero for any input signal which is a polynomial to certain degree.
- If u has m vanishing moments. For a signal v, if v agrees with some polynomial of degree less than m on the support of u(· − 2n), then [T_uv](n) = 0.

For $u = \{u(k)\}_{k \in \mathbb{Z}}$ and $\gamma \in \mathbb{Z}$, we define the associated coset sequence $u^{[\gamma]}$ of u at the coset $\gamma + 2\mathbb{Z}$ to be

$$\widehat{u^{[\gamma]}}(\xi) := \sum_{k \in \mathbb{Z}} u(\gamma + 2k) e^{-ik\xi},$$

that is.

$$u^{[\gamma]} = u(\gamma + \cdot) \downarrow 2 = \{u(\gamma + 2k)\}_{k \in \mathbb{Z}}.$$

Subdivision Operator on Polynomials

- $S_u p$ is not always a polynomial for $p \in \Pi$.
- For example, for p = 1 and u = {1}_[0,0], we have [S_up](2k) = 2 and [S_up](2k + 1) = 0 for all k ∈ Z.

Lemma

Let
$$u \in l_0(\mathbb{Z})$$
 and q be a polynomial. TFAE:
(i) $\sum_{k \in \mathbb{Z}} q(-\frac{1}{2} - k)u(1 + 2k) = \sum_{k \in \mathbb{Z}} q(-k)u(2k)$, that is,
 $(q * u^{[1]})(-\frac{1}{2}) = (q * u^{[0]})(0)$;
(ii) $[q(-i\frac{d}{d\xi})(e^{-i\xi/2}\widehat{u^{[1]}}(\xi))]|_{\xi=0} = [q(-i\frac{d}{d\xi})\widehat{u^{[0]}}(\xi)]|_{\xi=0}$;
(iii) $[q(-\frac{i}{2}\frac{d}{d\xi})\widehat{u}(\xi)]|_{\xi=\pi} = 0$.

Subdivision Operator on Polynomials

Theorem

- Let $u = \{u(k)\}_{k \in \mathbb{Z}}$. For $m \in \mathbb{N}$, TFAE:

 - **2** $S_u q \in \Pi$ for some $q \in \Pi$ with deg(q) = m 1;

u has m sum rules:

$$\widehat{u}(\xi + \pi) = \mathscr{O}(|\xi|^m), \qquad \xi o 0;$$

\$\hat{u}(\xi) = (1 + e^{-i\xi})^m \mathbf{Q}(\xi)\$ for some \$2\pi\$-periodic \$\mathbf{Q}\$;
\$e^{-i\xi/2} u^{[1]}(\xi) = u^{[0]}(\xi) + O(|\xi|^m)\$, \$\xi \to 0\$.
Moreover, \$\mathcal{S}_u \mp = 2^{-1} \mp(2^{-1} \cdots) * u\$.

Lemma

Let $u \in I_0(\mathbb{Z})$. Let p be a polynomial and define $m := \deg(p)$. For $c \in \mathbb{R}$, $p * u = p(\cdot - c) \iff if u$ has m + 1 linear-phase moments with phase c:

$$\hat{u}(\xi) = e^{-ic\xi} + \mathscr{O}(|\xi|^{m+1}), \qquad \xi \to 0.$$

Proposition

Let $u \in I_0(\mathbb{Z})$ and $c \in \mathbb{R}$. Then u has m + 1 linear-phase moments with phase $c \iff \mathcal{T}_u p = 2p(2 \cdot +c)$ for all $p \in \Pi_m$. Similarly, u has m+1 sum rules and m+1 linear-phase moments with phase $c \iff \mathcal{S}_u p = p(2^{-1}(\cdot - c))$ for all $p \in \Pi_m$.

Symmetry

We say that $u = \{u(k)\}_{k \in \mathbb{Z}} : \mathbb{Z} \to \mathbb{C}$ has symmetry if

$$u(2c-k) = \epsilon u(k), \quad \forall \ k \in \mathbb{Z}$$

with $2c \in \mathbb{Z}$ and $\epsilon \in \{-1, 1\}$. *u* is symmetric if $\epsilon = 1$; antisymmetric if $\epsilon = -1$. *c* is the symmetry center of the filter *u*. A symmetry operator S to record the symmetry type:

$$[\mathsf{S}\widehat{u}](\xi) := rac{\widehat{u}(\xi)}{\widehat{u}(-\xi)}, \qquad \xi \in \mathbb{R}.$$

 $[\mathsf{S}\widehat{u}](\xi) = \epsilon e^{-i2c\xi}.$

Proposition

Suppose that $u \in I_0(\mathbb{Z})$ has m but not m + 1 linear-phase moments with phase $c \in \mathbb{R}$. If m > 1, then the phase c is uniquely determined by u through

$$c=i\hat{u}'(0)=\sum_{k\in\mathbb{Z}}u(k)k.$$

Moreover, if u has symmetry: $u(2c_0 - k) = u(k)$ for all $k \in \mathbb{Z}$ for some $c_0 \in \frac{1}{2}\mathbb{Z}$, then $c = c_0$ (that is, the phase c agrees with the symmetry center c_0 of u).

