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1 Introduction

2 Graph theoretical results

In this section, we revisit Kirchhoff’s Matrix Tree Theorem and prove several related combi-
natorial identities that we will use in later sections. We begin by recalling some definitions
from graph theory. We refer the reader to [13] and [31] for detailed discussions.

A directed graph or digraph G = (V,E) contains a set V = {1, 2, . . . , n} of vertices and
a set E of arcs (i, j) leading from its initial vertex i to its terminal vertex j. A subgraph H
of G is said to be spanning if H and G have the same vertex sets. A digraph G is weighted
if each arc (i, j) is assigned a positive weight aij . If H is a subgraph of a weighted digraph
G, then the weight w(H) of H is the product of the weights on all arcs of H.

A directed path P in G is a subgraph whose vertices can be labelled i1, i2, · · · , im so
that its arcs are of the form (ik, ik+1) for k = 1, 2, . . . ,m − 1. A directed cycle C in G is
the subgraph obtained from such an oriented path P by adding arc (im, i1) if it exists. If
m = 1, we refer to the directed cycle consisting of a single vertex x1 and a single arc (x1, x1)
as a loop. A rooted tree T is a subgraph with no directed cycle in which one vertex, the
root, is the initial vertex of no arcs, but each of the remaining vertices is the initial vertex
of exactly one arc. A subgraph Q is unicyclic if it is a disjoint union of rooted trees whose
roots form a directed cycle. Note that every vertex of Q is the initial vertex of exactly one
arc.

Given a weighted digraph G with n vertices, define the weight matrix A = (aij)n×n
whose entry aij equals the weight associated with arc (i, j) if it exists, and 0 otherwise. For
our purposes, we denote the weighted digraph as (G, A). The Laplacian matrix of (G, A) is
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defined as

L =



∑
k 6=1 a1k −a12 · · · −a1n

−a21
∑

k 6=2 a2k · · · −a2n

...
...

. . .
...

−an1 −an2 · · ·
∑

k 6=n ank

 . (2.1)

Let vi denote the i-th principal (n− 1) minor of L.

Proposition 2.1 (Kirchhoff’s Matrix Tree Theorem [16, 27]). Assume n ≥ 2. Then

vi =
∑
T ∈Ti

w(T ), i = 1, 2, . . . , n, (2.2)

where Ti is the set of all spanning trees T of (G, A) that are rooted at vertex i, and w(T ) is
the weight of T .

A digraph G is strongly connected if for any pair of distinct vertices, there exists an
oriented path from one to the other. In particular, a weighted digraph (G, A) is strongly
connected if and only if the weight matrix A is irreducible [4].

Corollary 2.2. Assume n ≥ 2. If (G, A) is strongly connected, then vi > 0 for 1 ≤ i ≤ n.

Theorem 2.3. Assume n ≥ 2. Then the following identity holds.

n∑
i,j=1

vi aij Fij(xi, xj) =
∑
Q∈Q

w(Q)
∑

(r,s)∈E(CQ)

Frs(xr, xs), (2.3)

where Fij(xi, xj), 1 ≤ i, j ≤ n, are arbitrary functions, Q is the set of all spanning unicyclic
graphs Q of (G, A), w(Q) is the weight of Q, and CQ denotes the oriented cycle of Q.

Proof. Note that each term in the expression for vi given in (2.2) is the weight of a spanning
tree T of (G, A) that is rooted at vertex i. Consequently, each term in viaij is the weight
of a spanning unicyclic graph Q of G obtained from tree T by adding an arc (i, j) directed
from the vertex i to the root vertex j. As a sequence,

w(T ) aij = w(Q),

and
w(T ) aij Fij(xi, xj) = w(Q)Fij(xi, xj),

where (i, j) ∈ E(CQ). In general, when a directed arc from the root to any non-root vertex
is added to a rooted tree, we obtain a unicyclic graph. See Figure 2. When we perform this
operation in all possible ways to all rooted trees in G, we obtain all unicyclic graphs in G
and each unicyclic graph Q is created as many times as the number of arcs in its cycle CQ.
The identity (2.3) follows if we reorganize the double sum on the left hand side as a sum
over all unicyclic graphs in G. This completes the proof of Theorem 2.3.
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Theorem 2.4. Assume n ≥ 2. Then the following identity holds.

n∑
i,j=1

vi aij Gi(xi) =
n∑

i,j=1

vi aij Gj(xj), (2.4)

where Gi(xi), 1 ≤ i ≤ n, are arbitrary functions.

Proof. Using Theorem 2.3, we know that both sides of (2.4) are equal to∑
Q∈Q

w(Q)
∑

k∈V (CQ)

Gk(xk),

where V (CQ) is the vertex set of CQ.

We end this section with a lemma that will be used in later sections.

Lemma 2.5. Assume

(1) a weighted digraph (G, A) is strongly connected;

(2) function Hij(xi, xj) ≥ 0 for all 1 ≤ i, j ≤ n;

(3) Hij(xi, xj) = 0 if and only if xi = xj.

Then
∑n

i,j=1 aijHij(xi, xj) = 0 if and only if xi = xj for all 1 ≤ i, j ≤ n.

Proof. Note that
∑n

i,j=1 aijHij(xi, xj) = 0 implies that Hij(xi, xj) = 0 and thus xi = xj
if aij 6= 0. For any given 1 ≤ k, l ≤ n, k 6= l, by the strong connectivity of (G, A), there
exists a directed path P in (G, A) from k to l. Applying the relation xi = xj to each arc
(i, j) of P, we can see that xl = xk. Therefore, Hij(xi, xj) = 0 if and only if xi = xj for all
1 ≤ i, j ≤ n.

