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Additional Readings

• Holmes, M. H. Introduction to perturbation methods.

(Springer, 2013).

• Van Dyke M. Perturbation methods in fluid mechanics.

(Parabolic Press, 1975).

• Bender, C. M. Orszag, S. A. Advanced mathematical

methods for scientists and engineers. (Springer, 1999).
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A warm up example

Consider the position of a ball being thrown vertically. From

newtons laws, the acceleration of the ball is given by

d2x

dt2
= − gR2

x + R2
(1.1)

Where x is the vertical position, R is the radius of the earth,

and g the gravitational constant.

Can we easily solve this problem?
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A warm up example

Not easily solved:
d2x

dt2
= − gR2

x + R2

But if I am throwing the ball from x(0) = 0 and x ′(0) = v0,

x(t) is small compared to R .

We can then simplify the problem:

d2x

dt2
= −g (1.2)
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A warm up example

Now,
d2x

dt2
= −g

is easy to solve:

x(t) = −1/2gt2 + v0t (1.3)

• But how accurate is this solution?

• And is it based on solid mathematical footing?
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Preliminaries

Theorem (Taylor’s theorem)

Given a function f (ε), suppose that f (n+1) is continuous for

εa < ε < εb. Assume ε0, ε ∈ (εa, εb), then

f (ε) = f (ε0) + (ε− ε0)f ′(ε0) + · · ·+ 1

n!
(ε− ε0)nf (n)(ε) + Rn+1

(1.4)

Rn+1 lets us estimate the error of an approximation
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Preliminaries

Theorem (l’Hopitals rule)

Suppose f (ε) and φ(ε) are differentiable on (ε0, εb) and

φ′(ε) 6= 0 in this interval. If lim
ε→ε0

f (ε) = lim
ε→ε0

g(ε) = 0 or ±∞

and

lim
ε→ε0

f ′(ε)

φ′(ε)
= A

exists, then,

lim
ε→ε0

f (ε)

φ(ε)
= A
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Order notation

Definition

f = O(φ), or ’ f is big Oh of φ’ as ε→ ε0 if there are

constants k and ε1 so that

|f (ε)| ≤ k |φ(ε)| for ε0 < ε < ε1

If

lim
ε→ε0

f (ε)

φ(ε)
= L

where −∞ < L <∞, then f = O(φ), or ’big Oh of φ’ as

ε→ ε0.
8



Order notation

Definition

f = o(φ), or ’ f is little Oh of φ’ as ε→ ε0 if for every

positive δ there is an ε2 so that

|f (ε)| ≤ δ|φ(ε)| for ε0 < ε < ε2

If

lim
ε→ε0

f (ε)

φ(ε)
= 0

then f = o(φ), or ’little Oh of φ’ as ε→ ε0.
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Example

Let f (ε) = sin(ε) and φ = ε. Is f ’big Oh’ or ’little Oh’ of ε,

for small values of ε?

Applying Taylor’s theorem, f = ε− 1
2
ε2sin(ξ) or

f = ε− ε3

3!
+ ε5

5!
+ . . . .

Either way, lim
ε→0

f /φ = 1.

So f is O(ε), or big Oh of ε.
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Example

Let f = e−
1
ε and φ = εα. For what values of α is f = o(φ)?

We require lim
ε→0

e−
1
ε

εα
= 0.

First, set δ = 1/ε. Then our limit is equivalent to:

lim
δ→∞

e−δ

δ−α
= lim

δ→∞

δα

eδ

Since it is of the form ∞
∞ we can apply l’Hopitals rule several

times.
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Example cont.

We have:

lim
ε→0

e−
1
ε

εα
= lim

δ→∞

e−δ

δ−α
= lim

δ→∞

δα

eδ
L.H.
= lim

δ→∞

αδα−1

eδ
L.H.
= . . .

L.H.
= 0︸ ︷︷ ︸

dαe times

We apply L.H. dαe many times if α > 0. Eventually the

exponent in the numerator will be ≤ 0.

