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Outline of Talks

Part I: Global Stability Problems in Heterogeneous Epidemic
Models

I.1: Modeling Infectious Diseases in Heterogeneous
Populations

» Simple epidemic models and their dynamics

» Basic reproduction number and the threshold theorem

v

Multi-group models for heterogeneous populations
Global-Stability Problem in Multi-Group Models
Global-stability problem and Lyapunov functions

v Evyvy@ vy vienwn

A Lyapunov function for multi-group models
Why is global-stability difficult to prove?
Matrix-Tree Theorem in Graph Theory
Rooted directed trees and unicyclic graphs
Kirchhoff's Matrix-Tree Theorem

How do all of these come together?

Global-stability result for multi-group models.
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Outline of Talks Nemarie, From

Epidemics to Flight of
Drones

Part II: Dynamical Systems on Networks Yo
11.1: Dynamical systems on networks

» A network as a directed graph

» Dynamical systems on networks

» Examples
1.2: Global-stability problem
» Global-stability problem and Lyapunov functions
» A general theorem
» Applications
1.3: Flight formation control for drones
» Network of autonomous robotic agents
» Flight formation problems and HPC control protocol
» Simulations
1.4: Synchronization problems
» Synchronization of metronomes, a video
» Global synchronization of coupled oscillators.



Dynamical Systems on

How to Model an Epidemic? Nevor: From

Epidemics to Flight of
Drones

Michael Li

Simple Epidemic Models

o @ R E

Number of Cases

(=T CIE -

1 3 s 7 @ 1 B 5 ¥ ® 21 23 25 21 A
Day of Onset

An Epidemic Curve



How to Model an Epidemic?

new infection
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recovery
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new infection
—= (1)
death

I'(t) = |Incidence Rate|— | Recovery Rate|—|Death Rate

F(I(2), S5(t), N(t)) — v 1(t) — dI(¢)



Dynamical Systems on

How to Model an Epidemic? Networa; From

Epidemics to Flight of
Drones

Michael Li

Simple Epidemic Models

recovery
: . ——
new infection
—= (1)
death

I'(t) = |Incidence Rate|— | Recovery Rate|—|Death Rate

F(I(2), S5(t), N(t)) — v 1(t) — dI(¢)

f(1,S,N)= IS : bilinear incidence

f(I,S,N) proportionate incidence

=A—"
N



A Single-Group SIR Model

S . Susceptibles

l:

ds

Infectious

BIS

dl
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S . Susceptibles I = Infectious R : Removed

IS I
s R

S'=AN-81S—-dS
I'=B1S —(v+d)I
R =~ —dR
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The average secondary infections produced by a single infective
during its entire infectious period.
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The basic reproduction number is Simple Epidemic Models
BA 1 A
RO = ———-----:- = B - — s —
(y+d)d v+d d

The average secondary infections produced by a single infective
during its entire infectious period.

Theorem (Threshold Theorem)

(1) If Ry <1, then the disease-free equilibrium Py = (A/d,0) is
stable and attracts all solutions in RZ2.

(2) If Ry > 1, then Py is unstable, and a unique endemic
(positive) equilibrium P* is stable and attracts all positive
solutions in R2.
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The basic reproduction number is Simple Epidemic Models

BA 1 A
Ry— 2™ g 2 A
T (y+d)d b 35d d

The average secondary infections produced by a single infective
during its entire infectious period.

Theorem (Threshold Theorem)

(1) If Ry <1, then the disease-free equilibrium Py = (A/d,0) is
stable and attracts all solutions in RZ2.

(2) If Ry > 1, then Py is unstable, and a unique endemic
(positive) equilibrium P* is stable and attracts all positive
solutions in R2.

Proof uses the Poincaré-Bendixson theory for 2d systems.
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Each circled number represents a homogeneous group.

Bjk © transmission coefficient between /; and 5.
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Transmission Matrix B is reducible.



A Two-Group SIR Model

1S dih di Ry
it B11hS1 Yih
S h Ry
A2 B22hSz Y2l
52 I2 R2

iszz

Incidence terms (bilinear):
> Group 1: BuIlSl
> GI’OUp 2: 6221252

ldzlz
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A Two-Group SIR Model

1S dih di Ry
it B11hS1 Yih
St h Ry
N 321 /2 51
~
~
~
A2 B22hSz Y2l
52 I2 R2

iszz

Incidence terms (bilinear):
» Group 1:  B1hS: + Bo1hS:
> GI’OUp 2: 6221252

ldz h

dr Ry
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A Two-Group SIR Model

i S

d1/1 lel
it B11hS1 Yih
S < h Ry
N Ba1hS1
AN Ve
X
s N
A2 S o B22hSz | Y2l R
2 2 2
B12h Sz

iszz

Incidence terms (bilinear):
> Group 11 S11hS1 + B1hS:
» Group 2: B2ohSy + [12hSs

ldzlz

Ry
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An n-Group SIR Model

Sk = N — diSk — Z@jk’j&m

j=1

o= BiliSk — (dic + )k
j=1

Mathematical Questions:
» If Ry > 1, is P* unique?
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An n-Group SIR Model