3 Coupled differential equations on networks

Given a digraph G with n vertices, n ≥ 2, a network can be built on G by assigning each
vertex its own internal dynamics (called vertex dynamics) and then coupling these vertex
dynamics together according to the connection in G. Assume each vertex dynamics is
described by a system of differential equations

u′i = fi(t, ui), (3.1)

where ui ∈ Rmi and fi : R × Rmi → Rmi . Let gij : R × Rmi × Rmj → Rmi represent the
influence of vertex j on vertex i, and gij ≡ 0 if there exists no arc from j to i in G. Then
we obtain the following coupled system on G

u′i = fi(t, ui) +
n∑
j=1

gij(t, ui, uj), i = 1, 2, . . . , n. (3.2)

Here functions fi, gij are assumed to be sufficiently smooth.
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One of main mathematical interests in the literature of network dynamics is to establish
the collective dynamics of a coupled system like (3.2). In particular, it is a natural question
to ask how properties of digraph G affect dynamical behaviors of the system, specially
stability and synchronization. In this paper, we will focus on the global stability problems
for the equilibrium of (3.2). Suppose that E∗ = (u∗1, u

∗
2, · · · , u∗n) is an equilibrium of (3.2)

in some open set D =
⊗n

i=1Di ⊂ Rm, where m =
∑n

i=1mi. E∗ is said to be globally
asymptotically stable in D if it is locally stable and attracts all solutions initiated in D.
Among other approaches, Lyapunov direct’s method is often applied to prove the global
stability problems for differential equations arisen in different fields, such as mathematical
biology, chemostat, electric circuit, and etc. In the following, a general type of Lyapunov
function for system (3.2) will be constructed by using graph theoretic results from the
previous section.

Suppose that there exist functions Fij(t, ui, uj) defined on R × Di × Dj and locally
Lipschitz continuous functions Vi(t, ui) defined on R × Di for 1 ≤ i, j ≤ n. Define the
derivative of each Vi along (3.2) as follows

•
Vi :=

∂Vi(t, ui)
∂t

+
∂Vi(t, ui)
∂ui

·
(
fi(t, ui) +

n∑
j=1

cjigij(t, ui, uj)
)
. (3.3)

Assume
•
Vi ≤

n∑
j=1

aijFij(t, ui, uj), t > 0, ui ∈ Di, uj ∈ Dj , (3.4)

where constant aij > 0 for all 1 ≤ i, j ≤ n. Denote A = (aij) and define a weighted digraph
(W, A) with n vertices as follows: there exists an arc from vertex i to vertex j and its weight
equals aij if aij > 0, and no arc from i to j otherwise. Let vi denote the i-th principal (n−1)
minor of the Laplacian matrix L of (W, A), as described in Proposition 2.1. Note that if
(W, A) is strongly connected, then vi > 0 for 1 ≤ i ≤ n. Denote u = (u1, u2, · · · , un) and
set

V (t, u) =
n∑
i=1

viVi(t, ui). (3.5)

Theorem 3.1. Assume that there exist functions Vi(t, ui) and Fij(t, ui, uj) such that (3.4)
holds and in every directed cycle C of (W, A),∑

(r,s)∈E(C)

Frs(t, ur, us) ≤ 0, t > 0, ur ∈ Dr, us ∈ Ds. (3.6)

Then
•
V (t, u) ≤ 0 for t > 0 and u ∈ D, namely, V as defined in (3.5) is a Lyapunov function

for (3.2).

Proof. Direct calculation gives

•
V =

n∑
i=1

vi
•
Vi ≤

n∑
i,j=1

viaijFij(t, ui, uj).
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Using Theorem 2.3 with weighted digraph (W, A), we obtain

n∑
i,j=1

viaijFij(t, ui, uj) =
∑
Q∈Q

w(Q)
∑

(r,s)∈E(CQ)

Frs(t, ur, us).

Since in every directed cycle C of (W, A), (3.6) holds, we have∑
Q∈Q

w(Q)
∑

(r,s)∈E(CQ)

Frs(t, ur, us) ≤ 0.

Therefore,
•
V ≤ 0, which completes the proof of Theorem 3.1.

In Theorem 3.1, if we further assume that
•
V = 0 iff u = E∗, then E∗ is globally

asymptotically stable in D. Instead, assume that the largest compact invariant subset of

{u ∈ D :
•
V = 0} is the singleton {E∗}, then by the LaSalle Invariance Principle [23], E∗ is

globally asymptotically stable in D.

Corollary 3.2. Assume that there exist functions Vi(t, ui), Fij(t, ui, uj), and Gi(t, ui), such
that (3.4) holds and

Fij(t, ui, uj) ≤ Gi(t, ui)−Gj(t, uj), 1 ≤ i, j ≤ n. (3.7)

Then
•
V ≤ 0.

Corollary 3.3. Assume that there exist functions Vi(t, ui) and Fij(t, ui, uj) such that

•
Vi ≤ −ci Vi(t, ui) +

n∑
j=1

aijFij(t, ui, uj), 1 ≤ i ≤ n, (3.8)

with constants ci ≥ 0, and either (3.6) or (3.7) holds. Then
•
V ≤ −cV, where c = min{ci :

1 ≤ i ≤ n}.