So for any value of α, e−1/ε = o(εα).
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Asymptotic approximation

Definition

We say that φ(ε) is an asymptotic approximation of f (ε) as

ε→ ε0 whenever f = φ + o(φ). We denote this by writing

f ∼ φ.

Example

Let f = ε2 + ε5. Are φ1 = ε2, and φ2 = 2/3ε2 asymptotic

approximations for small ε?
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Example cont.

Let f = ε2 + ε5. Are φ1 = ε2, and φ2 = 2/3ε2 asymptotic

approximations?

• φ1 is an asymptotic approximation as lim
ε→0

ε5

ε2 = 0.

• φ2 is not. Writing f = φ2 + 1/3ε2 + ε5 We see that

lim
ε→0

1/3ε2+ε5

2/3ε2 6= 0. I.E. 1/3ε2 + ε5 is not o(2/3ε2).

The main idea is that the error term needs to have a

higher order than the approximation term.
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A problem with asymptotic approximations

Unfortunately, asymptotic approximations say very little about

accuracy when compared to actual values.

Example

Look at f (x) = x + e−x/ε for small ε. It is easy to verify

f ∼ x , but the approximation is bad near zero
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Asymptotic expansion

One way to fix these bad approximations, or at least measure

the error is an asymptotic expansion.

Definition

• The functions φ1(ε), φ2(ε), . . . , form an asymptotic

sequence as ε→ ε0 if and only if φm+1 = o(φm) as

ε→ ε0 for all m.
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Asymptotic expansion

• If φ1(ε), φ2(ε), . . . , is an asymptotic sequence, then f (ε)

has an asymptotic expansion to n terms with respect

to this sequence, if and only if

f =
m∑

k=1

akφk + o(φm) for m = 1, 2, . . . , n as ε→ ε0,

(3.1)

where ak are independent of ε. We write

f ∼ a1φ1(ε) + a2φ2(ε) + · · ·+ anφn(ε) (3.2)

and φk are referred to as gauge functions.
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Gauge functions

Since asymptotic expansions are not unique, gauge functions

can be prescribed or determined from Taylor expansions, or by

”educated guess”.

Example

f (ε) =
1

ε
cos(ε)

=
1

ε
(1− 1

2
ε2 + . . . )︸ ︷︷ ︸

Taylor series

f (ε) ∼ 1

ε
− 1

2
ε.
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Gauge functions

Example

Suppose φ1, φ2, . . . are given.

By definition f = a1φ1 + o(φ1) as ε→ ε0. So

a1 = f /φ1 − o(φ1)/φ1 as ε→ ε0. Thus,

a1 = lim
ε→ε0

f

φ1
.

Continuing, f = a1φ1 + a2φ2 + o(φ2) as ε→ ε0. i.e.

a2 = lim
ε→ε0

f − a1φ1

φ2
.

and so on. . . 19



Asymptotic expansion

Look at the Bessel function

J0(z) =
∞∑
k=0

(−1)kz2k

22k(k!)2
. (3.3)

Without getting into details, J0 is a convergent series.

We can write f (ε) = J0(1/ε) ∼
N∑

k=0

akφk(ε), but the

asymptotic expansion is divergent as N →∞.
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Continued

The asymptotic sequence is designed to give a good

approximation of f for ε→ 0 (for a fixed N), whereas the

convergent series gives good approximations as N →∞ (for a

fixed ε).
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Manipulations of Asymptotic expansions

Its not obvious that

f (x , ε) ∼ φ1(x , ε) + φ2(x , ε) as ε→ ε0

implies that

d

dx
f (x , ε) ∼ d

dx
φ1(x , ε) +

d

dx
φ2(x , ε) as ε→ ε0

Why? We are never guaranteed that the derivatives of the

gauge functions are also an asymptotic sequence..
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Manipulations of Asymptotic expansions

Luckily, if

f (x , ε) ∼ a1(x)φ1(ε) + a2(x)φ2(ε) as ε→ ε0

and if

d

dx
f (x , ε) ∼ b1(x)φ1(ε) + b2(x)φ2(ε) as ε→ ε0

then

bk =
d

dx
ak .
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Perturbations

Definition (Perturbation)

A (small) deviation to the theoretical motion, or structure of

system.
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Perturbations

Definition

• A regular perturbation problem is a problem, whose

solution can be well approximated by setting the

perturbation parameter to zero.

