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Abstract
We study synchronization in an array of coupled identical nonlinear dynamical
systems where the coupling topology is expressed as a directed graph and give
synchronization criteria related to properties of a generalized Laplacian matrix
of the directed graph. In particular, we extend recent results by showing that the
array synchronizes for sufficiently large cooperative coupling if the underlying
graph contains a spanning directed tree. This is an intuitive yet nontrivial
result that can be paraphrased as follows: if there exists a dynamical system
which influences directly or indirectly all other systems, then synchronization
is possible for strong enough coupling. The converse is also true in general.

Mathematics Subject Classification: 05C50, 15A48, 34C15, 34D20

1. Introduction

For the last decade or so, synchronization in arrays of coupled chaotic systems has been widely
studied [1–9]. Of interest to this paper is the case where the dynamical systems are coupled via
a directed graph, i.e. the individual systems are considered as vertices and system v influences
the dynamics of system w if and only if (v, w) is a directed edge of the underlying directed
graph. Lyapunov’s direct method has been used successfully to derive sufficient conditions
for synchronization in such arrays [2, 4, 7, 8]. When the graph is undirected, such sufficient
conditions depend on the second smallest eigenvalue of the Laplacian matrix, also known
as algebraic connectivity [10]. In particular, since the algebraic connectivity is positive for
connected graphs, it was shown in [2] that sufficiently strong cooperative coupling synchronizes
the array when the underlying undirected graph is connected.

Recently, generalizations of algebraic connectivity to directed graphs have been proposed
and used to derive synchronization in coupled arrays of dynamical systems [11, 12].
For instance, in [12] it was shown that sufficiently large cooperative coupling synchronizes
the array if the underlying graph is strongly connected. The purpose of this paper is to
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extend this result to connected directed graphs which are not strongly connected. We derive
a synchronization criterion which depends on algebraic properties of the underlying graph.
Furthermore, we show that sufficiently large cooperative coupling synchronizes the array if
the underlying graph contains a spanning directed tree. This is an intuitive result since this
graph-theoretical condition implies the existence of a system (located at the root of the tree)
which directly or indirectly influences all other systems. This result is obtained by using a
mixture of results from linear algebra, graph theory and stability theory. When the underlying
graph does not contain a spanning directed tree, we show that in general the array will not
synchronize, especially if the individual systems are chaotic.

In section 2 we introduce results from stability theory which will be useful to this paper.
In section 3 we present some definitions and results in graph theory. Finally, the main
synchronization results are presented in section 4.

We denote the vector of all 1s by 1 and the j th unit vector by ej . The matrix of all 1s
is denoted by J . The identity matrix is denoted by I . The dimensions of these vectors and
matrices will be clear from the context. A (not necessarily symmetric) real matrix A is positive
definite (semidefinite) if xT Ax > 0 (�0) for all nonzero x. We denote this as A � 0 (A � 0).
The Kronecker product of an n by m matrix A and a p by q matrix B is the np by mq matrix
A ⊗ B defined as

A ⊗ B =




A11B · · · A1mB

...
. . .

An1B AnmB


 .

2. Lyapunov’s direct method

Definition 2.1. Given an m by m matrix V , a function f (y, t) : R
m+1 → R

m is V -uniformly
decreasing if (y − z)T V (f (y, t) − f (z, t)) � −µ‖y − z‖2 for some µ > 0 and all y, z ∈ R

m

and t ∈ R.

By the mean value theorem, a differentiable function f (y, t) is V -uniformly decreasing if
and only if V (∂f (x, t)/∂x) + δI � 0 for some δ > 0 and all x, t [13]. Consider the following
synchronization result which generalizes the results in [2, 8, 14] for the coupled network of
identical dynamical systems with state equations:

ẋ = (f (x1, t), . . . , f (xn, t))
T + (C(t) ⊗ D(t))x + u(t), (1)

where x = (x1, . . . , xn)
T , u = (u1, . . . , un)

T and C(t) is a zero row sums matrix for all t .
Each xi is a state vector in R

m. C(t) is an n by n matrix and D(t) is an m by m matrix for
each t .