4 Damped harmonic oscillators on a network

Given a digraph G with n vertices, n ≥ 2, a coupled system of damped harmonic oscillators
on G can be built as follows: each vertex i is assigned a damped harmonic oscillator described
by

ẍi + αẋi + fi(xi) = 0,

and the interactions from vertex j to vertex i are provided in the form of εij(ẋi− ẋj), where
εij ≥ 0 and εij = 0 if and only if no arc from j to i in G. Thus we obtain an example of
coupled differential equations on a network

ẍi + αẋi + fi(xi) +
n∑
j=1

εij(ẋi − ẋj) = 0, (4.1)
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or in the form of a system of differential equations

ẋi = yi,

ẏi = −αiyi − fi(xi)−
n∑
j=1

εij(yi − yj). (4.2)

Assume that the damping αi ≥ 0 and the potential energy Fi(xi) =
∫ xi fi(s)ds has a strictly

global minimum at xi = x∗i . Then E∗ = (x∗1, 0, x
∗
2, 0, · · · , x∗n, 0) is an equilibrium of system

(4.2).

Theorem 4.1. If αk > 0 for some k and digraph G is strongly connected, then E∗ is globally
asymptotically stable in R2n.

Proof. Set Vi(xi, yi) = Fi(xi) + y2i
2 . The derivative along (4.2) gives

•
Vi = −αiy2

i −
n∑
j=1

εij(yi − yj)yi.

Let aij = εij , Fij(yi, yj) = yiyj − y2
i , and Gi(yi) = −1

2y
2
i . Then we have

•
Vi ≤

n∑
j=1

aijFij(yi, yj)

and
Fij(yi, yj) = −1

2
(yi − yj)2 − 1

2
y2
i +

1
2
y2
j ≤ Gi(yi)−Gj(yj).

Thus, conditions (3.4) and (3.7) have been verified. By Theorem 3.1 and Corollary 3.2, the
function V (x1, y1, · · · , xn, yn) =

∑n
i=1 viVi(xi, yi) as defined in (3.5) is a Lyapunov function

for (4.2), namely,
•
V ≤ 0 for all (x1, y1, · · · , xn, yn) ∈ R2n.

Recall that the coefficient vi in V is the i-th principal (n − 1) minor of the Laplacian
of weighted dirgraph (W, A). Note that G is strongly connected, so does (W, A). Thus

vi > 0 for all 1 ≤ i ≤ n. As a sequence,
•
V = 0 implies αiy2

i = 0 and aij(yi − yj)2 = 0
for all i and j. Since αk > 0 for some k, we obtain yk = 0. Let Hij(yi, yj) = (yi − yj)2,
then we have

∑n
i,j=1 aijHij(yi, yj) = 0. Using Lemma 2.5, we conclude that yi = yj for all

i, j. Hence,
•
V = 0 implies yi = 0 for all i. From the second equation of (4.1), we have

0 = ẏi = −fi(xi), thus xi = x∗i . This implies that the largest compact invariant subset

of {(x1, y1, · · · , xn, yn) ∈ R2n :
•
V = 0} is the singleton {E∗}. Therefore, by the LaSalle

Invariance Principle [23], E∗ is globally asymptotically stable in R2n.

5 A single-species model with dispersal

Consider a system that describes dispersal of a single species among n patches (n ≥ 2)

x′i = xifi(xi) +
n∑
j=1

dij(xj − αijxi), i = 1, 2, . . . , n. (5.1)
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Here xi ∈ R+ represents the population density of the species in patch i, fi ∈ C1(R+,R)
represents the growth rate in patch i, and constant dij ≥ 0 is the dispersal rate from
patch j to patch i. Hastings [14] studied the local stability of a positive equilibrium of
(5.1). Sufficient conditions for uniqueness and global stability of the positive equilibrium
are derived in Beretta and Takeuchi [2] and later in Lu and Takeuchi [25]. In this section,
we reformulate (5.1) as a coupled system on a network. This allows us to apply our general
approach in Section 3 and prove a stronger result on the global stability of the positive
equilibrium.

A digraph G with n vertices associated with (5.1) can be constructed as follows: vertex
i represents patch i, an arc (j, i) from vertex j to vertex i is assigned if the dispersal rate
dij > 0, and no such arc exists if dij = 0. The vertex dynamics at each vertex is defined
by the scalar ordinary differential equation x′i = xifi(xi). The coupling among vertices are
provided by the dispersal among patches dictated by G. Thus (5.1) is another example of
coupled differential equations on a network.

Theorem 5.1. Assume

(1) matrix (dij) is irreducible;

(2) f ′i(xi) ≤ 0, xi > 0, i = 1, 2, . . . , n; for some k, f ′k(xk) 6≡ 0 in any open interval of R+;

(3) system (5.1) is uniformly persistent;

(4) solutions of (5.1) are uniformly bounded.

Then system (5.1) has a unique positive equilibrium E∗ and E∗ is globally asymptotically
stable in the positive cone Rn

+.