S = N — diSk — Zﬁjk/jS/m

j=1

i = Zﬂjkljsk — (dk + ) Ik,
=1

Mathematical Questions:
» If Ry > 1, is P* unique?
» When P* is unique, is it globally stable?
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For Models using bilinear incidence:

e Lajmanovich and Yorke (1976) s Rzt

» n-group SIS model, by Lyapunov function
> |ater extended by Nold, Hirsch

Hethcote (1975)
> n-group SIR model with no vital dynamics
Thieme (1983)
> n-group SEIRS model, small latent and immune periods
Beretta and Capasso (1986)
» n-group SIR model, constant group sizes
Lin and So (1993)

» n-group SIRS model, constant group sizes

> By (i # j) small
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> |_|n (1992) Previous Results
n-group model for HIV

» Huang, Cooke, Castillo-Chavez (1992)
n-group model for HIV with delay

These models use proportionate incidence.



Global-Stability and Lyapunov Functions

Consider a general system of ODE

x'=F(x), xe&DcR"

X is an equilibrium if F(X) = 0.

An equilibrium X is globally stable in D if it is locally stable and
all solutions in D converge to X as t — o©.
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Global-Stability and Lyapunov Functions

Consider a general system of ODE

x'=F(x), xe&DcR"

X is an equilibrium if F(X) = 0.

An equilibrium X is globally stable in D if it is locally stable and
all solutions in D converge to X as t — o©.
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Global-Stability and Lyapunov Functions

Theorem (Lyapunov)
Suppose 3 a Lipschitz function V(x) such that
(1) V(x) > V(x) and V(x) = V(X) <= x=x.
(2) V(x) = VV(x)- F(x) <0, xe& D, and
\*/(X) =0 < x=xX.
Then X is globally stable in D.
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Global-Stability and Lyapunov Functions

Theorem (Lyapunov)
Suppose 3 a Lipschitz function V(x) such that
(1) V(x) > V(x) and V(x) = V(X) <= x=x.
(2) V(x) = VV(x)- F(x) <0, xe& D, and
\*/(X) =0 < x=xX.
Then X is globally stable in D.

V(x(t)) strictly decreasing along a solution x(t)
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Constructing a Lyapunov Function for the
n-Group Model

Consider a candidate

vzzvk[ (Sk—SiInSK) + (b — 7 In k) }
k=1

A Lyapunov function for a single-group model
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Constructing a Lyapunov Function for the _Fmmsier
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n-Group Model Michael L

Consider a candidate Dyponow Funcons

V:ka[ (Sk—SinSe) + (I — I In Iy }
k=1

A Lyapunov function for a single-group model

X
Choose appropriate v, so that V/(x) is negative definite.



Derivative of V

V' =

n S* I*

E vk[(sll(_ s_kS;()-l-(I,’(_ /illi)]
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Derivative of V

Sy I;
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=iv4dks:< i-2)
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V' =

n

> wefish - s+ (- )
afasi-g ) <o

[Zﬂjksk (dk +’yk)/k]

Derivative of V

I
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k=1
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Derivative of V
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[Z Bik Skl

AR

)]

) :| Derivative of V
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k=1 j=1

forall h,---,I, > 0.

Choosing Constants v



Choosing Constants vy

Choose v, so that

n

3y vk[ZﬁJksk

k=1 j=1

(dk + 'Yk)lk:| =0

forall h,---,1, > 0. This is equivalent to

BuliSt - BmlySt

ﬂlnll*s: tee ﬂnn/,;ks:

> e Bl Siv

Z},:l Bjn IJ* SnVa
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Choose v, so that

n

> Vk[ZﬁJkSk (dk + /k)lk:| =0

k=1 j=1

forall h,---,1, > 0. This is equivalent to

Choosing Constants v

puliST -+ BmlyST %1 > Bl Siv
ﬂlnlfsrt o ﬂnn/:S: Vn Z;:l /BJHIJ*S: Vn
since, at P*,

(di + k) Z Bl Sk
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Choose v, so that

n

2 [Zﬂjksk (dv + 'Yk)lk:| =0

k=1 j=1

forall h,---,1, > 0. This is equivalent to

Choosing Constants v

BulfSE o Bmly Sy vi > Bl Siw
ﬁlnlfs: e ﬂnn/:S: Vn ZJ,?=1 6Jnlj*5: Vn
since, at P*,

(di + k) Z Bl Sk
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Set Bjk = ﬁjkIj*S,’f. Then (vq,-- -, vk) are determined by the Nevares Fem
. Epidemics to Flight of
linear system P ones
_ _ _ Michael Li
SuabBu =P o —fm
=B DB —Bn2 1 0
- : - Vo 0
- 51n _B2n e Z/;ﬁn Bnl

Choosing Constants v

The solution space is 1d and a basis is given by

vk = Cix, the k-th principal minor, k=1--- n.