Theorem 2.1. Let Y (t) be an m by m time-varying matrix and V be an m by m symmetric
positive definite matrix such that f (x, t)+Y (t)x is V -uniformly decreasing. Then the network
of coupled dynamical systems in equation (1) synchronizes in the sense that ‖xi − xj‖ → 0
as t → ∞ for all i, j if the following two conditions are satisfied:

(i) limt→∞ ‖ui − uj‖ = 0 for all i, j .
(ii) There exists an n by n symmetric irreducible zero row sums matrix U with nonpositive

off-diagonal elements such that

(U ⊗ V )(C(t) ⊗ D(t) − I ⊗ Y (t)) � 0

for all t .
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Proof. Construct the Lyapunov function g(x) = 1
2xT (U ⊗V )x. As in the proof of theorem 3.2

in [4], the hypotheses imply that the derivative of g along trajectories of equation (1) is
given by

ġ = xT (U ⊗ V )ẋ

= xT (U ⊗ V )




f (x1, t) + Y (t)x1 + u1(t)

...

f (xn, t) + Y (t)xn + un(t)


 + xT (U ⊗ V )(C(t) ⊗ D(t) − I ⊗ Y (t))x

�
∑
i<j

−Uij (xi − xj )
T V (f (xi, t) + Y (t)xi − f (xj , t) − Y (t)xj + ui(t) − uj (t))

�
∑
i<j

−Uij (−µ‖xi − xj‖2 + (xi − xj )
T V (ui(t) − uj (t))).

Note that −Uij � 0 for i < j . For each −Uij > 0 and δ > 0, and sufficiently large t ,
(ui(t) − uj (t)) is small enough such that if ‖xi − xj‖ � δ, then ġ � −(µ/2)‖xi − xj‖2. This
implies that for large enough t , ‖xi −xj‖ < δ. Therefore limt→∞ ‖xi −xj‖ = 0. Irreducibility
of U implies that enough Uij are nonzero to ensure ‖xi − xj‖ → 0 for all i and j . �

3. Laplacian matrices of directed graphs

Definition 3.1. For an irreducible square matrix B with nonpositive off-diagonal elements, the
functions β(B) and γ (B) are defined as follows: decompose B uniquely as B = L+D, where L

is a zero row sum matrix and D is a diagonal matrix. Let w be the unique positive vector such
that wT L = 0 and maxv wv = 1. The vector w exists by Perron–Frobenius theory [15].
Let W = diag(w). Then γ (B) = minx 	=0,x⊥1(x

T WBx/(xT (W − wwT /
∑

v wv)x)) and
β(B) = minx 	=0(x

T WBx/xT Wx).

Lemma 3.1. Let B be an irreducible matrix with nonpositive off-diagonal elements and
nonnegative row sums with decomposition B = L + D as in definition 3.1. Then γ (B) > 0,
β(B) � 0. Furthermore, β(B) > 0 if and only if D 	= 0.

Proof. It is easy to see that D � 0, γ (B) � minx⊥1,x 	=0(x
T WBx/xT x) = 1

2λ2(WB + BT W)

and β(B) � minx 	=0(x
T WBx/xT x) = 1

2λmin(WB + BT W) where λmin and λ2 denote the
smallest and the second smallest eigenvalues, respectively. Since WL has zero column
sums, WL + LT W is a zero row sums matrix. As w is a positive vector, this in turns
implies that WB + BT W is irreducible and has nonnegative row sums and thus γ (B) �
1
2λ2(WB+BT W) > 0 [15]. By Gershgorin’s circle criterion, β(B) � 1

2λmin(WB+BT W) � 0.
Suppose that D = 0. Then WB is a zero row sums and zero column sums matrix so that
1T WB = WB1 = 0 and thus β(B) = 0. If D 	= 0, there exists i such that Dii > 0 and
thus (WB + BT W)ii > | ∑j 	=i (WB + BT W)ij |. By [16], WB + BT W is nonsingular and thus
β(B) > 0. �

Lemma 3.2. If B is an irreducible zero row sums matrix with nonpositive off-diagonal
elements, then there exists an irreducible symmetric zero row sums matrix U with nonpositive
off-diagonal elements such that U(B − αI) � 0 for all α � γ (B).