Proof. Uniform persistence, together with uniform boundedness of all solutions of system
(5.1), implies that (5.1) has at least one positive equilibrium (see Theorem D.3 in [28] or
Theorem 2.8.6 in [5]). Let E∗ = (x∗1, x

∗
2, · · · , x∗n), x∗i > 0, i = 1, 2, . . . , n, denote a positive

equilibrium of (5.1). We will show that E∗ is globally asymptotically stable in Rn
+ and thus

is unique. Set Vi(xi) = xi − x∗i + x∗i ln xi
x∗i

. It can be verified that Vi(xi) > 0 for all xi > 0
and Vi(xi) = 0 if and only if xi = x∗i . Direct calculation yields

•
Vi = (xi − x∗i )

[
fi(xi) +

n∑
j=1

dij

(xj
xi
− αij

)]
= (xi − x∗i )

[
fi(x∗i ) +

∫ xi

x∗i

f ′i(ξ)dξ · (xi − x∗i ) +
n∑
j=1

dij

(xj
xi
− αij

)]
= (xi − x∗i )

[
−

n∑
j=1

dij

(x∗j
x∗i
− αij

)
+
∫ xi

x∗i

f ′i(ξ)dξ · (xi − x∗i ) +
n∑
j=1

dij

(xj
xi
− αij

)]
=

∫ xi

x∗i

f ′i(ξ)dξ · (xi − x∗i )2 +
n∑
j=1

dijx
∗
j

(xj
x∗j
− xi
x∗i

+ 1− x∗ixj
xix∗j

)
.

Let aij = dijx
∗
j , Fij(xi, xj) = xj

x∗j
− xi

x∗i
+ 1− x∗i xj

xix∗j
, and Gi(xi) = − xi

x∗i
+ ln xi

x∗i
. Then we have

•
Vi ≤

n∑
j=1

aijFij(xi, xj),
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and
Fij(xi, xj) = Gi(xi)−Gj(xj) + 1− x∗ixj

xix∗j
+ ln

x∗ixj
xix∗j

≤ Gi(xi)−Gj(xj).

Here we use two facts that
∫ xi

x∗i
f ′i(ξ)dξ · (xi − x∗i )2 ≤ 0 and Φ(a) := 1 − a + ln a ≤ 0 for

a > 0 with equality holding iff a = 1. Now conditions (3.4) and (3.7) have been verified.
By Theorem 3.1 and Corollary 3.2, the function V (x1, · · · , xn) =

∑n
i=1 viVi(xi) as defined

in (3.5) is a Lyapunov function for (5.1), namely,
•
V ≤ 0 for all (x1, · · · , xn) ∈ Rn

+.
Since (dij) is irreducible, A = (aij) is also irreducible, or equivalently, (W, A) is strongly

connected. Thus, vi > 0 for i = 1, 2, . . . , n. As a result,
•
V = 0 implies that

∫ xi

x∗i
f ′i(ξ)dξ ·

(xi − x∗i )2 = 0 and aijΦ
(
x∗i xj

xix∗j

)
= 0 for all 1 ≤ i, j ≤ n. Since for some k, f ′k(xk) 6≡ 0, we

have xk = x∗k. Note that Φ
(
x∗i xj

xix∗j

)
= 0 if and only if xi

x∗i
= xj

x∗j
. Using Lemma 2.5, we know

that
∑n

i,j=1 aijΦ
(
x∗i xj

xix∗j

)
= 0 if and only if xi

x∗i
= xj

x∗j
for all i, j. Therefore,

•
V = 0 if and only

if xi = x∗i for all i. By the classical Lyapunov stability theory, E∗ is globally asymptotically
stable in Rn

+. This completes the proof of Theorem 5.1.

Under the condition that for each i, f ′i(xi) < 0, xi > 0, the global stability of E∗ was
proved in Lu and Takeuchi [25] by using the theory of cooperative systems. Their condition
implies our assumption (2) in Theorem 5.1. Theorem 5.1 contains the global stability result
in [25] as a special case.

6 An n-patch predator-prey model

In this section, we consider a predator-prey model in which preys disperse among n patches
(n ≥ 2).

x′i = xi(ri − bixi − eiyi) +
n∑
j=1

dij(xj − αijxi),

y′i = yi(−γi − δiyi + εixi),

i = 1, 2, . . . , n. (6.1)

The parameters in the model are nonnegative constants, and ei, εi are positive. We refer the
reader to [9, 21] for interpretations of predator-prey models and parameters. When n = 2,
Kuang and Takeuchi [21] studied (6.1) and proved the uniqueness and global stability of a
positive equilibrium by constructing a Lyapunov function. In this section, we regard (6.1)
as a coupled system on a network. Then, using a Lyapunov function for a single patch
predator-prey model [15] and our main result Theorem 3.1, we establish the global stability
of a positive equilibrium for the general n-patch model (6.1).

We first construct a digraph G with n vertices associated with system (6.1) similarly
as the previous section. Namely, (j, i) ∈ E(G) if and only if dij > 0. At each vertex of
G, the vertex dynamics is described by a predator-prey system. The coupling among these
predator-prey systems are provided by dispersal among prey populations. Thus (6.1) is
another example of coupled systems on a network.
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Theorem 6.1. Assume that (dij) is irreducible, and that for some k, either bk > 0 or
δk > 0. If a positive equilibrium E∗ exists, then it is unique and globally asymptotically
stable in the positive cone R2n

+ .

Proof. Let E∗ = (x∗1, y
∗
1, · · · , x∗n, y∗n), x∗k, y

∗
k > 0 for 1 ≤ k ≤ n, denote the positive equilib-

rium. Set Vi(xi, yi) = εi(xi − x∗i lnxi) + ei(yi − y∗i ln yi). Then the derivative along (6.1)
yields

•
Vi = εi(xi − x∗i )

[
ri − bixi − eiyi +

n∑
j=1

dij

(xj
xi
− αij

)]
+ei(yi − y∗i )(−γi − δiyi + εixi)

= εi(xi − x∗i )
[
bix
∗
i + eiy

∗
i −

n∑
j=1

dij

(x∗j
x∗i
− αij

)
− bixi − eiyi +

n∑
j=1

dij

(xj
xi
− αij

)]
+ei(yi − y∗i )(δiy∗i − εix∗i − δiyi + εixi)

= −εibi(xi − x∗i )2 − eiδi(yi − y∗i )2 +
n∑
j=1

dijεix
∗
j

(xj
x∗j
− xi
x∗i

+ 1− xjx
∗
i

x∗jxi

)
.