Example: B-spline filters

• B-spline filter of order m: $\widehat{a_m^B}(\xi) := 2^{-m}(1+e^{-i\xi})^m$

•
$$\widehat{a_4^B}(0) = 1$$
, $\widehat{a_4^B}'(0) = -2i$, $\widehat{a_4^B}''(0) = -5$, $\widehat{a_4^B}'''(0) = 14i$.

• For $p \in \Pi_3$,

$$[p * a_4^B](x) = p(x) - 2p'(x) + \frac{5}{2}p''(x) - \frac{7}{3}p'''(x).$$

$$[\mathcal{T}_{a_4^B}p](x) = 2p(2x) + 4p'(2x) + 5p''(2x) + \frac{14}{3}p'''(2x).$$

$$[\mathcal{S}_{a_4^B}p](x) = p(x/2) - p'(x/2) + \frac{5}{8}p''(x/2) - \frac{7}{24}p'''(x/2).$$

- Let *a* be a primal low-pass filter and b_1, \ldots, b_s be primal high-pass filters for decomposition.
- For a positive integer *J*, a *J*-level discrete framelet decomposition is given by

$$\begin{split} \mathbf{v}_{j-1} &:= \frac{\sqrt{2}}{2} \mathcal{T}_{\mathbf{a}} \mathbf{v}_j, \quad \mathbf{w}_{j-1;\ell} := \frac{\sqrt{2}}{2} \mathcal{T}_{b_\ell} \mathbf{v}_j, \\ \ell &= 1, \dots, s, \quad j = J, \dots, 1, \end{split}$$

where $v_J : \mathbb{Z} \to \mathbb{C}$ is an input signal.

• decomposition operator $\mathcal{W}_J : I(\mathbb{Z}) \to (I(\mathbb{Z}))^{1 \times (sJ+1)}$:

$$\mathcal{W}_J v_J := (w_{J-1;1}, \ldots, w_{J-1;s}, \ldots, w_{0;1}, \ldots, w_{0;s}, v_0),$$

Thresholding and Quantization

Figure: The hard thresholding function, the soft thresholding function, and the quantization function, respectively. Both thresholding and quantization operations are often used to process the framelet coefficients in a discrete framelet transform.

Multi-level Reconstruction

- Let \tilde{a} be a dual low-pass filter and $\tilde{b}_1, \ldots, \tilde{b}_s$ be dual high-pass filters for reconstruction.
- a J-level discrete framelet reconstruction is

$$\mathring{v}_j := \frac{\sqrt{2}}{2} \mathcal{S}_{\widetilde{a}} \mathring{v}_{j-1} + \frac{\sqrt{2}}{2} \sum_{\ell=1}^s \mathcal{S}_{\widetilde{b}_\ell} \mathring{w}_{j-1;\ell}, \quad j = 1, \dots, J.$$

• a *J*-level discrete reconstruction operator $\mathcal{V}_J : (I(\mathbb{Z}))^{1 \times (sJ+1)} \to I(\mathbb{Z})$ is defined by

$$\mathcal{V}_J(\mathring{w}_{J-1;1},\ldots,\mathring{w}_{J-1;s},\ldots,\mathring{w}_{0;1},\ldots,\mathring{w}_{0;s},\mathring{v}_0)=\mathring{v}_J,$$

• A fast framelet transform with s = 1 is called a fast wavelet transform.

Diagram of Multi-level FFrT

Figure: Diagram of a two-level discrete framelet transform using a dual framelet filter bank ($\{a; b_1, \ldots, b_s\}, (\tilde{a}; \tilde{b}_1, \ldots, \tilde{b}_s\}$).

A multi-level discrete framelet transform employing a dual framelet filter bank $\{a; b_1, \ldots, b_s\}, \{\tilde{a}; \tilde{b}_1, \ldots, \tilde{b}_s\})$ has stability in the space $l_2(\mathbb{Z})$ if there exists C > 0 such that for $J \in \mathbb{N}_0$,

$$\|\mathcal{W}_{J}v\|_{(l_{2}(\mathbb{Z}))^{1\times(sJ+1)}}\leqslant C\|v\|_{l_{2}(\mathbb{Z})}, \qquad \forall v\in l_{2}(\mathbb{Z})$$

and

$$\|\mathcal{V}_Jec{w}\|_{l_2(\mathbb{Z})}\leqslant C\|ec{w}\|_{(l_2(\mathbb{Z}))^{1 imes(sJ+1)}},\qquad orall\ ec{w}\in (l_2(\mathbb{Z}))^{1 imes(sJ+1)}.$$

Proposition

Suppose that a multi-level discrete framelet transform has stability in the space $l_2(\mathbb{Z})$. Then all the wavelet decomposition operators must have uniform stability in space $l_2(\mathbb{Z})$:

$$\frac{1}{C} \|v\|_{l_2(\mathbb{Z})} \leqslant \|\mathcal{W}_J v\|_{l_2(\mathbb{Z})} \leqslant C \|v\|_{l_2(\mathbb{Z})}, \ \forall v \in l_2(\mathbb{Z}), J \in \mathbb{N}.$$

Moreover, wavelet reconstruction operators have uniform stability: for all $J \in \mathbb{N},$

$$\frac{1}{C} \| \vec{w} \|_{(l_2(\mathbb{Z}))^{1 \times (sJ+1)}} \leqslant \| \mathcal{V}_J \vec{w} \|_{l_2(\mathbb{Z})} \leqslant C \| \vec{w} \|_{(l_2(\mathbb{Z}))^{1 \times (sJ+1)}}, \vec{w} \in (l_2(\mathbb{Z}))^{1 \times (sJ+1)}.$$

if and only if s = 1.

