LATEX Mathematics Examples

Prof Tony Roberts

July 5, 2017

Contents

1 Delimiters

2 Spacing

3 Arrays

4 Equation arrays

5 Functions

6 Accents 5
7 Command definition 5
8 Theorems et al. 5

1 Delimiters

See how the delimiters are of reasonable size in these examples

$$
(a+b)\left[1-\frac{b}{a+b}\right]=a
$$

$$
\sqrt{|x y|} \leq\left|\frac{x+y}{2}\right|
$$

even when there is no matching delimiter

$$
\int_{a}^{b} u \frac{d^{2} v}{d x^{2}} d x=\left.u \frac{d v}{d x}\right|_{a} ^{b}-\int_{a}^{b} \frac{d u}{d x} \frac{d v}{d x} d x
$$

This is done using the MS Word Equation Editor, can you improve it using LaTex?

$$
f(b)-f(a)=\int_{a}^{b} \frac{x+x^{3}}{\alpha x^{4}+\left[\frac{x+2 x^{3}}{3 x-x^{4}}\right]^{4}} d x
$$

2 Spacing

Differentials often need a bit of help with their spacing as in

$$
\iint x y^{2} d x d y=\frac{1}{6} x^{2} y^{3}
$$

whereas vector problems often lead to statements such as

$$
u=\frac{-y}{x^{2}+y^{2}}, \quad v=\frac{x}{x^{2}+y^{2}}, \quad \text { and } \quad w=0
$$

Occasionally one gets horrible line breaks when using a list in mathematics such as listing the first twelve primes $2,3,5,7,11,13,17,19,23,2$ In such cases, perhaps include \mathcode' $\backslash,=" 213 B$ inside the inline maths environment so that the list breaks: $2,3,5,7,11,13$, $17,19,23,29,31,37$. Be discerning about when to do this as the spacing is different.

3 Arrays

Arrays of mathematics are typeset using one of the matrix environments as in

$$
\left[\begin{array}{ccc}
1 & x & 0 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
y \\
1
\end{array}\right]=\left[\begin{array}{c}
1+x y \\
y-1
\end{array}\right]
$$

Case statements use cases:

$$
|x|= \begin{cases}x, & \text { if } x \geq 0 \\ -x, & \text { if } x<0\end{cases}
$$

Many arrays have lots of dots all over the place as in

$$
\begin{array}{cccccc}
-2 & 1 & 0 & 0 & \cdots & 0 \\
1 & -2 & 1 & 0 & \cdots & 0 \\
0 & 1 & -2 & 1 & \cdots & 0 \\
0 & 0 & 1 & -2 & \cdots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \ddots & 1 \\
0 & 0 & 0 & \cdots & 1 & -2
\end{array}
$$

4 Equation arrays

In the flow of a fluid film we may report

$$
\begin{align*}
u_{\alpha} & =\epsilon^{2} \kappa_{x x x}\left(y-\frac{1}{2} y^{2}\right) \tag{1}\\
v & =\epsilon^{3} \kappa_{x x x} y \tag{2}\\
p & =\epsilon \kappa_{x x} \tag{3}
\end{align*}
$$

Alternatively, the curl of a vector field (u, v, w) may be written with only one equation number:

$$
\begin{align*}
\omega_{1} & =\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z} \\
\omega_{2} & =\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x} \tag{4}\\
\omega_{3} & =\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}
\end{align*}
$$

Whereas a derivation may look like

$$
\begin{aligned}
(p \wedge q) \vee(p \wedge \neg q) & =p \wedge(q \vee \neg q) \quad \text { by distributive law } \\
& =p \wedge T \quad \text { by excluded middle } \\
& =p \quad \text { by identity }
\end{aligned}
$$

5 Functions

Observe that trigonometric and other elementary functions are typeset properly, even to the extent of providing a thin space if followed by a single letter argument:

$$
\exp (i \theta)=\cos \theta+i \sin \theta, \quad \sinh (\log x)=\frac{1}{2}\left(x-\frac{1}{x}\right)
$$

With sub- and super-scripts placed properly on more complicated functions,

$$
\lim _{q \rightarrow \infty}\|f(x)\|_{q}=\max _{x}|f(x)|
$$

and large operators, such as integrals and

$$
\begin{aligned}
e^{x} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \quad \text { where } n!=\prod_{i=1}^{n} i \\
\overline{U_{\alpha}} & =\bigcap_{\alpha} U_{\alpha}
\end{aligned}
$$

In inline mathematics the scripts are correctly placed to the side in order to conserve vertical space, as in $1 /(1-x)=\sum_{n=0}^{\infty} x^{n}$.

6 Accents

Mathematical accents are performed by a short command with one argument, such as

$$
\tilde{f}(\omega)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x
$$

or

$$
\dot{\vec{\omega}}=\vec{r} \times \vec{I} .
$$

7 Command definition

The Airy function, $\operatorname{Ai}(x)$, may be incorrectly defined as this integral

$$
\operatorname{Ai}(x)=\int \exp \left(s^{3}+i s x\right) d s
$$

This vector identity serves nicely to illustrate two of the new commands:

$$
\boldsymbol{\nabla} \times \boldsymbol{q}=\boldsymbol{i}\left(\frac{\partial w}{\partial y}-\frac{\partial v}{\partial z}\right)+\boldsymbol{j}\left(\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}\right)+\boldsymbol{k}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)
$$

8 Theorems et al.

Definition 1 (right-angled triangles) A right-angled triangle is a triangle whose sides of length a, b and c, in some permutation of order, satisfies $a^{2}+b^{2}=c^{2}$.

Lemma 2 The triangle with sides of length 3, 4 and 5 is rightangled.

This lemma follows from the Definition 1 as $3^{2}+4^{2}=9+16=$ $25=5^{2}$.

Theorem 3 (Pythagorean triplets) Triangles with sides of length $a=p^{2}-q^{2}, b=2 p q$ and $c=p^{2}+q^{2}$ are right-angled triangles.

Prove this Theorem 3 by the algebra $a^{2}+b^{2}=\left(p^{2}-q^{2}\right)^{2}+(2 p q)^{2}=$ $p^{4}-2 p^{2} q^{2}+q^{4}+4 p^{2} q^{2}=p^{4}+2 p^{2} q^{2}+q^{4}=\left(p^{2}+q^{2}\right)^{2}=c^{2}$.

Can you improve the typesetting of these lines?