Let aij = dijεix
∗
j , Fij(xi, xj) = xj

x∗j
− xi
x∗i

+1− x∗i xj

xix∗j
, and Gi(xi) = − xi

x∗i
+ln xi

x∗i
. Conditions (3.4)

and (3.7) can be verified in the same way as the previous section. Thus, by Theorem 3.1, the
function V (x1, y1, · · · , xn, yn) =

∑n
i=1 viVi(xi, yi) as defined in (3.5) is a Lyapunov function

for (6.1), namely,
•
V ≤ 0 for all (x1, y1, · · · , xn, yn) ∈ R2n

+ .

Similarly to the previous section, in the set where
•
V = 0, we conclude that −εibi(xi −

x∗i )
2 − eiδi(yi − y∗i )2 = 0 and aijΦ

(
x∗i xj

xix∗j

)
= 0 for all 1 ≤ i, j ≤ n. Since either bk > 0

or δk > 0 for some k, xk = x∗k or yk = y∗k. If yk = y∗k, then y′k = 0, which implies that
−γk − δky∗k + εkxk = 0, and thus xk = x∗k. Using a similar argument as one in the previous
section, we conclude that xi = x∗i for all i. Using the first equation of (6.1), we have
0 = x′i = x∗i (ri − bix

∗
i − eiyi) +

∑n
j=1 dij(x

∗
j − x∗i ), hence yi = y∗i . Therefore, the only

compact invariant subset of the set where
•
V = 0 is singleton {E∗}. Using the LaSalle

Invariance Principle [23], we conclude that E∗ is globally asymptotically stable in R2n
+ , and

thus is unique. This completes the proof of Theorem 6.1.

Note that the existence of E∗ can be obtained by persistence analysis, which only involves
dynamics on the boundary of Rn

+. When n = 2, Theorem 6.1 gives Theorem 3.2 of [21].

7 A multigroup epidemic model with nonlinear incidence

In Section 5 and Section 6, we analyze two dispersal models in the setting of coupled systems
on a network where interactions are provided by dispersal among vertices. In this section, we
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consider an n-group epidemic model in which interactions are provided by cross-infections.

S′i = Λi − dSi Si −
n∑
j=1

βijfij(Si, Ij),

E′i =
n∑
j=1

βijfij(Si, Ij)− (dEi + εi)Ei, i = 1, 2, · · · , n.

I ′i = εiEi − (dIi + γi)Ii,

(7.1)

In this model, a heterogeneous population is partitioned into n homogeneous groups. Each
group i is further compartmentalized into Si, Ei, and Ii which denote the subpopulation
that are susceptible to the disease, infected but non-infectious, and infectious, respectively.
The coupling term βijfij(Si, Ij) represents the cross infection from group j to group i. All
parameters in (7.1) are nonnegative constants. For detailed discussions of the model and
interpretations of parameters, we refer the reader to [11, 29].

Let G denote a digraph with n vertices in which an arc (j, i) exists if and only if βij > 0.
System (7.1) can be treated as a coupled differential equation on G if we assign each vertex
a single-group SEIR model and couple them together with cross infection.

then it means that in (G, B) there exists an arc leading from vertex j to vertex i; and
in network, it means that individuals of Ij can infect individuals of Si. Therefore, system
(7.1) can be treated as a coupled system on (G, B), and thus is a special case of (3.2).

Assume that εi > 0 and d∗i > 0, where d∗i = min{dSi , dEi , dIi + γi}. Based on biological
considerations, we assume that fji(Ij , 0) = 0, fji(0, Si) = 0, and fji(Ij , Si) > 0 for Si >
0, Ij > 0. We also assume that fji(Ij , Si) are sufficiently smooth.

For each i, adding the three equations in (7.1) gives (Si +Ei + Ii)′ ≤ Λi − d∗i (Si +Ei +
Ii). Hence lim supt→∞(Si + Ei + Ii) ≤ Λi/d∗i . Similarly, from the Si equation we obtain
lim supt→∞ Si ≤ Λi/dSi . Therefore, omega limit sets of system (7.1) are contained in the
following bounded region in the nonnegative cone of R3n

Γ =
{

(S1, E1, I1, · · · , Sn, En, In) ∈ R3n
+ | Si ≤

Λi
dSi
, Si+Ei+Ii ≤

Λi
d∗i
, 1 ≤ k ≤ n

}
. (7.2)

It can be verified that region Γ is positively invariant. System (7.1) always has the disease-
free equilibrium P0 = (S0

1 , 0, 0, · · · , S0
n, 0, 0) on the boundary of Γ, where S0

i = Λi/dSi . An

equilibrium P ∗ = (S∗1 , E
∗
1 , I
∗
1 , · · · , S∗n, E∗n, I∗n) in the interior

◦
Γ of Γ is called an endemic

equilibrium, where S∗i , E
∗
i , I
∗
i > 0 satisfy the equilibrium equations

Λi = dSi S
∗
i +

n∑
j=1

βjifji(I∗j , S
∗
i ), (7.3)

(dEi + εi)E∗i =
n∑
j=1

βjifji(I∗j , S
∗
i ), (7.4)

εiE
∗
i = (dIi + γi)I∗i . (7.5)

In the rest of this section we make the following basic assumptions on functions fji(Ij , Si):
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(H1) 0 < lim
Ij→ 0+

fji(Ij ,Si)
Ij

= Cji(Si) ≤ +∞, 0 < Si ≤ S0
i ;

(H2) fji(Ij , Si) ≤ Cji(Si)Ij for sufficiently small Ij ;

(H3) fji(Ij , Si) ≤ Cji(Si)Ij for all Ij > 0;

(H4) Cji(Si) < Cji(S0
i ), 0 < Si < S0

i .