Theorem

Let $(\{a; b_1, \ldots, b_s\}, \{\tilde{a}; \tilde{b}_1, \ldots, \tilde{b}_s\})$ be a dual framelet filter bank with $\hat{a}(0) = \hat{a}(0) = 1$. Define

$$arphi(\xi):=\prod_{j=1}^\infty \hat{a}(2^{-j}\xi), \quad ilde{arphi}(\xi):=\prod_{j=1}^\infty \hat{ ilde{a}}(2^{-j}\xi), \qquad \xi\in\mathbb{R}.$$

Then a multi-level discrete framelet transform has stability in the space $l_2(\mathbb{Z}) \iff \varphi, \tilde{\varphi} \in L_2(\mathbb{R})$ and

$$\widehat{b_1}(0)=\cdots=\widehat{b_s}(0)=\widehat{\widetilde{b_1}}(0)=\cdots=\widehat{\widetilde{b_s}}(0)=0.$$

Multi-level FFrT Again

$$v_{j} = \frac{\sqrt{2}}{2} \mathcal{T}_{a} v_{j+1} = \dots = (\frac{\sqrt{2}}{2})^{J-j} \mathcal{T}_{a*(a|2)*\dots*(a|2^{J-j-1}), 2^{J-j}} v$$
$$w_{j;\ell} = \frac{\sqrt{2}}{2} \mathcal{T}_{b_{\ell}} v_{j+1} = (\frac{\sqrt{2}}{2})^{J-j} \mathcal{T}_{a*(a|2)*\dots*(a|2^{J-j-2})*(b_{\ell}|2^{J-j-1}), 2^{J-j}} v$$

 $w_{j;k}(k) = \langle v, 2^{(J-j)/2} [a*(a\uparrow 2)*\cdots*(a\uparrow 2^{J-j-2})*(b_{\ell}\uparrow 2^{J-j-1})](-2^{J-j}k) \rangle,$ Similarly, we have

$$\begin{aligned} \mathcal{V}_{J}(0,\ldots,0,v_{0}) &= (\frac{\sqrt{2}}{2})^{J-j} \mathcal{S}_{\tilde{a}*(\tilde{a}|2)*\cdots*(\tilde{a}|2^{J-1}),2^{J}} v_{0} \\ \mathcal{V}_{J}(0,\ldots,0,w_{j;\ell},0,\ldots,0) &= (\frac{\sqrt{2}}{2})^{J-j} \mathcal{S}_{\tilde{a}*(\tilde{a}|2)*\cdots*(\tilde{a}|2^{J-j-2})*(\tilde{b}_{\ell}|2^{J-j-1}),2^{J-j}} w_{j;\ell}. \end{aligned}$$

Define filters a_i and \tilde{a}_i by

$$a_j = a*(a\!\uparrow\! 2)*\cdots*(a\!\uparrow\! 2^{j-1})$$

and

$$\widetilde{a}_j := \widetilde{a} * (\widetilde{a} \!\uparrow\! 2) * \cdots * (\widetilde{a} \!\uparrow\! 2^{j-1}).$$

Now a *J*-level discrete framelet transform employing ({ $a; b_1, \ldots, b_s$ }, { $\tilde{a}; \tilde{b}_1, \ldots, \tilde{b}_s$ }) is equivalent to

$$\begin{split} v &= \sum_{k \in \mathbb{Z}} \langle v, 2^{J/2} a_J (\cdot - 2^J k) \rangle 2^{J/2} \tilde{a}_J (\cdot - 2^J k) + \sum_{j=0}^{J-1} \sum_{\ell=1}^s \sum_{k \in \mathbb{Z}} \\ \langle v, [2^{(J-j)/2} a_{J-j-1} * (b_\ell \uparrow 2^{J-j-1})] (\cdot - 2^{J-j} k) \rangle \\ & [2^{(J-j)/2} \tilde{a}_{J-j-1} * (\tilde{b}_\ell \uparrow 2^{J-j-1})] (\cdot - 2^{J-j} k). \end{split}$$

_emma

Let $(\{a; b_1, \ldots, b_s\}, \{\tilde{a}; \tilde{b}_1, \ldots, \tilde{b}_s\})$ be a dual framelet filter bank. If all b_1, \ldots, b_s have \tilde{m} vanishing moments and all $\tilde{b}_1, \ldots, \tilde{b}_s$ have m vanishing moments, then

- (i) the primal low-pass filter a must have m sum rules, that is, $\hat{a}(\xi + \pi) = \mathcal{O}(|\xi|^m)$ as $\xi \to 0$;
- (ii) the dual low-pass filter \tilde{a} must have \tilde{m} sum rules, that is, $\hat{\tilde{a}}(\xi + \pi) = \mathscr{O}(|\xi|^{\tilde{m}})$ as $\xi \to 0$;