• A singular perturbation problem is a problem, whose

solution can not be well approximated by setting the

perturbation parameter to zero.
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Example: Regular perturbation

Consider the solution to x2 + 2εx − 1 = 0, where ε is a small

perturbation parameter.

Setting ε = 0 gives an approximate solution of

x ≈ 1,−1.
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Example: x2 + 2εx − 1 = 0

Apply an asymptotic expansion on x . i.e.

x ∼ x0ε
α + x1ε

β + x2ε
γ + . . . , (α < β < γ to ensure

asymptotic sequence). We arrive at:

ε2αx2
0 + 2εα+βx0x1 + · · ·+ 2ε(εαx0 + εβx1 + . . . )− 1 = 0.

starting at the lowest exponent we need to cancel terms.

Either α = −1 or 0. We take α = 0.

O(1) : x2
0 − 1 = 0→ x0 = ±1.
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Example: x2 + 2εx − 1 = 0

With α = 0, and x0 = ±1 we solve:

�
�x2
0 + 2εβx0x1 + · · ·+ 2ε(x0 + εβx1 + . . . )− �1 = 0.

Now we must balance the next order terms, which is O(ε),

hence we must choose β = 1.

O(ε) : 2x0x1 + 2x0 = 0→ x1 = −1.

So the solution is x ∼ ±1− ε.
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Example: singular perturbation

Consider the solutions to εx2 + 2x − 1 = 0.

Setting ε = 0 gives the solution x = 1/2

But this is a quadratic, so we should have two solutions?

Again, we apply the asymptotic expansion

x ∼ x0ε
α + x1ε

β + x2ε
γ + . . . ,

with α < β < γ.
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Example: εx2 + 2x − 1 = 0

After substitution:

ε(ε2αx2
0 + 2εα+βx0x1 + . . . )︸ ︷︷ ︸

1

+ 2(εαx0 + εβx1 + . . . )︸ ︷︷ ︸
2

− 1︸︷︷︸
3

= 0.

How do we balance orders?

(i) 3 ∼ 2 and 1 is higher order

(ii) 3 ∼ 1 and 2 is higher order

(iii) 2 ∼ 1 and 3 is higher order
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Example: εx2 + 2x − 1 = 0 Case (i)

3 ∼ 2 and 1 is higher order

ε(ε2αx2
0 + 2εα+βx0x1 + . . . )︸ ︷︷ ︸

1

+ 2(εαx0 + εβx1 + . . . )︸ ︷︷ ︸
2

− 1︸︷︷︸
3

= 0.

α = 0 is required.

O(1): x0 = 1/2.

To balance the next order we need β = 1

O(ε): x2
0 + 2x1 = 0→ x1 = −1/8

But this still doesn’t give us the second solution.
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Example: εx2 + 2x − 1 = 0 Case (ii)

3 ∼ 1 and 2 is higher order

ε(ε2αx2
0 + 2εα+βx0x1 + . . . )︸ ︷︷ ︸

1

+ 2(εαx0 + εβx1 + . . . )︸ ︷︷ ︸
2

− 1︸︷︷︸
3

= 0.

1 + 2α = 0 is required, i.e. α = −1/2.

This means that 2 ∼ O(ε−1/2) which is lower order than

1 , 3 .

A contradiction of our assumption, and it would be impossible

to balance the lowest order.
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Example: εx2 + 2x − 1 = 0 Case (iii)

2 ∼ 1 and 3 is higher order

ε(ε2αx2
0 + 2εα+βx0x1 + . . . )︸ ︷︷ ︸

1

+ 2(εαx0 + εβx1 + . . . )︸ ︷︷ ︸
2

− 1︸︷︷︸
3

= 0.

