# What is a wavelet and why is it useful?

#### Bin Han

Department of Mathematical and Statistical Sciences University of Alberta, Canada



Present at 2017 International Undergraduate Summer Enrichment Program at UofA

July 17, 2017

- In today's world, most data and signals are in digital format: digital TV, movies, images, songs,...
- How to represent data effectively (as few numbers as possible)?
- How to detect the sharp changes in data?



Given a particular signal to you: [-21, -22, -23, -23, -25, 38, 36, 34]. If you are allowed to send out only one number about this signal, which number shall you choose?

Your answer(s):



Given a particular signal to you: [-21, -22, -23, -23, -25, 38, 36, 34].If you are allowed to send out only one number about this signal, which number shall you choose?

Your answer(s): Average

$$\frac{-21-22-23-23-25+38+36+34}{8}=-0.75.$$





What Is a Wavelet?

UofA 4 / 21

Represent 
$$[-21, -22, -23, -23, -25, 38, 36, 34]$$



What Is a Wavelet?

UofA 4 / 21

-

Represent 
$$[-21, -22, -23, -23, -25, 38, 36, 34]$$



What Is a Wavelet?

UofA 4 / 21

**.** 

Represent 
$$[-21, -22, -23, -23, -25, 38, 36, 34]$$



What Is a Wavelet?

UofA 4 / 21



What Is a Wavelet?

UofA 4 / 21



What Is a Wavelet?

UofA 4 / 21

Represent 
$$[-21, -22, -23, -23, -25, 38, 36, 34]$$



UofA 4 / 21

-

- x = [-21, -22, -23, -23, -25, 38, 36, 34].
- Averages at level 1 (A1): -0.75,
- Average at level 2 (A2): -21.5, 21.5
- Averages at level 3 (A3): 0.75, -0.75, -14.25, 14.25.
- Averages at level 4 (A4): 0.5, -0.5, 0, 0, -31.5, 31.5, 1, -1.





Bin Han (University of Alberta)

What Is a Wavelet?



Bin Han (University of Alberta)

What Is a Wavelet?



Bin Han (University of Alberta)

UofA 9 / 21

## Reconstruction: A1 (1 number)



## Reconstruction: A1 + A2 (2 numbers)



Bin Han (University of Alberta)

UofA 11 / 21

#### Reconstruction: A1 + A2 + A3 (4 numbers)



Bin Han (University of Alberta)

UofA 12 / 21

#### Reconstruction: A1 + A2 + A3 + A4 (8 numbers)



Bin Han (University of Alberta)

What Is a Wavelet?

## Comparison: Original-Reconstructed



- x = [-21, -22, -23, -23, -25, 38, 36, 34].
- Averages at level 1 (A1): -0.75,
- Average at level 2 (A2): -21.5, 21.5
- Averages at level 3 (A3): 0.75, -0.75, -14.25, 14.25.
- Averages at level 4 (A4): 0.5, -0.5, 0, 0, -31.5, 31.5, 1, -1

## Comparison: Original



#### Reconstructed with 3 numbers by thresholding



Bin Han (University of Alberta)

What Is a Wavelet?

# Comparison: Original-Reconstructed



UofA 18 / 21

#### How to compute wavelet coefficients fast?

- x = [-21, -22, -23, -23, -25, 38, 36, 34].
- Averages at level 1 (A1): -0.75,
- Average at level 2 (A2): -21.5, 21.5
- Averages at level 3 (A3): 0.75, -0.75, -14.25, 14.25.
- Averages at level 4 (A4): 0.5, -0.5, 0, 0, -31.5, 31.5, 1, -1.

Are we missing something for wavelets? or can we expect more from wavelets?



#### How to compute wavelet coefficients fast?

- x = [-21, -22, -23, -23, -25, 38, 36, 34].
- Averages at level 1 (A1): -0.75,
- Average at level 2 (A2): -21.5, 21.5
- Averages at level 3 (A3): 0.75, -0.75, -14.25, 14.25.
- Averages at level 4 (A4): 0.5, -0.5, 0, 0, -31.5, 31.5, 1, -1.

Are we missing something for wavelets? or can we expect more from wavelets?

#### For applications, a fast computational algorithm is highly demanded!



• x = [-21, -22 | -23, -23 | -25, 38 | 36, 34].



- x = [-21, -22 | -23, -23 | -25, 38 | 36, 34].
- Averages: [-21.5, -23 | 6.5, 35]. Difference: [0.5, 0, -31.5, 1].



- x = [-21, -22 | -23, -23 | -25, 38 | 36, 34].
- Averages: [-21.5, -23 | 6.5, 35]. Difference: [0.5, 0, -31.5, 1].
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].



- x = [-21, -22 | -23, -23 | -25, 38 | 36, 34].
- Averages: [-21.5, -23 | 6.5, 35]. Difference: [0.5, 0, -31.5, 1].
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].