(iii) $\overline{\hat{a}}\hat{\tilde{a}}$ has $m + \tilde{m}$ linear-phase moments with phase 0:

$$1-\overline{\widehat{a}(\xi)}\widehat{\widetilde{a}}(\xi)=\mathscr{O}(|\xi|^{m+\tilde{m}}),\qquad \xi\to 0.$$

Let
$$\hat{a}(\xi) = \widehat{a_m^B}(\xi) = 2^{-m}(1 + e^{-i\xi})^m$$
 and
 $\hat{\tilde{a}}(\xi) = \widehat{a_{\tilde{m}}^B}(\xi) = 2^{-\tilde{m}}(1 + e^{-i\xi})^{\tilde{m}}$ be two B-spline filters.

$$egin{aligned} \overline{\hat{a}(0)}\hat{\tilde{a}}(0) &= 1, \ &[\overline{\hat{a}}\hat{\tilde{a}}]'(0) &= rac{i(m- ilde{m})}{2}, \ &[\overline{\hat{a}}\hat{\tilde{a}}]''(0) &= rac{(m- ilde{m})^2+m+ ilde{m}}{4} \end{aligned}$$

٠

Oblique Extension Principle

Theorem

 $(\{a; b_1, \ldots, b_s\}, \{\tilde{a}; \tilde{b}_1, \ldots, \tilde{b}_s\})_{\Theta}$ has the following generalized perfect reconstruction property:

$$\Theta * {m v} = rac{1}{2} \mathcal{S}_{ ilde{s}}(\Theta * \mathcal{T}_{a} {m v}) + rac{1}{2} \sum_{\ell=1}^{s} \mathcal{S}_{ ilde{b}_{\ell}} \mathcal{T}_{b_{\ell}} {m v}, \qquad orall {m v} \in I(\mathbb{Z}),$$

 \iff for all $\xi \in \mathbb{R}$,

$$\hat{\Theta}(2\xi)\overline{\hat{a}(\xi)}\hat{\tilde{a}}(\xi) + \overline{\hat{b}_{1}(\xi)}\widehat{\tilde{b}_{1}}(\xi) + \dots + \overline{\hat{b}_{s}(\xi)}\widehat{\tilde{b}_{s}}(\xi) = \hat{\Theta}(\xi), \\ \hat{\Theta}(2\xi)\overline{\hat{a}(\xi+\pi)}\hat{\tilde{a}}(\xi) + \overline{\hat{b}_{1}}(\xi+\pi)\widehat{\tilde{b}_{1}}(\xi) + \dots + \overline{\hat{b}_{s}}(\xi+\pi)\widehat{\tilde{b}_{s}}(\xi) = 0.$$

Lemma

Let $(\{a; b_1, \ldots, b_s\}, \{\tilde{a}; \tilde{b}_1, \ldots, \tilde{b}_s\})_{\Theta}$ be an OEP-based filter bank. Suppose that all b_1, \ldots, b_s have \tilde{m} vanishing moments and all $\tilde{b}_1, \ldots, \tilde{b}_s$ have m vanishing moments, where $m, \tilde{m} \in \mathbb{N}$. Then

$$\hat{\Theta}(\xi) - \hat{\Theta}(2\xi)\overline{\widehat{a}(\xi)}\hat{\widetilde{a}}(\xi) = \mathscr{O}(|\xi|^{m+\widetilde{m}}), \qquad \xi o 0.$$

If in addition $\hat{\Theta}(0) \neq 0$, then the primal low-pass filter a must have m sum rules and the dual low-pass filter \tilde{a} must have \tilde{m} sum rules.

OEP-based Tight Framelets

Proposition

Let θ , a, b_1 , ..., $b_s \in I_0(\mathbb{Z})$. Then $\|\theta * \mathcal{T}_{a} \mathbf{v}\|_{b(\mathbb{Z})}^{2} + \|\mathcal{T}_{b_{1}} \mathbf{v}\|_{b(\mathbb{Z})}^{2} + \dots + \|\mathcal{T}_{b_{s}} \mathbf{v}\|_{b(\mathbb{Z})}^{2} = 2\|\theta * \mathbf{v}\|_{b(\mathbb{Z})}^{2},$ $\iff (\{a; b_1, \ldots, b_s\}, \{a; b_1, \ldots, b_s\})_{\Theta}$ has PR: $\begin{bmatrix} \hat{b_1}(\xi) & \cdots & \hat{b_s}(\xi) \\ \hat{b_1}(\xi+\pi) & \cdots & \hat{b_s}(\xi+\pi) \end{bmatrix} \begin{bmatrix} \hat{b_1}(\xi) & \cdots & \hat{b_s}(\xi) \\ \hat{b_1}(\xi+\pi) & \cdots & \hat{b_s}(\xi+\pi) \end{bmatrix}^* = \mathcal{M}_{\Theta,a},$

where $\Theta := \theta * \theta^*$ and

$$\mathcal{M}_{\Theta,a} := \begin{bmatrix} \hat{\Theta}(\xi) - \hat{\Theta}(2\xi) |\hat{a}(\xi)|^2 & -\hat{\Theta}(2\xi) \overline{\hat{a}(\xi+\pi)} \hat{a}(\xi) \\ -\hat{\Theta}(2\xi) \overline{\hat{a}(\xi)} \hat{a}(\xi+\pi) & \hat{\Theta}(\xi+\pi) - \hat{\Theta}(2\xi) |\hat{a}(\xi+\pi)|^2 \end{bmatrix}$$

 $\forall v \in b(\mathbb{Z}$

- ({a; b₁,..., b_s}, {ã; b̃₁,..., b̃_s})_Θ having PR is called an OEP-based dual framelet filter bank.
- {a; b₁,..., b_s}_⊖ having PR is called an OEP-based tight framelet filter bank.