1 + 2α = α is required, i.e. α = −1. The problem becomes:

(ε−1x2
0 + 2εβx0x1 + . . . ) + 2(ε−1x0 + εβx1 + . . . )− 1 = 0.

To balance the O(1) term, 3 , it is clear we require β = 0
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Example: εx2 + 2x − 1 = 0 Case (iii)

(ε−1x2
0 + 2x0x1 + . . . ) + 2(ε−1x0 + x1 + . . . )− 1 = 0.

O( 1
ε
) : x2

0 + 2x0 = 0→ x0 = 0,−2

O(1) : 2x0x1 + 2x1 − 1 = 0→ for x0 = −2, x1 = −1
2
. For

x0 = 0, x1 = 1
2
. Our two asymptotic approximations are:

x ∼ ε−1x0 + x1

x ∼ 1
2

x ∼ −2
ε
− 1

2
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Boundary layer problems

Consider the forces:

• spring −kx

• friction or drag −bv

• weight/normal force

Then, by Newtons laws:

F = ma = −kx − bv

mx ′′ + bx ′ + kx = 0
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Small mass damped oscillator

What if the mass on the end of the spring is small?

Also, suppose we can only view the position of the mass

instantaneously every second?

Our problem then becomes:

εx ′′ + 2x ′ + 2x = 0 (5.1)

x(0) = 0 x(1) = 1 (5.2)

Lets approximate this solution!
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Outer Solution

As discussed we begin by applying an asymptotic expansion

x(t) = x0(t) + εx1(t) + . . .

Leading to:

ε(x ′′0 + εx ′′1 + . . . ) + 2(x ′0 + εx ′1 + . . . ) + 2(x0 + εx1 + . . . ) = 0

Balancing:

O(1) : x ′0 + x0 = 0→ x0(t) = ae−t
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Outer Solution

Now, we have that x0(t) = ae−t . However we have two

boundary conditions and only one constant.

This means that this solution will do a poor job approximating

near one of the boundary conditions.

We assume that there is a boundary layer, at either t = 0 or

t = 1, where we must use a different approximation.
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Boundary Layer

Intuitively we can assume the boundary layer is close to t = 0.

We introduce a boundary layer coordinate and solution:

t̄ =
t

εα
, X (t̄) = x(εαt̄)

Where α will be determined when balancing orders.

Now from chain rule:

d

dt
=

dt̄

dt

d

d t̄
=

1

εα
d

dt̄
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Boundary Layer

Now, our problem becomes:

ε1−2αd
2X

dt̄2
+ 2ε−α

dX

dt̄
+ 2X = 0,

X (0) = 0

Note, only the t = 0 B.C. applies here. As t̄ = t
εα

blows up as

t moves away from 0 and ε→ 0.
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Inner Solution

Again, we apply the asymptotic expansion:

X (t̄) = X0(t̄) + εγX1(t̄) + . . .

After substitution

ε1−2α d2

dt̄2
(X0 + . . . )︸ ︷︷ ︸
1

+ 2ε−α
d

dt̄
(X0 + . . . )︸ ︷︷ ︸
2

+ 2(X0 + . . . )︸ ︷︷ ︸
3

= 0,

(i) 3 ∼ 2 and 1 is higher order - won’t consider d2Y
dt̄2

(ii) 3 ∼ 1 and 2 is higher order - leads to a contradiction

(iii) 2 ∼ 1 and 3 is higher order - needs α = 1 but works!
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Inner Solution

ε−1 d2

dt̄2
(X0 + . . . ) + 2ε−1 d

dt̄
(X0 + . . . ) + 2(X0 + . . . ) = 0,

O( 1
ε
) : X ′′0 + 2X ′0 = 0, X0(0) = 0.

→ X0(t̄) = A(1− e−2t̄),

where A is an arbitrary constant that will be solved for later.
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Quick recap:

So far we have computed the outer solution: x0(t) = ae1−t .

We can now conclude that the outer solution should match up

the B.C. at t = 1. Thus x0(t) = e1−t .

The inner solution is X0(t̄) = A(1− e−2t̄) with unknown A
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Matching

Note: The inner and outer solutions are meant to be

approximations of the same solution.