Proof. Let w be a positive vector such that wT B = 0 and maxv wv = 1 with W = diag(w).
Define U = W − (wwT /

∑
v wv). Then U is a symmetric positive semidefinite irreducible

zero row sums matrix with nonpositive off-diagonal elements. Since 1T U = U1 = 0, we have
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1T U(B −αI) = U(B −αI)1 = 0. Therefore U(B −αI) � 0 if miny⊥1 yT U(B −αI)y � 0.
Since wT B = 0, U(B − αI) = WB − αU . Therefore for y ⊥ 1, yT U(B − αI)y �
γ (B)yT Uy − αyT Uy � 0. �

Definition 3.2. Let A be a zero row sums matrix written in Frobenius normal form [17]:

A = P




B1 B12 · · · B1k

B2 · · · B2k

. . .
...

Bk


 P T , (2)

where P is a permutation matrix and Bi are square irreducible matrices. Then η(A) is
defined as

η(A) = min(β(B1), β(B2), . . . , β(Bk−1), γ (Bk)).

Definition 3.3. For a weighted directed graph, its adjacency matrix A is defined as Aij = ρ

if and only if there is a directed edge with weight ρ from vertex i to vertex j . The outdegree
of a vertex is the sum of the weights of all edges emanating from it. The Laplacian matrix is
defined as L = D −A, where A is the adjacency matrix and D is the diagonal matrix of vertex
outdegrees.

Thus the Laplacian matrix is a zero row sums matrix. A graph is strongly connected if
there exists a directed path between any ordered pair of distinct vertices. The decomposition of
the Laplacian matrix into Frobenius normal form corresponds to decomposing the graph into
maximally strongly connected subgraphs and is a standard problem in graph algorithms that
can be solved in linear time [18]. A reversal of a graph is obtained by reversing the orientation
of all the edges. If a graph has adjacency matrix A, then its reversal has adjacency matrix AT .
A graph is a directed tree if it is a tree as an undirected graph and there is a directed path from
the root to every other vertex.

Lemma 3.3. Let L be the Laplacian matrix of a graph with nonnegative weights. Then
η(L) > 0 if and only if the reversal of the graph contains a spanning directed tree.

Proof. Let Vi be the subset of vertices corresponding to Bi . If the reversal of the graph contains
a spanning directed tree, then its root must be in Vk . Furthermore, there is a directed path from
every other vertex to the root. If Di = 0 for some i < k, then there are no paths from Vi to
Vk , a contradiction. Therefore by lemma 3.1, η(L) > 0.

If the reversal of the graph does not have a spanning directed tree, then there exist a pair of
vertices v and w such that for all vertices z, there is either no directed paths from v to z or no
directed paths from w to z [19]. Let R(v) and R(w) be the set of vertices reachable from v and
w respectively, which must necessarily be disjoint. Let H(v) and H(w) be the subgraphs of
G corresponding to R(v) and R(w), respectively. Expressing the Laplacian matrix of H(v) in
Frobenius normal form, let B(v) be the square irreducible matrix in the lower right corner. We
define B(w) similarly. Note that B(w) and B(v) are zero row sums singular matrices. By the
construction, it is easy to see that B(v) = Bi and B(w) = Bj in the Frobenius normal form
(equation (2)) of L for some i, j . By lemma 3.1, β(Bi) = β(Bj ) = 0 and thus η(L) = 0 since
either i 	= k or j 	= k. �

At first glance, η(A) appears not to be well-defined in definition 3.2 because even though
the matrices Bi are uniquely defined (up to simultaneous row and column permutation), their
ordering within the Frobenius normal form (equation (2)) is not [17]. However, it is easy to
see that the lower right block Bk is uniquely defined if and only if the reversal of the graph
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contains a spanning directed tree. In this case η(A) is well-defined. If Bk is not uniquely
defined, η(A) = 0 by lemma 3.3 and η(A) = 0 for any admissible ordering of the Bi within
the Frobenius normal form. Thus η(A) is well-defined for any A.