Assume that fji(Ij , Si) satisfies (H1), and let

R0 = ρ(M0), (7.6)

denote the spectral radius of the matrix

M0 = M(S0
1 , S

0
2 , . . . , S

0
n) =

(
βji εiCji(S0

i )
(dEi + εi)(dIi + γi)

)
1≤i,j≤n

.

If Cji(S0
i ) = +∞ for some i and j, we set R0 = +∞. The parameter R0 is referred to as

the basic reproduction number. Its biological significance is that if R0 < 1 the disease dies
out while if R0 > 1 the disease becomes endemic [6, 30]. The following results for system
(7.1) are standard and can be proved the same way as in [10, 29].

Proposition 7.1. Assume that B = (βij) is irreducible and fji(Ij , Si) satisfies (H1).

(1) If R0 ≤ 1 and assumptions (H2) and (H4) hold, then for system (7.1), P0 is locally
asymptotically stable.

(2) If R0 ≤ 1 and assumptions (H3) and (H4) hold, then P0 is the unique equilibrium and
it is globally asymptotically stable in Γ.

(3) If R0 > 1, then P0 is unstable and system (7.1) is uniformly persistent. Furthermore,
there exists at least one endemic equilibrium P ∗ for system (7.1).

A challenging question in mathematical epidemiology is whether a multi-group model
such as system (7.1) has a unique endemic equilibrium P ∗ when R0 > 1, and whether P ∗

is globally asymptotically stable when it is unique.

Theorem 7.2. Assume that B = (βij) is irreducible and fji(Ij , Si) satisfies (H1). If R0 > 1
and fji(Ij , Si) satisfies the following conditions

(Si − S∗i )(fii(I∗i , Si)− fii(I∗i , S∗i )) > 0, Si 6= S∗i , (7.7)(
fji(Ij , Si)fii(I∗i , S

∗
i )− fji(I∗j , S∗i )fii(I∗i , Si)

)
·(fji(Ij , Si)fii(I∗i , S∗i )

Ij
−
fji(I∗j , S

∗
i )fii(I∗i , Si)
I∗j

)
≤ 0, Ij > 0,

(7.8)

then there exists a unique endemic equilibrium P ∗ for system (7.1), and P ∗ is globally

asymptotically stable in
◦
Γ.
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Proof. The case n = 1 is proved in [26]. We only consider n ≥ 2. Let P ∗ = (S∗1 , E
∗
1 , I
∗
1 , · · · ,

S∗n, E
∗
n, I
∗
n), S∗i , E

∗
i , I
∗
i > 0 for 1 ≤ i ≤ n, denote an endemic equilibrium which exists from

Proposition 7.1-(3). We prove that P ∗ is globally asymptotically stable in
◦
Γ. In particular,

this implies that the endemic equilibrium is unique. Let

Vi(Si, Ei, Ii) =
∫ Si

S∗i

fii(I∗i , ξ)− fii(I∗i , S∗i )
fii(I∗i , ξ)

dξ + Ei − E∗i lnEi +
dEi + εi
εi

(Ii − I∗i ln Ii).

Using equilibrium equations (7.3), (7.4), (7.5), we have

•
Vi =

(
1− fii(I∗i , S

∗
i )

fii(I∗i , Si)

)(
Λi − dSi Si −

n∑
j=1

βjifji(Ij , Si)
)

+
(

1− E∗i
Ei

)( n∑
j=1

βjifji(Ij , Si)

−(dEi + εi)Ei
)

+
dEi + εi
εi

(
1− I∗i

Ii

)(
εiEi − (dIi + γi)Ii

)
=

(
1− fii(I∗i , S

∗
i )

fii(I∗i , Si)

)(
dSi S

∗
i +

n∑
j=1

βjifji(I∗j , S
∗
i )− dSi Si −

n∑
j=1

βjifji(Ij , Si)
)

+
(

1− E∗i
Ei

)( n∑
j=1

βjifji(Ij , Si)−
n∑
j=1

βjifji(I∗j , S
∗
i )
Ei
E∗i

)
+

n∑
j=1

βji
fji(I∗j , S

∗
i )

εiE∗i

(
1− I∗i

Ii

)(
εiEi −

εiE
∗
i Ii
I∗i

)
= − dSi

fii(I∗i , Si)
(Si − S∗i )(fii(I∗i , Si)− fii(I∗i , S∗i )) +

n∑
j=1

βjifji(I∗j , S
∗
i )
(

3− fii(I∗i , S
∗
i )

fii(I∗i , Si)

+
fji(Ij , Si)fii(I∗i , S

∗
i )

fji(I∗j , S
∗
i )fii(I∗i , Si)

− fji(Ij , Si)E∗i
fji(I∗j , S

∗
i )Ei

− Ii
I∗i
− EiI

∗
i

E∗i Ii

)
.

