What is a wavelet and why is it useful?

Bin Han

Department of Mathematical and Statistical Sciences University of Alberta, Canada

Present at 2017 International Undergraduate Summer Enrichment Program at UofA

$$
\text { July 17, } 2017
$$

How to represent data economically?

- In today's world, most data and signals are in digital format: digital TV, movies, images, songs,...
- How to represent data effectively (as few numbers as possible)?
- How to detect the sharp changes in data?

Record information effectively

Given a particular signal to you:
$[-21,-22,-23,-23,-25,38,36,34]$. If you are allowed to send out only one number about this signal,
which number shall you choose?

Your answer(s):

Record information effectively

Given a particular signal to you:
$[-21,-22,-23,-23,-25,38,36,34]$.
If you are allowed to send out only one number about this signal,
which number shall you choose?
Your answer(s): Average

$$
\frac{-21-22-23-23-25+38+36+34}{8}=-0.75
$$

Represent $[-21,-22,-23,-23,-25,38,36,34]$

The idea of wavelets using numbers

- $x=[-21,-22,-23,-23,-25,38,36,34]$.
- Averages at level 1 (A1): -0.75 ,
- Average at level 2 (A2): -21.5, 21.5
- Averages at level 3 (A3): 0.75, -0.75, -14.25, 14.25.
- Averages at level 4 (A4): $0.5,-0.5,0,0,-31.5,31.5,1,-1$.

Graph of wavelet coefficients A1

Graph of wavelet coefficients A2

Graph of wavelet coefficients A3

Graph of wavelet coefficients A4

Reconstruction: A1 (1 number)

Reconstruction: $A 1+A 2$ (2 numbers)

Reconstruction: $A 1+A 2+A 3$ (4 numbers)

Reconstruction: $A 1+A 2+A 3+A 4$ (8 numbers)

Comparison: Original-Reconstructed

Why wavelets?

- $x=[-21,-22,-23,-23,-25,38,36,34]$.
- Averages at level 1 (A1): -0.75,
- Average at level 2 (A2): -21.5, 21.5
- Averages at level 3 (A3): $0.75,-0.75,-14.25,14.25$.
- Averages at level 4 (A4): $0.5,-0.5,0,0,-31.5,31.5,1,-1$

Comparison: Original

Reconstructed with 3 numbers by thresholding

Comparison: Original-Reconstructed

How to compute wavelet coefficients fast?

- $x=[-21,-22,-23,-23,-25,38,36,34]$.
- Averages at level 1 (A1): -0.75 ,
- Average at level 2 (A2): -21.5, 21.5
- Averages at level 3 (A3): 0.75, -0.75, -14.25, 14.25.
- Averages at level 4 (A4): 0.5, $-0.5,0,0,-31.5,31.5,1,-1$.

Are we missing something for wavelets? or can we expect more from wavelets?

How to compute wavelet coefficients fast?

- $x=[-21,-22,-23,-23,-25,38,36,34]$.
- Averages at level 1 (A1): -0.75 ,
- Average at level 2 (A2): -21.5, 21.5
- Averages at level 3 (A3): 0.75, -0.75, -14.25, 14.25.
- Averages at level 4 (A4): $0.5,-0.5,0,0,-31.5,31.5,1,-1$.

Are we missing something for wavelets? or can we expect more from wavelets?

For applications,

a fast computational algorithm is highly demanded!

Fast Wavelet Transform (FWT): Decomposition

$$
\cdot x=[-21,-22|-23,-23|-25,38 \mid 36,34] .
$$

Fast Wavelet Transform (FWT): Decomposition

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.

Fast Wavelet Transform (FWT): Decomposition

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: $[-22.25,20.75]$. Differences: $[0.75,-14.25]$.

Fast Wavelet Transform (FWT): Decomposition

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: $[-22.25,20.75]$. Differences: $[0.75,-14.25]$.
- Averages: [-0.75]. Differences: [-21.5].

Fast Wavelet Transform (FWT): Decomposition

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: $[-22.25,20.75]$. Differences: $[0.75,-14.25]$.
- Averages: [-0.75]. Differences: [-21.5].
- Compare:

Fast Wavelet Transform (FWT): Decomposition

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: $[-22.25,20.75]$. Differences: $[0.75,-14.25]$.
- Averages: [-0.75]. Differences: [-21.5].
- Compare:
- Averages at level 1 (A1): -0.75 ,

Fast Wavelet Transform (FWT): Decomposition

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: $[-22.25,20.75]$. Differences: $[0.75,-14.25]$.
- Averages: [-0.75]. Differences: [-21.5].
- Compare:
- Averages at level 1 (A1): -0.75 ,
- Average at level 2 (A2): -21.5, 21.5

Fast Wavelet Transform (FWT): Decomposition

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: $[-22.25,20.75]$. Differences: $[0.75,-14.25]$.
- Averages: [-0.75]. Differences: [-21.5].
- Compare:
- Averages at level 1 (A1): -0.75 ,
- Average at level 2 (A2): -21.5, 21.5
- Averages at level 3 (A3): 0.75, -0.75, -14.25, 14.25.