Lemma

Let Θ be a 2π -periodic trigonometric polynomial with real coefficients (or with complex coefficients) such that $\Theta(\xi) \ge 0$ for all $\xi \in \mathbb{R}$. Then there exists a 2π -periodic trigonometric polynomial θ with real coefficients (or with complex coefficients) such that $|\theta(\xi)|^2 = \Theta(\xi)$ for all $\xi \in \mathbb{R}$. Moreover, if $\Theta(0) \ne 0$, then we can further require $\theta(0) = \sqrt{\Theta(0)}$.

Lemma

Let $\{a; b_1, \ldots, b_s\}_{\Theta}$ be an OEP-based tight framelet filter bank. If $\hat{\Theta}(0) > 0$, then $\hat{\Theta}(\xi) \ge 0$ for all $\xi \in \mathbb{R}$ and consequently, there exists $\theta \in I_0(\mathbb{Z})$ such that $\Theta = \theta * \theta^*$ holds and $\hat{\theta}(0) = \sqrt{\hat{\Theta}(0)}$.

Theorem

Let $(\{a; b\}, \{\tilde{a}; \tilde{b}\})_{\Theta}$ be an OEP-based dual framelet filter bank with $\hat{\Theta}(0) \neq 0$. Then

$$\hat{\Theta}(2\xi)\hat{\Theta}(\pi) = \hat{\Theta}(\xi)\hat{\Theta}(\xi + \pi) \\ \begin{bmatrix} \hat{a}(\xi) & \hat{b}(\xi) \\ \hat{a}(\xi + \pi) & \hat{b}(\xi + \pi) \end{bmatrix} \begin{bmatrix} \hat{a}(\xi) & \hat{b}(\xi) \\ \hat{a}(\xi + \pi) & \hat{b}(\xi + \pi) \end{bmatrix}^* = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$

Theorem

where all filters are finitely supported and are given by

$$\hat{t a}(\xi):=\hat{ t a}(\xi)\hat{ \Theta}(2\xi)/\hat{ \Theta}(\xi)$$
 and $\hat{ b}(\xi):=\hat{ b}(\xi)/\hat{ \Theta}(\xi).$

That is, $(\{a; b\}, \{a; b\})$ is a biorthogonal wavelet filter bank. Moreover,

$$\hat{b}(\xi) = c e^{i(2n-1)\xi} \overline{\hat{a}(\xi+\pi)}, \quad \hat{b}(\xi) = \overline{c^{-1}} e^{i(2n-1)\xi} \overline{\hat{a}(\xi+\pi)} \quad \text{for some}$$

DFrT by OEP Filter Bank

•
$$(\{a; b_1, \ldots, b_s\}, \{\tilde{a}; \tilde{b}_1, \ldots, \tilde{b}_s\})_{\Theta}$$
.

- An OEP-based J-level discrete framelet decomposition is exactly the same as the one before.
- For given low-pass framelet coefficients v_0 and high-pass framelet coefficients $w_{j;\ell}$, $\ell = 1, \ldots, s$ and $j = 0, \ldots, J 1$, an OEP-based J-level discrete framelet reconstruction is

$$\begin{split} & \breve{v}_0 := \Theta * \mathring{v}_0, \\ & \breve{v}_j := \frac{\sqrt{2}}{2} \mathcal{S}_{\breve{a}} \breve{v}_{j-1} + \frac{\sqrt{2}}{2} \sum_{\ell=1}^s \mathcal{S}_{\tilde{b}_\ell} \mathring{w}_{j-1;\ell}, \qquad j = 1, \dots, J, \end{split}$$

recover \dot{v}_J from \breve{v}_J via the relation $\dot{v}_J = \Theta * \breve{v}_J$.

Diagram of DFrT using OEP

Figure: Diagram of a two-level discrete framelet transform using an OEP-based dual framelet filter bank $(\{a; b_1, \ldots, b_s\}, (\tilde{a}; \tilde{b}_1, \ldots, \tilde{b}_s\})_{\Theta}$.

Avoiding Deconvolution using OEP

Figure: Diagram of an *n*-branch multi-level discrete averaging framelet transform using dual framelet filter banks $\{(\{a_m; b_{m,1}, \ldots, b_{m,s_m}\}, (\tilde{a}_m; \tilde{b}_{m,1}, \ldots, \tilde{b}_{m,s_m}\})_{\Theta_m}, m = 1, \ldots, n.$ Therefore, deconvolution is completely avoided.