Let bji = fji(I∗j , S
∗
i ) > 0, Gi(Ii) = Ii

I∗i
− ln Ii

I∗i
, and

Fji = bji

(
3− fii(I∗i , S

∗
i )

fii(I∗i , Si)
+
fji(Ij , Si)fii(I∗i , S

∗
i )

fji(I∗j , S
∗
i )fii(I∗i , Si)

− fji(Ij , Si)E∗i
fji(I∗j , S

∗
i )Ei

− Ii
I∗i
− EiI

∗
i

E∗i Ii

)
.

Notice that

Fji = bji

(
Gj(xj)−Gi(xi)+Φ

(fii(I∗i , S∗i )
fii(I∗i , Si)

)
+Φ
( fji(Ij , Si)E∗i
fji(I∗j , S

∗
i )Ei

)
+Φ
(Ijfji(I∗j , S∗i )fii(I∗i , Si)
I∗j fji(Ij , Si)fii(I

∗
i , S

∗
i )

)
+M

)
,

where

M =
( fji(Ij , Si)fii(I∗i , S∗i )
fji(I∗j , S

∗
i )fii(I∗i , Si)

− 1
)(

1−
Ijfji(I∗j , S

∗
i )fii(I∗i , Si)

I∗j fji(Ij , Si)fii(I
∗
i , S

∗
i )

)
.

Recall that Φ(a) = 1− a+ ln a ≤ 0, a > 0, and Φ(a) = 0 iff a = 1. Under assumptions (7.7)
and (7.8), (3.4) and (??) can be verified similarly as in Section 5. By Theorem 3.1, the

function V =
∑n

i=1 viVi as defined in (3.5) is a Lyapunov function for (7.1), namely,
•
V ≤ 0.

In the set where
•
V = 0, we conclude that Si = S∗i and Ei

E∗i
= Ii

I∗i
= Ij

I∗j
if βji 6= 0. Using a

similar argument as in Section 6, we can show that the only compact invariant subset of the
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set where
•
V = 0 is singleton {P ∗}. By the LaSalle Invariance Principle [23], P ∗ is globally

asymptotically stable in
◦
Γ if R0 > 1. This completes the proof of Theorem 7.2.

Remarks

1. Condition (7.7) holds if fii(I∗i , Si) is a strictly monotonically increasing function with
respect to Si.

2. In the special case fji(Ij , Si) = gj(Ij)hi(Si), condition (7.8) becomes

(gj(Ij)− gj(I∗j ))
(gj(Ij)

Ij
−
gj(I∗j )
I∗j

)
≤ 0. (7.9)

If gj(Ij) is C1 for Ij > 0, then a sufficient condition to (7.9) is

0 ≤ g′j(Ij) ≤
gj(Ij)
Ij

, Ij > 0. (7.10)

Furthermore, if gj(Ij) is monotonically increasing and concave down, then (7.10) holds,
so does (7.9). An example of non-concave and non-monotonic functions which satisfy
(7.9) was given in Korobeinikov and Maini [20].

3. In the special case fji(Ij , Si) = IjSi, system (7.1) becomes the standard multigroup
SEIR model studied in [11]. Theorem 7.2 generalizes Theorem 1.1 in [11].

4. When n = 1, Theorem 7.2 contains early results on single-group SEIR models, see
[18, 24].

8 A multigroup epidemic model with delays

In this section, we demonstrate that the general approach described in Section 3 can also be
applied to establish global stability of equilibria of delay differential systems. As an example,
we consider a multi-group SEIR epidemic model with time delays that is described by the
following system of functional differential equations

S′i = Λi − dSi Si −
n∑
j=1

βijSiIj(t− τj),

I ′i =
n∑
j=1

βijSiIj(t− τj)− (dIi + γi)Ii,

i = 1, 2, · · · , n. (8.1)

The parameters in (8.1) are nonnegative and interpreted the same as those of (7.1) in the
previous section. Similarly to (7.1), we regard (8.1) as a coupled system on a weighted
digraph (G, B). Particularly, the vertex dynamics at each vertex is defined by a system of
delay differential equations.
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Denote τ = max{τi : i = 1, 2, . . . , n}. Let C be the Banach space of continuous functions
on [−τ, 0] with uniform norm. We consider system (8.1) in the phase space

X =
n∏
k=1

(
R× C

)
. (8.2)

In the rest of this section, we always assume our initial conditions of system (8.1) satisfy

Si(0) = si,0, Ii 0 = φi, i = 1, 2, . . . , n, (8.3)

where si,0 ∈ R+ and φi ∈ C satisfies φi(s) ≥ 0 for −τi ≤ s ≤ 0. It is straightforward to
see that solutions with initial condition (8.3) remain nonnegative. Moreover, from the first
equation of (8.1), we obtain Si(t)′ ≤ Λi − dSi Si(t). Hence, lim supt→∞ Si(t) ≤ Λi

dS
i

. For each

i, adding the two equations in (8.1) gives (Si(t) + Ii t(0))′ ≤ Λi − d∗i (Si(t) + Ii t(0)), which
implies that lim supt→∞(Si(t) + Ii t(0)) ≤ Λi

d∗i
, where d∗i = min{dSi , dIi + γi}. Therefore, the

following set is positively invariant for system (8.1)

Θ =
{

(S1, I1(·), · · · , Sn, In(·)) ∈ X
∣∣∣ 0 ≤ Si ≤

Λi
dSi
, 0 ≤ Si + Ii(0) ≤ Λi

d∗i
,

Ii(s) ≥ 0, s ∈ (−τi, 0], i = 1, . . . , n
}
.