Fast Wavelet Transform (FWT): Decomposition

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: [$-22.25,20.75]$. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].
- Compare:
- Averages at level 1 (A1): -0.75 ,
- Average at level 2 (A2): $-21.5,21.5$
- Averages at level 3 (A3): $0.75,-0.75,-14.25,14.25$.
- Averages at level 4 (A4): $0.5,-0.5,0,0,-31.5,31.5,1,-1$.

Fast Wavelet Transform (FWT): Reconstruction

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: $[-22.25,20.75]$. Differences: $[0.75,-14.25]$.
- Averages: [-0.75]. Differences: [-21.5].

Fast Wavelet Transform (FWT): Reconstruction

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: $[-22.25,20.75]$. Differences: $[0.75,-14.25]$.
- Averages: [-0.75]. Differences: [-21.5].
- Reconstruction: Apply subdivision scheme (prediction for doubling its size): $[-0.75] \rightarrow \underline{[-0.75,-0.75]}$.

Fast Wavelet Transform (FWT): Reconstruction

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: $[-22.25,20.75]$. Differences: $[0.75,-14.25]$.
- Averages: [-0.75]. Differences: [-21.5].
- Reconstruction: Apply subdivision scheme (prediction for doubling its size): $[-0.75] \rightarrow[-0.75,-0.75]$.
- Add the finest detail [-21.5,21.5] to get [$-22.25,20.75]$

Fast Wavelet Transform (FWT): Reconstruction

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: $[-22.25,20.75]$. Differences: $[0.75,-14.25]$.
- Averages: [-0.75]. Differences: [-21.5].
- Reconstruction: Apply subdivision scheme (prediction for doubling its size): $[-0.75] \rightarrow[-0.75,-0.75]$.
- Add the finest detail [-21.5,21.5] to get [$-22.25,20.75]$
- Subdivide $[-22.25,20.75] \rightarrow[-22.25,-22.25,20.75,20.75]$.

Fast Wavelet Transform (FWT): Reconstruction

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: $[-22.25,20.75]$. Differences: $[0.75,-14.25]$.
- Averages: [-0.75]. Differences: [-21.5].
- Reconstruction: Apply subdivision scheme (prediction for doubling its size): $[-0.75] \rightarrow[-0.75,-0.75]$.
- Add the finest detail [-21.5,21.5] to get [$-22.25,20.75]$
- Subdivide $[-22.25,20.75] \rightarrow[-22.25,-22.25,20.75,20.75]$.
- Add detail $[0.75,-0.75-14.25,14.25] \Rightarrow[-21.5,-23,6.5,35]$.

Fast Wavelet Transform (FWT): Reconstruction

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].
- Reconstruction: Apply subdivision scheme (prediction for doubling its size): $[-0.75] \rightarrow[-0.75,-0.75]$.
- Add the finest detail [-21.5,21.5] to get [$-22.25,20.75$]
- Subdivide $[-22.25,20.75] \rightarrow[-22.25,-22.25,20.75,20.75]$.
- Add detail $[0.75,-0.75-14.25,14.25] \Rightarrow[-21.5,-23,6.5,35]$.
- Subdivide[-21.5, -23, 6.5, 35] \rightarrow

$$
[-21.5,-21.5,-23,-23,6.5,6.5,35,35]
$$

Fast Wavelet Transform (FWT): Reconstruction

- $x=[-21,-22|-23,-23|-25,38 \mid 36,34]$.
- Averages: $[-21.5,-23 \mid 6.5,35]$. Difference: $[0.5,0,-31.5,1]$.
- Averages: $[-22.25,20.75]$. Differences: $[0.75,-14.25]$.
- Averages: [-0.75]. Differences: [-21.5].
- Reconstruction: Apply subdivision scheme (prediction for doubling its size): $[-0.75] \rightarrow[-0.75,-0.75]$.
- Add the finest detail [-21.5,21.5] to get $[-22.25,20.75]$
- Subdivide $[-22.25,20.75] \rightarrow[-22.25,-22.25,20.75,20.75]$.
- Add detail $[0.75,-0.75-14.25,14.25] \Rightarrow[-21.5,-23,6.5,35]$.
- Subdivide $[-21.5,-23,6.5,35] \rightarrow$

$$
[-21.5,-21.5,-23,-23,6.5,6.5,35,35]
$$

- Add detail $[0.5,-0.5,0,0,-31.5,31.5,1,-1]$ to get $[-21,-22,-23,-23,-25,38,36,34]$.