- Signals: $v^b = \{v^b(k)\}_{k=0}^{N-1} : [0, N-1] \cap \mathbb{Z} \to \mathbb{C}.$
- Extend v^b from interval [0, N-1] to \mathbb{Z} .

•
$$\mathcal{T}_{u(\cdot-2m)}v = [\mathcal{T}_{u}v](\cdot-m), \quad m \in \mathbb{Z}.$$

- extend v^b from $[0, N-1] \cap \mathbb{Z}$ to a sequence v on \mathbb{Z} by any method that the reader prefers.
- zero-padding: v(k) = 0 for $k \in \mathbb{Z} \setminus [0, N-1]$.
- Must recover $v^b(0), \ldots, v^b(N-1)$ exactly.
- Keep all $[\mathcal{S}_{\tilde{u}_{\ell}}\mathcal{T}_{u_{\ell}}v](n), n = 0, \dots, N-1.$
- fsupp $(\tilde{u}) = [n_-, n_+]$ with $n_- \leqslant 0$ and $n_+ \geqslant 0$.

- $\frac{1}{2}[\mathcal{S}_{\tilde{u}}\mathcal{T}_{u}v](n) = \sum_{k\in\mathbb{Z}}[\mathcal{T}_{u}v](k)\tilde{u}(n-2k), n=0,\ldots,N-1.$
- Record all the framelet coefficients:

$$[\mathcal{T}_u v](k), \qquad k = [\frac{-n_+}{2}], \ldots, [\frac{N-1-n_-}{2}].$$

- we always have $\left[\frac{-n_+}{2}\right] \leqslant 0$ and $\left[\frac{N-1-n_-}{2}\right] \geqslant \frac{N}{2} 1$.
- framelet coefficients $\{[\mathcal{T}_u v](k)\}_{k=0}^{\frac{N}{2}-1}$ must be recorded.
- extra: $[\mathcal{T}_u v](k)$, $k = [\frac{-n_+}{2}], \ldots, -1$ and $k = \frac{N}{2}, \ldots, [\frac{N-1-n_-}{2}]$.
- Ideal situation can happen $\iff u$ vanishes outside [0,1].

Proposition

Let $u \in l_1(\mathbb{Z})$ be a filter and $v^b = \{v^b(k)\}_{k=0}^{N-1}$. Extend v^b into an *N*-periodic sequence v on \mathbb{Z} as follows:

 $v(Nn+k) := v^b(k), \qquad k = 0, \ldots, N-1, \quad n \in \mathbb{Z}.$

Then the following properties hold:

DFrT using Periodic Extension

• A one-level discrete periodic framelet decomposition:

$$w_{\ell}^{b} = \left\{ w_{\ell}^{b}(k) := \frac{\sqrt{2}}{2} [\mathcal{T}_{u_{\ell}} v](k) \right\}_{k=0}^{\frac{N}{2}-1}, \quad \ell = 0, \dots, s,$$

where v is the N-periodic extension of v^b .

Grouping all framelet coefficients,

$$\mathcal{W}^{per}(v^b) = (w_0^b, w_1^b, \dots, w_s^b)^\mathsf{T}.$$

• a one-level discrete periodic framelet reconstruction:

$$\mathring{v}^{b} = \mathcal{V}^{per}(\mathring{w}_{0}^{b}, \dots, \mathring{w}_{s}^{b}) := \left\{ \mathring{v}^{b}(k) := \frac{\sqrt{2}}{2} \sum_{\ell=0}^{s} [\mathcal{S}_{\tilde{u}_{\ell}} \mathring{w}_{\ell}](k) \right\}_{k=0}^{N-1}$$

• $\mathcal{V}^{per}\mathcal{W}^{per} = I_N$.

• A tight framelet filter bank by Ron-Shen, where

$$u_{0} = \{\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\}_{[-1,1]}, u_{1} = \{\frac{1}{4}, -\frac{1}{2}, \frac{1}{4}\}_{[-1,1]}, u_{2} = \{-\frac{\sqrt{2}}{4}, \underline{0}, -\frac{\sqrt{2}}{4}\}_{[-1,1]}.$$

• A test input data:

$$\textit{v} = \{1, 0, -1, -1, -4, 60, 58, 56\}_{[0,7]}$$

Example: Tight Framelet Filter Bank

We extend v^b to an 8-periodic sequence v on \mathbb{Z} , given by

Then all sequences $\mathcal{T}_{u_0}v, \mathcal{T}_{u_1}v, \mathcal{T}_{u_2}v$ are 4-periodic and

$$w_{0} = \frac{\sqrt{2}}{2} \mathcal{T}_{u_{0}} v = \frac{\sqrt{2}}{2} \{ \dots, \frac{29}{2}, -\frac{3}{4}, \frac{51}{4}, 58, \frac{29}{2}, -\frac{3}{4}, \frac{51}{4}, 58, \frac{29}{2}, -\frac{3}{4}, \frac{51}{4}, 58, \dots \}, w_{1} = \frac{\sqrt{2}}{2} \mathcal{T}_{u_{1}} v = \frac{\sqrt{2}}{2} \{ \dots, \frac{27}{2}, \frac{1}{4}, \frac{67}{4}, 0, \frac{27}{2}, \frac{1}{4}, \frac{67}{4}, 0, \frac{27}{2}, \frac{1}{4}, \frac{67}{4}, 0, \dots \}, w_{2} = \frac{\sqrt{2}}{2} \mathcal{T}_{u_{0}} v = \{ \dots, -14, \frac{1}{4}, -\frac{59}{4}, -29, \underline{-14}, \underline{-14}, -\frac{59}{4}, -29, \underline{-14}, \underline{-14}, -\frac{59}{4}, -29, \underline{-14}, \underline{-14}, -\frac{59}{4}, -29, \underline{-14}, -$$