They are just only accurate near their respective boundary.

Well, if they approximate the same solution, there should be a

transition region where they are the same.
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Matching

That is, as the inner solution leaves the boundary layer,

(t̄ →∞), the inner solution should match with outer solution

as the outer enters the boundary layer (t → 0).

In other words:

X0(∞) = lim
t̄→∞

X0 = lim
t→0

x0 = x0(0+)

lim
t̄→∞

A(1− e−2t̄) = lim
t→0

e1−t

=⇒ A = e
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Composite expansion

We now have an outer solution: x0(t) = e1−t . That only

works away from t = 0.

and an inner solution, X0(t̄) = e − e1−2t̄ , that only works near

t = 0.

Can we construct a solution that is valid everywhere?
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Composite expansion

By the matching condition, we note that the solutions overlap

in the transition region (X0(∞) = x0(0+)), and that they are

constant away from their valid approximation intervals. Thus

we can add the solutions together and subtract the overlap.

x ∼X0(t̄) + x0(t)− X0(∞)

=(e − e1−2t̄) + e1−t − e

=e1−t − e1−2 t
ε
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Comparing solutions

Note: As ε decreases the boundary layer is more pronounced,

and the approximation is better.
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Motivation

Question:

• How is this method applied in science?

Answer:

• A classical example is with the Michaelis-Menton

approximation for am enzyme reaction.

Or predator-prey models with a small predator conversion

efficiency.
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Enzyme reaction

Consider the chemical reaction:

S + E
k1−−⇀↽−−
k−1

C
k2−−→ E + P

Denote s = [S ], e = [E ], c = [C ], and p = [P].
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Deriving the Michaelis-Menton equations

S + E
k1−−⇀↽−−
k−1

C
k2−−→ E + P

• We start with the Law of Mass Action.

• Assume e + c = r is constant. Then we don’t need the

equation for e .

• Initially c(0) ≈ 0, so e(0) = r .

• Note that the equation for p is decoupled, so we leave it

out.
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Deriving the Michaelis-Menton equations

We derive the ODE system for S and C .

S + E
k1−−⇀↽−−
k−1

C
k2−−→ E + P

ds

dt
= − k1es + k−1c

dc

dt
= k1es − k−1c − k2c

subject to s(0) = s0, c(0) = 0 and r = e(0).
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Non-Dimensionalization

It is often very useful to non-dimensionalize a model before

performing any analysis. The benefits include:

• All state variables are comparable in magnitude.

• Reduces the number of parameters

• Do not have to worry about units.

• Readily show where and how a perturbation parameter

arises.

• Easily transfers to the original ”real” system.
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Introducing the following dimensionless variables and

parameters and using e + c = r

u =
s

s0
v =

c

r
τ = k1rt

α =
k−1

k1s0
κ =

k−1 + k2

k1s0
=

Kn

so
ε =

r

s0

leads to

du

dτ
= −u + uv + αv (6.1)

dv

dτ
=

1

ε
(u − uv − κv). (6.2)

subject to u(0) = 1, v(0) = 0.
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Its reasonable to assume 0 < ε = r
s0

= e0

s0
� 1.

Now, rewriting (6.2) as:

ε
dv

dτ
= u − uv − κv (6.3)

• apply the quasi-steady-state assumption

• set ε = 0

This leads to

v =
u

κ + u
.
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Now we aim to work through the slow manifold analysis and

perturbation analysis of the full 2-D model for u and v .
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Slow Manifold Analysis

• The
1

ε
in the dv

dτ
equation implies that v is a fast variable,

or the inner variable.

• That is, if v is not near the set u − uv − κv = 0 , then v

will be changing fast.

• The curve, or set u − uv − κv = 0 (or v = u
κ+u

) is called

the slow manifold.
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We plot the slow manifold in phase space

u

v

• v = u
κ+u

in blue

• black lines show the direction of the flow away from the

slow manifold.
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Question:

• What is the direction of movement near/on the slow

manifold?

