Matching under transferable utility

Brendan Pass (U. Alberta)

July 11, 2016

Today: introductory material.

- What is optimal transport?
- What is known? What sort of mathematics is involved?
- Why should I care? What can I do with it? Applications?

Monday: a deeper look at one selected topic. At the end of today's talk, we can vote to decide on the topic. The choices include:

- Matching theory (economics): what sort of patterns emerge when agents match together (for instance, workers and firms on the labour market, or husbands and wives on the marriage market).
- Density functional theory (physics/chemistry): how does a system of electrons organize itself to minimize interaction energy.
- Curvature and entropy (geometry): How does curvature relate to the behavior of densities along interpolations?
Both talks will focus on ideas and we will try to avoid getting bogged down in too many details.
- Consider a collection of firms matching with a collection of workers (other interpretations are possible).
- Consider a collection of firms matching with a collection of workers (other interpretations are possible).
- Let $X \subset \mathbb{R}^{n}$ be a collection of firm types. We differentiate between firms using their characteristics; for example, the physical location of their headquarters, their size, etc..... The dimension n is the number of characteristics we are using.
- Consider a collection of firms matching with a collection of workers (other interpretations are possible).
- Let $X \subset \mathbb{R}^{n}$ be a collection of firm types. We differentiate between firms using their characteristics; for example, the physical location of their headquarters, their size, etc..... The dimension n is the number of characteristics we are using.
- For example, if $n=3$, we might use firm location (two variables) and size to differentiate among them. $x=\left(x_{1}, x_{2}, x_{3}\right)$ represents a firm located at $\left(x_{1}, x_{2}\right)$ with x_{3} employees.
- Consider a collection of firms matching with a collection of workers (other interpretations are possible).
- Let $X \subset \mathbb{R}^{n}$ be a collection of firm types. We differentiate between firms using their characteristics; for example, the physical location of their headquarters, their size, etc..... The dimension n is the number of characteristics we are using.
- For example, if $n=3$, we might use firm location (two variables) and size to differentiate among them. $x=\left(x_{1}, x_{2}, x_{3}\right)$ represents a firm located at $\left(x_{1}, x_{2}\right)$ with x_{3} employees.
- $Y \subset \mathbb{R}^{m}$ represents the set of worker types, differentiated by m characteristics, such as age, home location, experience,....

The basic model

- Consider a collection of firms matching with a collection of workers (other interpretations are possible).
- Let $X \subset \mathbb{R}^{n}$ be a collection of firm types. We differentiate between firms using their characteristics; for example, the physical location of their headquarters, their size, etc..... The dimension n is the number of characteristics we are using.
- For example, if $n=3$, we might use firm location (two variables) and size to differentiate among them. $x=\left(x_{1}, x_{2}, x_{3}\right)$ represents a firm located at $\left(x_{1}, x_{2}\right)$ with x_{3} employees.
- $Y \subset \mathbb{R}^{m}$ represents the set of worker types, differentiated by m characteristics, such as age, home location, experience,....
- In discrete models, there are $x^{1}, x^{2}, \ldots, x^{k} \in X$ types of firms and $y^{1}, \ldots, y^{\prime} \in Y$ types of workers. There are $f_{i}:=f\left(x^{i}\right)$ firms of type i and $g_{j}:=g\left(y^{j}\right)$ workers of type j.

More on the basic model: matchings

- Assume that each each firm hires exactly one worker, and each worker takes exactly one job (these assumptions can be relaxed, but we'll keep it simple here). In this case, we'd better have $\sum_{i=1}^{k} f\left(x^{i}\right)=\sum_{j=1}^{l} g\left(x^{j}\right)$.

More on the basic model: matchings

- Assume that each each firm hires exactly one worker, and each worker takes exactly one job (these assumptions can be relaxed, but we'll keep it simple here). In this case, we'd better have $\sum_{i=1}^{k} f\left(x^{i}\right)=\sum_{j=1}^{l} g\left(x^{j}\right)$.
- If a firm of type x hires a worker of type y, they generate a surplus of $s(x, y)$. We can think of this as the profit firm x would earn if they had worker y working for them. By varying the worker's wages, this surplus can be divided any they want.