Set Bi = Bl Sy Then (v, --

linear system

Z/;ﬂ B —Ba —Bm
— B2 21752 Bai B2 Vi 0
. : : Vi 0
- Bln _B2n Z/;ﬁn Bnl
The solution space is 1d and a basis is given by
vk = Cix, the k-th principal minor, k=1--- n.

Need to show

n

V< Ho= Y v By

J,k=1

forall S4,h,---,5,,1, > 0.

, Vk) are determined by the
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Directed Graphs and Rooted Spanning Trees

Let G be a directed graph with vertex set V(G) ={1,---,n}
and weight matrix B = (8ij)nxn.

B2z
M
\/

Bra )\\ Bas
B
Bu1 /\® b * \ ﬁ33
Bar

\@/

,344
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Directed Graphs and Rooted Spanning Trees

Let G be a directed graph with vertex set V(G) ={1,---,n}
and weight matrix B = (8ij)nxn.

B2z
M
\/

Bra )\\ Bas
B
Bu1 /\@) b * \ 533
Bar

\@/

,344

A spanning tree T of G is a sub-tree of G of n — 1 edges.

A rooted spanning tree is oriented towards a vertex.
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Directed Graphs and Rooted Spanning Trees

Let G be a directed graph with vertex set V(G) = {1,--- , n}
and weight matrix B = (83jj)nxn-
®\\ Bos

\
@ ®

A spanning tree T of G is a sub-tree of G of n — 1 edges.
A rooted spanning tree is oriented towards a vertex.

The weight of tree T is w(T) =[] B over all edges (i, ).
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Directed Graphs and Rooted Spanning Trees

Let G be a directed graph with vertex set V(G) ={1,---,n}
and weight matrix B = (8ij)nxn.

B2z
M
\/

Bra )\\ Bas
B
Bu1 /\@) b * \ 533
Bar

\@/

544

A spanning tree T of G is a sub-tree of G of n — 1 edges.
A rooted spanning tree is oriented towards a vertex.

The weight of tree T is w(T) =[] B over all edges (i, ).
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The Matrix-Tree Theorem

Let B = (B,-j),,x,, be the weight matrix of graph G.

The Kirchhoff Matrix (combinatorial Laplacian) of B is

21751 Bll 7621
_512 217&2 BZ/

Wl
[

761n 7B2n

Note that all column sums of B are 0.

7Bn1
_Bn2

ZI;&n Bnl
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The Matrix-Tree Theorem et

Epidemics to Flight of
Drones

Let B = (B,-j),,x,, be the weight matrix of graph G. i
The Kirchhoff Matrix (combinatorial Laplacian) of B is

Z/;ﬂ B —Ba e —Bn
— —br Z/;éz Bor -+ —Br2
B= _ _ .
761n *52,7 s Zl#n Bnl $::0':/:1:rixﬂ'ree

Note that all column sums of B are 0.

Theorem (Matrix Tree Theorem, Kirchhoff 1847)

G = Y_ w(T).

TeTy

Ty: The set of spanning trees rooted at vertex k.
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vi==C1= Z w(T) = Bs2f1 + B21Bs1 + BasBa
TeT,
All possible spanning trees rooted at vertex 1:
3 2 5 3 2
J/Bsz _ \ 3V i/BB The Matrix-Tree
621 Theorem
2 1 3
¢521 ¢/B31

1 1
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vi==C1= Z w(T) = Bs2f1 + B21Bs1 + BasBa
TeT,
All possible spanning trees rooted at vertex 1:
3 2 P 3 2
e N I3
2 1 3
VB VBa
1 1

Furthermore

vifB13 = B32521 513 + B21B31513 + Ba3Pa1fis
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Solving System Bv=0: n=3 Netwerks: From