It is also easy to check that $\frac{\sqrt{2}}{2}(\mathcal{S}_{u_0}w_0 + \mathcal{S}_{u_1}w_1 + \mathcal{S}_{u_2}w_2) = v$.

Proposition

Let
$$u \in I_1(\mathbb{Z})$$
 such that $u(2c - k) = \epsilon u(k)$. Extend
 $v^b = \{v^b(k)\}_{k=0}^{N-1}$, with both endpoints non-repeated (EN), into
 $(2N-2)$ -periodic v by $v(k) = v^b(2N-2-k)$.
(i) Then $u^* * v$ is $(2N-2)$ -periodic with
 $[u^* * v](-2c - k) = [u^* * v](2N - 2 - 2c - k) = \epsilon[u^* * v](k)$,
and $[-\lfloor c \rfloor, N - 1 - \lceil c \rceil]$ is its control interval.
(ii) If $c \in \mathbb{Z}$, then $\mathcal{T}_u v$ is $(N-1)$ -periodic with
 $[\mathcal{T}_u v](-c - k) = [\mathcal{T}_u v](N - 1 - c - k) = \epsilon[\mathcal{T}_u v](k)$,
and $[[-\frac{c}{2}], \lfloor \frac{N-1-c}{2} \rfloor]$ is a control interval of $\mathcal{T}_u v$.

Proposition

Let $u \in I_1(\mathbb{Z})$ with $\epsilon \in \{-1, 1\}$ and $c \in \frac{1}{2}\mathbb{Z}$. Extend v^b , with both endpoints repeated (ER), into 2N-periodic v by $v(k) = v^{b}(2N - 1 - k).$ (i) Then $u^* * v$ is 2N-periodic with $[u^{*} * v](-1 - 2c - k) = [u^{*} * v](2N - 1 - 2c - k) = \epsilon[u^{*} * v](k),$ and $\left[-\left|\frac{1}{2}+c\right|, N-\left[\frac{1}{2}+c\right]\right]$ is its control interval. (ii) If $c - \frac{1}{2} \in \mathbb{Z}$, then $\mathcal{T}_{\mu}v$ is an N-periodic sequence: $[\mathcal{T}_{\mu}v](-\frac{1}{2}-c-k) = [\mathcal{T}_{\mu}v](N-\frac{1}{2}-c-k) = \epsilon[\mathcal{T}_{\mu}v](k),$ and $\left[\left[-\frac{1}{4}-\frac{c}{2}\right], \left|\frac{N}{2}-\frac{1}{4}-\frac{c}{2}\right|\right]$ is its control interval.

Table 1: Endpoint Nonrepeated (EN)

filter u	$u^* * v$ with v extended by EN	$\mathcal{T}_{u}v$ with v extended by EN
$egin{array}{c} c = 0 \ \epsilon = 1 \end{array}$	(2N - 2)-periodic, symmetric about 0 and $N - 1$, a control interval $[0, N - 1]$.	(N - 1)-periodic, symmetric about 0 and $\frac{N-1}{2}$, a control interval $[0, \frac{N}{2} - 1]$.
$egin{array}{c} c = 0 \ \epsilon = -1 \end{array}$	(2N - 2)-periodic, antisymmetric about 0 and $N - 1$, a control interval $[0, N - 1]$, $[u^* * v](0) = [u^* * v](N - 1) = 0$.	(N - 1)-periodic, antisymmetric about 0 and $\frac{N-1}{2}$, a control interval $[0, \frac{N}{2} - 1]$, $[\mathcal{T}_{\mu}\nu](0) = 0$.
$egin{array}{c} c = 1 \ \epsilon = 1 \end{array}$	(2N - 2)-periodic, symmetric about -1 and $N - 2$, a control interval $[-1, N - 2]$.	(N-1)-periodic, symmetric about $-\frac{1}{2}$ and $\frac{N}{2} - 1$, a control interval $[0, \frac{N}{2} - 1]$.
$egin{array}{c = 1 \ \epsilon = -1 \end{array}$	(2N-2)-periodic, antisymmetric about -1 and $N-2$, a control interval $[-1, N-2]$, $[u^* * v](-1) = [u^* * v](N-2) = 0.$	(N-1)-periodic, antisymmetric about $-\frac{1}{2}$ and $\frac{N}{2} - 1$, a control interval $[0, \frac{N}{2} - 1]$, $[\mathcal{T}_{u}v](\frac{N}{2} - 1) = 0.$

The decomposition filter u has the symmetry $S\hat{u}(\xi) = \epsilon e^{-i2c\xi}$, where $\epsilon \in \{-1, 1\}$ and $c \in \{0, 1\}$. v is a symmetric extension with both endpoints non-repeated (EN) of an input signal $v^b = \{v^b(k)\}_{k=0}^{N-1}$.