More on the basic model: matchings

- Assume that each each firm hires exactly one worker, and each worker takes exactly one job (these assumptions can be relaxed, but we'll keep it simple here). In this case, we'd better have $\sum_{i=1}^{k} f\left(x^{i}\right)=\sum_{j=1}^{l} g\left(x^{j}\right)$.
- If a firm of type x hires a worker of type y, they generate a surplus of $s(x, y)$. We can think of this as the profit firm x would earn if they had worker y working for them. By varying the worker's wages, this surplus can be divided any they want.
- A matching is a $k \times I$ matrix γ with nonnegative entries, $\gamma_{i j} \geq 0$, such that $\sum_{i=1}^{k} \gamma_{i j}=g\left(y^{j}\right)$, and $\sum_{j=1}^{l} \gamma_{i j}=f\left(x^{i}\right) . \gamma_{i j}$ is the number of workers of type j hired by firms of type i.

More on the basic model: stability

- Functions $u(x)$ and $v(y)$ are called payoff functions for γ if $u\left(x^{i}\right)+v\left(y^{j}\right)=s\left(x^{i}, y^{j}\right)$ whenever $\gamma_{i j} \neq 0$. They represent a division of the surplus; $v\left(y^{j}\right)$ is the salary payed to worker y^{j}, $u\left(x^{i}\right)$ is the profit kept by the firm.

More on the basic model: stability

- Functions $u(x)$ and $v(y)$ are called payoff functions for γ if $u\left(x^{i}\right)+v\left(y^{j}\right)=s\left(x^{i}, y^{j}\right)$ whenever $\gamma_{i j} \neq 0$. They represent a division of the surplus; $v\left(y^{j}\right)$ is the salary payed to worker y^{j}, $u\left(x^{i}\right)$ is the profit kept by the firm.
- A matching is called stable if there are payoff functions $u(x)$ and $v(y)$ such that $u\left(x^{i}\right)+v\left(y^{j}\right) \geq s\left(x^{i}, y^{j}\right)$ for all i, j.

More on the basic model: stability

- Functions $u(x)$ and $v(y)$ are called payoff functions for γ if $u\left(x^{i}\right)+v\left(y^{j}\right)=s\left(x^{i}, y^{j}\right)$ whenever $\gamma_{i j} \neq 0$. They represent a division of the surplus; $v\left(y^{j}\right)$ is the salary payed to worker y^{j}, $u\left(x^{i}\right)$ is the profit kept by the firm.
- A matching is called stable if there are payoff functions $u(x)$ and $v(y)$ such that $u\left(x^{i}\right)+v\left(y^{j}\right) \geq s\left(x^{i}, y^{j}\right)$ for all i, j.
- How does this capture stability?
- If there are a lot of worker and firm types, one can approximate the problem by a continuous problem.
- If there are a lot of worker and firm types, one can approximate the problem by a continuous problem.
- Now we have densities $f(x)$ and $g(y)$ of firm and worker types, such that $\int_{X} f(x) d x=\int_{Y} g(y) d y=1$.
- If there are a lot of worker and firm types, one can approximate the problem by a continuous problem.
- Now we have densities $f(x)$ and $g(y)$ of firm and worker types, such that $\int_{X} f(x) d x=\int_{Y} g(y) d y=1$.
- We look for a matching, $\gamma(x, y) \geq 0$, with
$\int_{X} \gamma(x, y) d x=g(y)$ and $\int_{Y} \gamma(x, y) d y=f(x)$, and payoff functions with $u(x)+v(y)=s(x, y)$ whenever $\gamma(x, y) \neq 0$.
- If there are a lot of worker and firm types, one can approximate the problem by a continuous problem.
- Now we have densities $f(x)$ and $g(y)$ of firm and worker types, such that $\int_{X} f(x) d x=\int_{Y} g(y) d y=1$.
- We look for a matching, $\gamma(x, y) \geq 0$, with
$\int_{X} \gamma(x, y) d x=g(y)$ and $\int_{Y} \gamma(x, y) d y=f(x)$, and payoff functions with $u(x)+v(y)=s(x, y)$ whenever $\gamma(x, y) \neq 0$.
- The matching is stable if we can find payoff functions with $u(x)+v(y) \geq s(x, y)$ for all x, y.