Epidemics to Flight of
Drones

Michael Li
vi==C1= Z w(T) = B32B21 + Bo1Ba1 + B3P
TeT,
All possible spanning trees rooted at vertex 1:
3 2 5 3 2
f\bgsz E\ 3V i/ Baz $::0':/:;:rix—Tree
Bz | 2 S| 3
\V B VBa
1 1
Furthermore

vifB13 = 332521 513 + Ba1B31P13 + BazPa1fis
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vi==C1= Z w(T) = Bs2f1 + B21Bs1 + BasBa
TeT,
All possible spanning trees rooted at vertex 1:
3 2 5 3 2
¢fé32 521\ 3%4_ \L Bos $::Oli:rix—Tree
2 1 13 3
VB VB
1 1

Furthermore

vif13 = B32521 513 + 52133113 + BazPa1 s
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vi==C1= Z w(T) = B32B21 + Bo1Ba1 + B3P
TeT,
All possible spanning trees rooted at vertex 1:
3 2 5 3 2
- 31 = .

\L B32 521\\ / i/ Bas $::0':/:1:rlxﬂ'ree

2 1 3

VB BB

1 1

Furthermore

vifB13 = B32521 513 + B21B31 513 + Pa3B3113
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Solving System Bv=0: n=3 Netwerks: From

Epidemics to Flight of
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Michael Li
vi=Cg= Z w(T) = B32B21 + B21B31 + B3l
TeT,
All possible spanning trees rooted at vertex 1:
3 2 5 3 2
- 31 -
) f\Lﬂaz le\ ﬂ ‘Lﬁ% The Matrix-Tree
Bz | 2 1 B3 3 il
\} Bz BT Bn
1 1
Furthermore

vifB13 = B32521 513 + B21B31P13 + BazPa1fis

Each product is the weight of a unicyclic graph with a cycle
of length 1 < r <3.



Unicyclic Graphs and Rooted Trees

How does a unicyclic graph correspond to products in vy Bx;?
2 3
1 /

viBis = BsoBo1 Pz + Bo1P13831 + Bas B Pus
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Unicyclic Graphs and Rooted Trees

How does a unicyclic graph correspond to products in vy Sx;?

2 3
N,

W= =<—N

viB13 = B3oB21 P13 + B21B13Ba1 + B3 B Pus

Dynamical Systems on
Networks: From
Epidemics to Flight of
Drones

Michael Li

The Matrix-Tree
Theorem



Dynamical Systems on

Unicyclic Graphs and Rooted Trees Networks: From

Epidemics to Flight of
Drones

Michael Li

How does a unicyclic graph correspond to products in vy Sx;?

2 3
N

The Matrix-Tree
Theorem

W= =<—N

viB13 = B3oB21 P13 + B21B13Ba1 + Bas B Pus
v3fB31 = Br12B2P31 + 521513831 + Bi3BasfBar
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The Matrix-Tree
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VB3 = B30521 B13 + B21B31P13 + Bz B Pus
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3 1
b f
2 '3
\ \Y
1 2

The Matrix-Tree
Theorem

viB13 = B3oB21 P13 + B21B31513 + B3 B Bus
vafo1 = P13B32001 + Br2B32821 + Ba1Prafan



Dynamical Systems on

Another Unicyclic Graph Netors: From

Epidemics to Flight of
Drones

Michael Li

3 1 2
dl f i
|2 '3 ‘1
\ W \¥

1 2 3

The Matrix-Tree
Theorem

viB13 = B3oB21 P13 + B21B315i3 + B3 B Pus
v2fo1 = B13B32Ba1 + B12B32821 + Ba1Praban
V330 = B12B23 P32 + B13Ba3Bs2 + Bo1 /1353
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3 1 2
dl f i
|2 '3 ‘1
\ W \¥

1 2 3

The Matrix-Tree
Theorem

viBis = B30521 P13 + B21B31Pis + Bz B Pus
vafBo1 = B13B32501 + B12B32821 + Ba1Praban
V3ﬂ_32 = 5125235_32 + 5135235_32 + 521/;13532



Another Unicyclic Graph

3 1 2
dl # f
|2 13 ‘1
\V \J \

1 2 3

viB13 = 332021 13 + Ba1B1P1s + BazBaiPis
vafBa1 = B13B32521 + Br2BaBar + Ba1Bi2Bar
v3B32 = B1oB23 32 + B13B23Bs2 + F21513 532
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Epidemics to Flight of
Drones

Michael Li

The Matrix-Tree
Theorem
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Main Result

For the n-group SIR model with bilinear incidence,

Theorem (Guo, Li, Shuai, 2007)

Assume that transmission matrix B is irreducible.

If Ry > 1, then P* is unique and is globally stable in Rfr”.
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The same graph-theoretical approach can be used to:

Build Lyapunov function V for a large-scale system

V = zn: Ck Vk
k=1

using the known Lyapunov function Vj for each component.

Summary
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