Table 2: Endpoints Repeated (ER)

filter u	$u^* * v$ with v extended by ER	$\mathcal{T}_{u}v$ with v extended by ER
$egin{array}{c} c = rac{1}{2} \ \epsilon = 1 \end{array}$	2 <i>N</i> -periodic, symmetric about -1 and $N - 1$, a control interval $[-1, N - 1]$.	<i>N</i> -periodic, symmetric about $-\frac{1}{2}$ and $\frac{N-1}{2}$, a control interval $[0, \frac{N}{2} - 1]$.
$\begin{array}{l} c = \frac{1}{2} \\ \epsilon = -1 \end{array}$	2 <i>N</i> -periodic, antisymmetric about -1 and $N - 1$, a control interval $[-1, N - 1]$, $[u^* * v](-1) = [u^* * v](N - 1) = 0$.	$N\text{-periodic,}$ antisymmetric about $-\frac{1}{2}$ and $\frac{N-1}{2}$, . a control interval $[0,\frac{N}{2}-1]$
$egin{array}{c} c &= \ -rac{1}{2} \ \epsilon &= 1 \end{array}$	2 <i>N</i> -periodic, symmetric about 0 and <i>N</i> , a control interval [0, <i>N</i>].	<i>N</i> -periodic, symmetric about 0 and $\frac{N}{2}$, a control interval $[0, \frac{N}{2}]$.
$c = -\frac{1}{2}$ $\epsilon = -1$	2 <i>N</i> -periodic, antisymmetric about 0 and <i>N</i> , a control interval $[0, N]$, $[u^* * v](0) = [u^* * v](N) = 0$.	N-periodic, antisymmetric about 0 and $\frac{N}{2}$, a control interval $[0, \frac{N}{2}]$, $[\mathcal{T}_{u}v](0) = [\mathcal{T}_{u}v](\frac{N}{2}) = 0.$

The decomposition filter u has the symmetry $S\hat{u}(\xi) = \epsilon e^{-i2c\xi}$, where $\epsilon \in \{-1, 1\}$ and $c \in \{-\frac{1}{2}, \frac{1}{2}\}$. v is a symmetric extension with both endpoints repeated (ER) of an input signal $v^b = \{v^b(k)\}_{k=0}^{N-1}$.

Since $S\hat{u_0} = 1$ and $S\hat{u_1} = e^{-i2\xi}$, extend v^b by both endpoints non-repeated (EN):

Then $\mathcal{T}_{u_0}v$ is 7-periodic and is symmetric about 0, 7/2:

$$w_0 = \frac{\sqrt{2}}{2} \mathcal{T}_{u_0} v = \frac{\sqrt{2}}{2} \{ \dots, \frac{37}{8}, -\frac{5}{8}, \frac{1}{8}, -\frac{5}{8}, \frac{37}{8}, \frac{263}{4}, \frac{263}{4}, \frac{37}{8}, \dots \},\$$

and $\mathcal{T}_{u_1}v$ is 7-periodic and is symmetric about $-\frac{1}{2}$, 3:

$$w_1 = \frac{\sqrt{2}}{2} \mathcal{T}_{u_1} v = \frac{\sqrt{2}}{2} \{ \dots, -\frac{3}{4}, 0, \mathbf{0}, -\frac{3}{4}, -\frac{33}{2}, 1, -\frac{33}{2}, -\frac{3}{4}, \dots \}.$$

Since $S\hat{u}_0 = S\hat{u}_1 = S\hat{u}_2 = 1$, extend v^b with both endpoints non-repeated (EN). Then all $\mathcal{T}_{u_0}v$, $\mathcal{T}_{u_1}v$, $\mathcal{T}_{u_2}v$ are 7-periodic and symmetric about 0 and 7/2:

$$\begin{split} w_0 &= \frac{\sqrt{2}}{2} \mathcal{T}_{u_0} v = \frac{\sqrt{2}}{2} \{ \dots, 58, \frac{51}{4}, -\frac{3}{4}, \frac{1}{2}, -\frac{3}{4}, \frac{51}{4}, 58, 58, \frac{51}{4}, -\frac{3}{4}, \dots \}, \\ w_1 &= \frac{\sqrt{2}}{2} \mathcal{T}_{u_1} v = \frac{\sqrt{2}}{2} \{ \dots, 0, \frac{67}{4}, \frac{1}{4}, -\frac{1}{2}, \frac{1}{4}, \frac{67}{4}, 0, 0, \frac{67}{4}, \frac{1}{4}, \dots \}. \\ w_2 &= \frac{\sqrt{2}}{2} \mathcal{T}_{u_1} v = \{ \dots, -29, -\frac{59}{4}, \frac{1}{4}, \frac{0}{4}, \frac{1}{4}, -\frac{29}{4}, -29, -29, -\frac{59}{4}, \frac{1}{4}, 0, \dots \}. \end{split}$$