Well, intuitively we can argue the movement is towards the

origin. Why is this?
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Alternatively, we can consider the sign of du
dτ

.

u

v

• red curve is
du

dτ
= 0.

• blue curve is the slow manifold.

• The red and blue shaded region show where the derivative

is positive and negative respectfully.

• The slow manifold lies below the u nullcline implying
du

dτ
< 0. Thus we can conclude that the direction near or

on the slow manifold is to the left, towards the origin.
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Perturbation analysis

Start again with the non-dimensional system:

du

dτ
= −u + uv + αv (6.4)

ε
dv

dτ
= u − uv − κv . (6.5)

u(0) = 1 v(0) = 0 (6.6)

This is a singular perturbation problem. Why?
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We aim to construct inner and outer solutions.

• These terms come from boundary layer problems and the

inner solution refers to the dynamics near the boundary.

• The outer solution refers to the dynamics significantly far

enough away from the boundary

In our case

• Inner solution is for small time

• Outer is for large enough time.
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Outer Solution

We apply an asymptotic expansion:

u(τ) = u0(τ) + εu1(τ) + ε2u2(τ) + · · · (6.7)

v(τ) = v0(τ) + εv1(τ) + ε2v2(τ) + · · · (6.8)

These do not necessarily converge as n→∞. The series aims to make a

statement about ε→ 0. We don’t really care about n→∞. See Holmes (2013) for

details.
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We substitute the expansions into the system, collect like

terms and simplify. The leading order problem, for the outer

solution, is given by

O(1) :
du0

dτ
= −u0 + u0v0 + αv0

0 = u0 − u0v0 − κv0.

u0(0) = 1 v0(0) = 0.

This is a differential-algebraic system.
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We solve the algebraic equation:

v0(τ) =
u0(τ)

κ + u0(τ)
, (6.9)

which allows us to write the first equation as:

du0

dτ
=
−(κ− α)u0

κ + u0
, (6.10)

which furthermore can be solved;

u0(τ) + κ ln u0(τ) = A− (κ− α)τ, (6.11)

Where A is a constant of integration, that upon imposing the

initial condition u0(0) = 1 gives A = 1.
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Remark

A note about the initial conditions of the outer solution.

• The initial conditions for the full model may not always

be satisfied by the outer solution. Can you say why this

might be? For example, the initial condition v(0) = 0 can

not be satisfied by v0(τ).

• We will see later that this is not an issue, because

technically the initial conditions only need to be satisfied

by the inner solution and later matched to the outer

solution.
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So our outer solution is given by

u0(τ) + κ ln u0(τ) = 1− (κ− α)τ (6.12)

v0(τ) =
u0(τ)

κ + u0(τ)
(6.13)

1/(1+κ)

τ

u0(τ)

v0(τ)

• The red curve shows u0, • The blue curve shows v0
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Question:

• What assumptions were made when constructing the

outer problem?

• We neglected the ε dv
dτ

term

• Essentially implying ε dv
dτ

= O(ε).

• Which is only true when dv
dτ

= O(1).

These assumptions are only valid when the reaction is well

underway.
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Question:

• How do we handle what happens for τ � 1?

We introduce a new timescale, one that lets us take a closer

look at the neighbourhood near τ = 0.
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Inner Solution

Let the new timescale be σ = δ(ε)τ , were δ(ε) is to be

determined.

• We want σ to be O(1) when τ = O(ε)

We introduce the fast, or inner, variables;

u(τ ; ε) = U(σ; ε) v(τ ; ε) = V (σ; ε) (6.14)

subject to initial conditions U(0) = 1, V (0) = 0.
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Apply the asymptotic expansion:

U(σ; ε) = U0 + εU1 + ε2U2 + · · · (6.15)

V (σ; ε) = V0 + εV1 + ε2V2 + · · · (6.16)

and by chain rule,
dv

dτ
= δ(ε)

dV

dσ
, (6.17)

the fast system is given by

dU

dσ
=

1

δ(ε)
(−U + (U + α)V ) (6.18)

δ(ε)ε
dV

dσ
= U − (U + κ)V (6.19)

71



We chose δ(ε) = 1
ε

so that we retain the dV
dσ

term at leading

order. In other words, we force a regular perturbation.