- x = [-21, -22 | -23, -23 | -25, 38 | 36, 34].
- Averages: [-21.5, -23 | 6.5, 35]. Difference: [0.5, 0, -31.5, 1].
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].
- Compare:



- x = [-21, -22 | -23, -23 | -25, 38 | 36, 34].
- Averages: [-21.5, -23 | 6.5, 35]. Difference: [0.5, 0, -31.5, 1].
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].
- Compare:
- Averages at level 1 (A1): -0.75,



- x = [-21, -22 | -23, -23 | -25, 38 | 36, 34].
- Averages: [-21.5, -23 | 6.5, 35]. Difference: [0.5, 0, -31.5, 1].
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].
- Compare:
- Averages at level 1 (A1): -0.75,
- Average at level 2 (A2): -21.5, 21.5



- x = [-21, -22 | -23, -23 | -25, 38 | 36, 34].
- Averages: [-21.5, -23 | 6.5, 35]. Difference: [0.5, 0, -31.5, 1].
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].
- Compare:
- Averages at level 1 (A1): -0.75,
- Average at level 2 (A2): -21.5, 21.5
- Averages at level 3 (A3): 0.75, -0.75, -14.25, 14.25.



- x = [-21, -22 | -23, -23 | -25, 38 | 36, 34].
- Averages: [-21.5, -23 | 6.5, 35]. Difference: [0.5, 0, -31.5, 1].
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].
- Compare:
- Averages at level 1 (A1): -0.75,
- Average at level 2 (A2): -21.5, 21.5
- Averages at level 3 (A3): 0.75, -0.75, -14.25, 14.25.
- Averages at level 4 (A4): 0.5, -0.5, 0, 0, -31.5, 31.5, 1, -1.



- x = [-21, -22 | -23, -23 | -25, 38 | 36, 34].
- Averages: [-21.5, -23 | 6.5, 35]. Difference: [0.5, 0, -31.5, 1].
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].



- x = [-21, -22 | -23, -23 | -25, 38 | 36, 34].
- Averages: [-21.5, -23 | 6.5, 35]. Difference: [0.5, 0, -31.5, 1].
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].
- Reconstruction: Apply subdivision scheme (prediction for doubling its size): [-0.75] → [-0.75, -0.75].



- x = [-21, -22 | -23, -23 | -25, 38 | 36, 34].
- Averages: [-21.5, -23 | 6.5, 35]. Difference: [0.5, 0, -31.5, 1].
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].
- Reconstruction: Apply subdivision scheme (prediction for doubling its size): [-0.75] → [-0.75, -0.75].
- Add the finest detail [-21.5, 21.5] to get [-22.25, 20.75]



- x = [-21, -22 | -23, -23 | -25, 38 | 36, 34].
- Averages: [-21.5, -23 | 6.5, 35]. Difference: [0.5, 0, -31.5, 1].
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].
- Reconstruction: Apply subdivision scheme (prediction for doubling its size): [-0.75] → [-0.75, -0.75].
- Add the finest detail [-21.5, 21.5] to get [-22.25, 20.75]
- Subdivide  $[-22.25, 20.75] \rightarrow [-22.25, -22.25, 20.75, 20.75].$

- x = [-21, -22 | -23, -23 | -25, 38 | 36, 34].
- Averages: [-21.5, -23 | 6.5, 35]. Difference: [0.5, 0, -31.5, 1].
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].
- Reconstruction: Apply subdivision scheme (prediction for doubling its size): [-0.75] → [-0.75, -0.75].
- Add the finest detail [-21.5, 21.5] to get [-22.25, 20.75]
- Subdivide  $[-22.25, 20.75] \rightarrow [-22.25, -22.25, 20.75, 20.75].$
- Add detail  $[0.75, -0.75-14.25, 14.25] \Rightarrow [-21.5, -23, 6.5, 35].$



- x = [-21, -22 | -23, -23 | -25, 38 | 36, 34].
- Averages: [-21.5, -23 | 6.5, 35]. Difference: [0.5, 0, -31.5, 1].
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].
- Reconstruction: Apply subdivision scheme (prediction for doubling its size): [-0.75] → [-0.75, -0.75].
- Add the finest detail [-21.5, 21.5] to get [-22.25, 20.75]
- Subdivide  $[-22.25, 20.75] \rightarrow [-22.25, -22.25, 20.75, 20.75].$
- Add detail  $[0.75, -0.75-14.25, 14.25] \Rightarrow [-21.5, -23, 6.5, 35].$
- Subdivide[-21.5, -23, 6.5, 35] → [-21.5, -21.5, -23, -23, 6.5, 6.5, 35, 35].



- x = [-21, -22 | -23, -23 | -25, 38 | 36, 34].
- Averages: [-21.5, -23 | 6.5, 35]. Difference: [0.5, 0, -31.5, 1].
- Averages: [-22.25, 20.75]. Differences: [0.75, -14.25].
- Averages: [-0.75]. Differences: [-21.5].
- Reconstruction: Apply subdivision scheme (prediction for doubling its size): [-0.75] → [-0.75, -0.75].
- Add the finest detail [-21.5, 21.5] to get [-22.25, 20.75]
- Subdivide  $[-22.25, 20.75] \rightarrow [-22.25, -22.25, 20.75, 20.75].$
- Add detail  $[0.75, -0.75-14.25, 14.25] \Rightarrow [-21.5, -23, 6.5, 35].$
- Subdivide[-21.5, -23, 6.5, 35]  $\rightarrow$ [-21.5, -21.5, -23, -23, 6.5, 6.5, 35, 35].
- Add detail [0.5, -0.5, 0, 0, -31.5, 31.5, 1, -1] to get [-21, -22, -23, -23, -25, 38, 36, 34].