The continuum limit

- If there are a lot of worker and firm types, one can approximate the problem by a continuous problem.
- Now we have densities $f(x)$ and $g(y)$ of firm and worker types, such that $\int_{X} f(x) d x=\int_{Y} g(y) d y=1$.
- We look for a matching, $\gamma(x, y) \geq 0$, with $\int_{X} \gamma(x, y) d x=g(y)$ and $\int_{Y} \gamma(x, y) d y=f(x)$, and payoff functions with $u(x)+v(y)=s(x, y)$ whenever $\gamma(x, y) \neq 0$.
- The matching is stable if we can find payoff functions with $u(x)+v(y) \geq s(x, y)$ for all x, y.
- The continuous limit is useful, as we can exploit calculus and geometry/topology to understand the solution.

Connection with optimal transport

- Let $\Gamma(f, g)$ be the set of all matchings.

Theorem (Shapley-Shubik 1971, Gretsky-Ostroy-Zame 1992)

A matching is stable if and only if it maximizes
$\int_{X \times Y} s(x, y) \gamma(x, y) d x d y$ almong $\gamma \in \Gamma(f, g)$.

- This is exactly the Monge-Kantorovich problem (we could rewrite it to minimize $\int_{X \times Y} c(x, y) \gamma(x, y) d x d y$ for $c(x, y)=-s(x, y))$.
- Shapley-Shubik dealt with the discrete case (in which case you get a discrete optimal transport, or assignment, problem).

Proof (sketch)

- First assume $\gamma(x, y)$ is stable, with payoff functions $u(x)$ and $v(y)$.

Proof (sketch)

- First assume $\gamma(x, y)$ is stable, with payoff functions $u(x)$ and $v(y)$.
- For any matching $\bar{\gamma}(x, y)$ we have

$$
\begin{aligned}
\int_{X \times Y} s(x, y) \bar{\gamma}(x, y) d x d y & \leq \int_{X \times Y}[u(x)+v(y)] \bar{\gamma}(x, y) d x d y \\
& =\int_{X} u(x) f(x) d x+\int_{Y} v(y) g(y) d y
\end{aligned}
$$

- First assume $\gamma(x, y)$ is stable, with payoff functions $u(x)$ and $v(y)$.
- For any matching $\bar{\gamma}(x, y)$ we have

$$
\begin{aligned}
\int_{X \times Y} s(x, y) \bar{\gamma}(x, y) d x d y & \leq \int_{X \times Y}[u(x)+v(y)] \bar{\gamma}(x, y) d x d y \\
& =\int_{X} u(x) f(x) d x+\int_{Y} v(y) g(y) d y
\end{aligned}
$$

- The last line doesn't depend on $\bar{\gamma}$.
- First assume $\gamma(x, y)$ is stable, with payoff functions $u(x)$ and $v(y)$.
- For any matching $\bar{\gamma}(x, y)$ we have

$$
\begin{aligned}
\int_{X \times Y} s(x, y) \bar{\gamma}(x, y) d x d y & \leq \int_{X \times Y}[u(x)+v(y)] \bar{\gamma}(x, y) d x d y \\
& =\int_{X} u(x) f(x) d x+\int_{Y} v(y) g(y) d y
\end{aligned}
$$

- The last line doesn't depend on $\bar{\gamma}$.
- If $\bar{\gamma}=\gamma$, the inequality $u(x)+v(y) \geq s(x, y)$ is an equality on the points where $\gamma(x, y) \neq 0$, so we get

$$
\int_{X \times Y} s(x, y) \gamma(x, y) d x d y=\int_{X} u(x) f(x) d x+\int_{Y} v(y) g(y) d y
$$

Proof (sketch, cont.)

- Now assume $\gamma(x, y)$ solves the Kantorovich problem.

Proof (sketch, cont.)

- Now assume $\gamma(x, y)$ solves the Kantorovich problem.
- Let $u(x)$ and $v(y)$ solve the dual problem. Then $u(x)+v(y) \geq s(x, y)$ for all x, y and $\int_{X} u(x) f(x) d x+\int_{Y} v(y) g(y) d y=\int_{X \times Y} s(x, y) \gamma(x, y) d x d y$
- Now assume $\gamma(x, y)$ solves the Kantorovich problem.
- Let $u(x)$ and $v(y)$ solve the dual problem. Then $u(x)+v(y) \geq s(x, y)$ for all x, y and

$$
\int_{X} u(x) f(x) d x+\int_{Y} v(y) g(y) d y=\int_{X \times Y} s(x, y) \gamma(x, y) d x d y
$$

- This is only possible if $u(x)+v(y)=s(x, y)$ whenever $\gamma(x, y)>0$.