4. Main results

Consider an array of dynamical systems coupled via a directed graph with state equation
(equation (1)) where we require that C is a constant zero row sums matrix, i.e. the state
equation is

ẋ = (f (x1, t), . . . , f (xn, t))
T + (C ⊗ D(t))x + u(t). (3)

The matrix C describes the coupling topology and the matrix D describes the coupling between
two dynamical systems. Together the term (C ⊗ D(t))x denotes a time-varying coupling
where the coupling topology does not change with time. The underlying graph is defined as
follows: there is an edge from system i to system j if and only if there is a coupling term from
system i to system j , i.e. Cji 	= 0. In other words, the Laplacian matrix of the reversal of the
underlying graph is C. The following theorem gives sufficient conditions for synchronization
which is related to the quantity η(C) associated with the underlying graph.

Theorem 4.1. Consider an array of dynamical systems coupled via a directed graph with
state equation (3). The array synchronizes in the sense that ∀i, j, limt→∞ ‖xi − xj‖ = 0 if the
following conditions are satisfied:

(i) C is a zero row sums matrix with nonpositive off-diagonal elements,
(ii) ∀i, j , limt→∞ ‖ui − uj‖ = 0,

(iii) f (x, t) + D(t)x is V -uniformly decreasing for some symmetric positive definite V ,
(iv) V D(t) � 0 and is symmetric for all t ,
(v) η(C) � 1.

Proof. Without loss of generality, we can assume that the permutation matrixP in the Frobenius
normal form of C (equation (2)) is equal to the identity matrix. Let x̃ and ũ be the part of
the state vector x and input vector u corresponding to Bk , with x̃ = (xs, xs+1, . . . , xn)

T ,
ũ = (us, us+1, . . . , un)

T . The state equation for x̃ is then

˙̃x = (f (xs, t), . . . , f (xn, t))
T + (Bk ⊗ D(t))x̃ + ũ. (4)

By theorem 2.1 the array in equation (4) synchronizes if there exists an irreducible symmetric
zero row sums matrix Ũ with nonpositive off-diagonal elements such that (Ũ ⊗ V )((Bk − I )

⊗D(t)) � 0. Since V D(t) is symmetric negative semidefinite, this is equivalent to
Ũ (Bk − I ) � 0. Since η(C) � 1 implies γ (Bk) � 1, such a matrix Ũ exists by lemma 3.2 and
the array in equation (4) synchronizes and thus limt→∞ ‖xi−xj‖ = 0 for s � i � j � n. Since
the systems in equation (4) are synchronized, we can collapse their dynamics to that of a single
system. In particular, the state equation for xs can be written as ẋs = f (xs, t) + us(t) + φs(t)

where φs(t) → 0 as t → ∞.
Let us rewrite the Frobenius normal form of C as

C =
(

F + G H

Bk

)
,

where F is a square zero row sums matrix and G is diagonal. Note that F + G is block upper-
triangular with the diagonal blocks equal to B1, . . . , Bk−1. Then the dynamics of (x1, . . . , xs)
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can be written as:


ẋ1

...

ẋs


 =




f (x1, t)

...

f (xs, t)


 +

(
C̃ ⊗ D(t)

)



x1

...

xs


 +




φ1(t) + u1(t)

...

φs(t) + us(t)


 , (5)

where

C̃ =
(

F + G h

0 0

)

and φi(t) → 0 as t → ∞ and h is a vector of the row sums of H . Since C has zero row sums,
this means that the elements of −h are equal to the diagonal elements of G. The functions φi

can be considered as residual errors that occurred when replacing xi , i > s in the state equation
(equation (3)) with xs . Construct the following matrices:

R = (
I −1

)
, Q =

(
I

0

)
.

If C is an n by n matrix and Bk is an l by l matrix, then the dimensions of C̃, R, Q and F are
n− l + 1 by n− l + 1, n− l by n− l + 1, n− l + 1 by n− l and n− l by n− l, respectively. It is
easy to verify that RC̃Q = F + G and RC̃QR = RC̃. Decompose Bi as Bi = Li + Di where
Li is a zero row sum matrix and Di is a diagonal matrix. Let W = diag(w1, . . . , wk−1) where
wi are positive vectors such that wT

i Li = 0 and maxv wi(v) = 1. Note that I � W � 0.
Let 
 = diag(α1I1, . . . , αk−1Ik−1) where Ij are identity matrices of the same dimension

as Bj and αj > 0. Let Z = 
RC̃Q
−1. If we choose αj much larger than αi for j > i, then Z

is nearly block-diagonal with the blocks equal to B1, B2, . . . , Bk−1. Now let U = RT 
W
R.
It is easy to see that U is a symmetric irreducible zero row sums matrix and has nonpositive
off-diagonal elements.