Substitution of the asymptotic expansion, simplifying etc. the

leading order problem is given by:

O(1) :
dU0

dσ
= 0 (6.20)

dV0

dσ
= U0 − (U0 + κ)V0 (6.21)

U0(0) = 1 V0(0) = 0 (6.22)
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Which has the solution:

U0(σ) = 1 (6.23)

V0(σ) =
1

1 + κ
(1− e−(1+κ)σ) (6.24)

1/(1+κ)

σ

U0(σ) = 1

V0(σ) 

• The red curve shows U0, • The blue curve shows V0
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• Here, the inner solution can satisfy the initial conditions,

however for large values of σ a contradiction arises.

• That is, the complex and substrate both should tend to

zero in the reaction. Conveniently, the outer solution

tends to zero.
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Question:

• How do we link the inner and outer solutions?

We use the asymptotic matching condition. We essentially

glue the solutions together to come up with a uniform (for all

time) solution, still of the first order.
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We currently have:

inner solution

1/(1+κ)

σ

U0(σ) = 1

V0(σ) 

outer solution

1/(1+κ)

τ

u0(τ)

v0(τ)

We need to ”match” these solutions.
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The matching process comes from the dynamics, which are as

follows:

• We start on the inner solution

• Eventually, the inner solution will become invalid

• But the outer solution will eventually become valid.

• The dynamics ”transition” from inner to outer over some

transitional layer.

We want the inner and outer solutions to match-up and

transition nicely.
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That is, for the matching we require;

lim
σ→∞

U0(σ) = lim
τ→0

u0(σ) = um0 (6.25)

lim
σ→∞

V0(σ) = lim
τ→0

v0(σ) = vm0 (6.26)

In our example, this condition is satisfied naturally, and

lim
σ→∞

U0(σ) = lim
τ→0

u0(σ) = um0 = 1, (6.27)

lim
σ→∞

V0(σ) = lim
τ→0

v0(σ) = vm0 =
1

κ + 1
. (6.28)
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We can finally construct an uniform first order approximation

given by;

uu
0 (τ) = u0(τ) + U0(τ/ε)− um0

vu
0 (τ) = v0(τ) + V0(τ/ε)− vm0

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1
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Other methods in Perturbation theory:

• Interior layers

• Multiple scales

• WKB method
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Interior layer

This methods is similar to that of the boundary layer examples.

• Has two outer solutions (left and right of interior layer)

• Interior layer coordinate x̄ = x−x0

εα
with corresponding

interior solution.

A problem can contain any combination of boundary layers

and interior layers.
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Multiple Scales

In the method of matched asymptotic expansion we applied

the expansion of our desired solution as:

y(t) = a0(ε)x0(t) + a1(ε)x1(t) + . . .

where a0(ε), a1(ε), . . . is an asymptotic sequence.

In the method of multiple scales we assume there are multiple

scales of the independent variable. i.e. t1 = t and t2 = t
εα
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Multiple scales

In doing this, we have that

d

dt
→ dt1

dt

∂

t1
+

dt2

dt

∂

2
=

∂

∂t1
+ εα

∂

∂t2

and we would now use the expansion:

y(t) ∼ y0(t1, t2) + εy1(t1, t2) + . . .

and solving for y0 proceeds similarly to previous methods.

This methods makes it easier to avoid secular terms. i.e. when

the terms eventually are comparable. E.g.

y ∼ sin(t) + εt sin(t)
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WKB method

The WKB method, like other methods, seeks to approximate

the solution y(t). However, here, we assume that the solution

depends on the fast variation in an exponential fashion. The

expansion takes the form:

y(t) ∼ e
θ(t)
εα (y0(t) + εαy1(t) + . . . )

Actually, in many cases the WKB method can be easier to use,

although the assumptions are limiting.
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Thank you!

Contact me!

Chris Heggerud: cheggeru@ualberta.ca
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