(8.4)

Let

◦
Θ =

{
(S1, I1(·), · · · , Sn, In(·)) ∈ X

∣∣∣ 0 < Si <
Λi
dSi
, 0 < Si + Ii(0) <

Λi
d∗i
,

Ii(s) > 0, s ∈ (−τi, 0], i = 1, . . . , n
}
.

(8.5)

It can be shown that
◦
Θ is the interior of Θ. In Θ, system (8.1) has the disease-free

equilibrium P0 = (S0
1 , 0, · · · , S0

n, 0) where S0
i = Λi

dS
i

, and any endemic equilibrium P ∗ =
(S∗1 , I

∗
1 , · · · , S∗n, I∗n) if exists, where S∗i , I

∗
i > 0 satisfy

Λi =
n∑
j=1

βjiS
∗
i I
∗
j + dSi S

∗
i , and

n∑
j=1

βjiS
∗
i I
∗
j = (dIi + γi)I∗i .

Let the basic reproduction number R0 = ρ(M0) be the spectral radius of the matrix

M0 =
( βjiS

0
i

dIi + γi

)
n×n

.

Proposition 8.1. Assume that B = (βij) is irreducible.

1. If R0 ≤ 1, then P0 is the unique equilibrium for system (8.1) and it is globally asymp-
totically stable in Θ.

2. If R0 > 1, then P0 is unstable and there exists a unique endemic equilibrium P ∗ for
system (8.1).

14



Theorem 8.2. Assume that B = (βij) is irreducible. If R0 > 1, then the unique endemic

equilibrium P ∗ for system (8.1) is globally asymptotically stable in
◦
Θ.

Proof. We consider the case n ≥ 2. Let P ∗ = (S∗1 , I
∗
1 , · · · , S∗n, I∗n), where S∗i , I

∗
i > 0 for

1 ≤ i ≤ n, denote the unique endemic equilibrium of system (8.1). Now we construct a
functional Vi : R× C → R+ as follows

Vi = Si−S∗i +S∗i ln
Si
S∗i

+Ii−I∗i −I∗i ln
Ii
I∗i

+
n∑
j=1

βjiS
∗
i

∫ τj

0

(
Ij(t−r)−I∗j −I∗j ln

Ij(t− r)
I∗j

)
dr.

Notice that∫ τj

0

∂

∂t

(
Ij(t− r)− I∗j − I∗j ln

Ij(t− r)
I∗j

)
dr = −

∫ τj

0

∂

∂r

(
Ij(t− r)− I∗j − I∗j ln

Ij(t− r)
I∗j

)
dr.

Using a similar argument as in the previous section, we can show

•
Vi = −d

S
i

Si
(Si−S∗i )2 +

n∑
j=1

βjiS
∗
i I
∗
j

(
3− S

∗
i

Si
+
Ij
I∗j
− Ii
I∗i
− SiIj(t− τj)E

∗
i

S∗i I
∗
jEi

−EiI
∗
i

E∗i Ii
+ln

Ij(t− τj)
Ij

)
.

Let bji = S∗i I
∗
j > 0, Gi(Ii) = Ii

I∗i
− ln Ii

I∗i
, and

Fji = bji

(
3− S∗i

Si
+
Ij
I∗j
− Ii
I∗i
− SiIj(t− τj)E∗i

S∗i I
∗
jEi

− EiI
∗
i

E∗i Ii
+ ln

Ij(t− τj)
Ij

)
.

As similarly as in the previous section, (3.4) and (??) can be verified. Thus by Theorem 3.1,
the functional V =

∑n
i=1 viVi as defined in (3.5) is a Lyapunov functional for (8.1), namely,

•
V ≤ 0. In the set where

•
V = 0, we know that Si = S∗i and Ei

E∗i
= Ii

I∗i
= Ij(t−τj)

I∗j
if βji 6= 0.

Using a similar argument as in Section 6, we can show that the only compact invariant

subset of the set where
•
V = 0 is singleton {P ∗}. By the LaSalle-Lyapunov Theorem (see

[23, Theorem 3.4.7] or [12, Theorem 5.3.1]), we conclude that P ∗ is globally attractive in
◦
Θ

if R0 > 1. Furthermore, it can be verified that P ∗ is locally stable using the same proof as
one for Corollary 5.3.2 in [12]. This completes the proof of Theorem 8.2.

Remarks

1. When τi = 0, i = 1, 2, . . . , n, system (8.1) becomes the standard multigroup SIR model
without delays studied in [10]. Theorem 8.2 generalizes Theorem 3.3 in [10].

2. When n = 1, Theorem 8.2 gives a global stability result of McCluskey [26] for a
single-group SIR model with delay.

Acknowledgments.
This research was supported in part by grants from the Natural Science and Engineering

Research Council of Canada (NSERC) and Canada Foundation for Innovation (CFI). Z.
Shuai acknowledges the support of an Izaak Walton Killam Memorial Scholarship at the
University of Alberta.

15



References

[1] F. M. Atay and O. Karabacak, Stability of coupled map networks with delays, SIAM
J. Appl. Dyn. Syst. 5 (2006) 508–527.

[2] E. Beretta and Y. Takeuchi, Global stability of single-species diffusion Volterra mod-
els with continuous time delays, Bull. Math. Biol. 49 (1987) 431–448.

[3] E. Beretta and Y. Takeuchi, Global stability of an SIR epidemic model with time
delays, J. Math. Biol. 33 (1995) 250–260.

[4] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences,
Academic Press, New York, NY, 1979.
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