Then U(C̃ − I ) = RT 
W
R(C̃ − I ) = RT 
(WZ − W)
R. By choosing appropriate
αj Z can be made as close to block diagonal as possible. The condition η(C) � 1 implies that
β(Bi) � 1 for i < k and thus WZ − W � −εI for arbitrarily small ε and theorem 2.1 can
again be applied (when ε is small enough) to show that equation (5) synchronizes. �

Assuming conditions (i)–(iv) are satisfied in theorem 4.1, the quantityη(C), which depends
on the underlying graph, provides a bound on the amount of coupling needed to synchronize
the array.

Corollary 4.1. Consider the array of coupled dynamical systems with state equations:

ẋ = (f (x1, t), . . . , f (xn, t))
T + κ(C ⊗ D(t))x + u(t), (6)

where κ is a scalar. Assume that conditions (i)–(iv) in theorem 4.1 are satisfied. If the
underlying weighted directed graph, i.e. the graph whose reversal has Laplacian matrix C,
contains a spanning directed tree, then the array in equation (6) synchronizes for sufficiently
large κ > 0.

Proof. By theorem 4.1 the array synchronizes if κη(C) � 1. Since η(C) > 0 by lemma 3.3,
the result follows. �

Corollary 4.2. Suppose that f has a bounded Jacobian matrix, i.e. ‖∂f (x, t)/∂x‖ � M

for all x, t . Suppose also that C is a zero row sums matrix with nonpositive off-diagonal
elements, D(t) is symmetric and for some ε > 0, D(t) � −εI for all t . Suppose further
that limt→∞ ‖ui − uj‖ = 0 for all i, j . If the underlying weighted directed graph contains a
spanning directed tree, then the array in equation (6) synchronizes for sufficiently large κ > 0.
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Proof. If f has a bounded Jacobian matrix, we can choose V = I and f (x, t) + ψD(t)x

is V -uniformly decreasing for sufficiently large scalar ψ . The result then follows from
corollary 4.1. �

Corollaries 4.1 and 4.2 are intuitive results as the condition that the underlying graph
contains a spanning directed tree implies that there exists a system that directly or indirectly
couples into all other systems. So one can expect all other systems to synchronize to this
system when the coupling is sufficiently large.

If the underlying graph does not contain a spanning directed tree, then the proof of
lemma 3.3 shows that there exists two groups of systems which are not influenced by other
systems. Therefore, in general, these two groups of systems will not synchronize with each
other, especially when the systems are chaotic and exhibit sensitive dependence on initial
conditions. In this case the Frobenius normal form can be written as

A = P




B1 B12 · · · B1k

B2 · · · B2k

. . .
...

Br 0 0
. . . 0

Bk




P T . (7)

Let Vi denote the set of systems corresponding to Bi and assume conditions (i)–(iv) in
theorem 4.1 are satisfied. In this case the systems within Vj will synchronize with each
other if γ (Bj ) > 1 for each r � j � k. Thus we have at least k − r + 1 separate clusters
of synchronized systems. Similar arguments as above can be used to show that the systems
belonging to

⋃r−1
i=1 Vi are synchronized with each other if for each 1 � j � r − 1, β(Bj ) � 1

and for each r � j � k, Bij are constant row sums matrices with the row sum of Bij equal to
the row sum of Bi ′j for 1 � i < i ′ < r .

In [3] a Lyapunov exponents based approach is used to derive synchronization criteria. This
method is based on numerical approximation of Lyapunov exponents and can only provide local
results. The requirement that the underlying graph contains a spanning directed tree also exists
in the Lyapunov exponents approach to synchronization. In this approach, the synchronization
criteria depend on the nonzero eigenvalue of C with the smallest real part. For chaotic systems,
this eigenvalue needs to have a positive real part for the array to synchronize. In [12] it was
shown that this eigenvalue has a positive real part if and only if the underlying graph contains a
spanning directed tree.
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