An application

Corollary

There exists at least one stable matching.

- The proof is by continuity-compactness in the right topology.
- This is not just mathematical tomfoolery. In matching with non-transferable utility, there might not be any stable matching!
- Other information, such as uniqueness and structure of the solution, can be deduced under certain conditions.

Purity

- A solution is called pure if it is concentrated on a graph: $\gamma(x, y)=0$ unless $y=T(x)$.

Purity

- A solution is called pure if it is concentrated on a graph: $\gamma(x, y)=0$ unless $y=T(x)$.
- These are what mathematicians call Monge solutions! The economic interpretation is that every firm of type x hires a worker of the same type $y=T(x)$ (there is no randomization).

Purity

- A solution is called pure if it is concentrated on a graph: $\gamma(x, y)=0$ unless $y=T(x)$.
- These are what mathematicians call Monge solutions! The economic interpretation is that every firm of type x hires a worker of the same type $y=T(x)$ (there is no randomization).
- In one dimension, the Spence-Mirrlees condition, $\frac{\partial^{2} s}{\partial x \partial y}>0$, implies purity of solutions (they are monotone maps).
- A solution is called pure if it is concentrated on a graph: $\gamma(x, y)=0$ unless $y=T(x)$.
- These are what mathematicians call Monge solutions! The economic interpretation is that every firm of type x hires a worker of the same type $y=T(x)$ (there is no randomization).
- In one dimension, the Spence-Mirrlees condition, $\frac{\partial^{2} s}{\partial x \partial y}>0$, implies purity of solutions (they are monotone maps).
- Economic interpretation: $y \mapsto \frac{\partial s}{\partial x}$ (marginal suplus) is increasing. So $y \mapsto s\left(x^{1}, y\right)-s\left(x^{0}, y\right)$ is increasing if $x^{1}>x^{0}$. Having a higher end worker (more experienced, perhaps) makes a bigger difference for a higher end (larger, maybe) firm.

Purity in higher dimesions

- Brenier's theorem implies the solution is pure when $s(x, y)=-|x-y|^{2} \approx x \cdot y($ when $n=m)$.

Purity in higher dimesions

- Brenier's theorem implies the solution is pure when $s(x, y)=-|x-y|^{2} \approx x \cdot y($ when $n=m)$.
- This result has been extended by Gangbo (95), Gangbo-McCann (96), Caffarelli (96),... to the twisted case, where $y \mapsto \nabla_{x} s(x, y)$ is $1-1$ for each fixed x.

Purity in higher dimesions

- Brenier's theorem implies the solution is pure when $s(x, y)=-|x-y|^{2} \approx x \cdot y($ when $n=m)$.
- This result has been extended by Gangbo (95), Gangbo-McCann (96), Caffarelli (96),... to the twisted case, where $y \mapsto \nabla_{x} s(x, y)$ is $1-1$ for each fixed x.
- A delicate regularity theory of optimal maps has been developed by Caffarelli (91), Ma-Trudinger-Wang (05), Loeper (10).....

Purity in higher dimesions

- Brenier's theorem implies the solution is pure when $s(x, y)=-|x-y|^{2} \approx x \cdot y($ when $n=m)$.
- This result has been extended by Gangbo (95), Gangbo-McCann (96), Caffarelli (96),... to the twisted case, where $y \mapsto \nabla_{x} s(x, y)$ is $1-1$ for each fixed x.
- A delicate regularity theory of optimal maps has been developed by Caffarelli (91), Ma-Trudinger-Wang (05), Loeper (10).....
- This falls apart when $n \neq m$ (P12). When $m=1$, but $n>1$, explicit solutions and regularity can be recovered under some conditions (Chiappori-McCann-P 15).

Low dimensional solutions

- Solutions concentrate on Lipschitz graphs over r variables, where r is the rank of $D_{x y}^{2} s(x, y)$, an $n \times m$ matrix. (McCann-P-Warren 12, P 11).

Low dimensional solutions

- Solutions concentrate on Lipschitz graphs over r variables, where r is the rank of $D_{x y}^{2} s(x, y)$, an $n \times m$ matrix. (McCann-P-Warren 12, P 11).
- This holds for the discrete case, too.
- Given a $\gamma(x, y)$, is it a stable match for any $s(x, y)$?
- Given a $\gamma(x, y)$, is it a stable match for any $s(x, y)$?
- Economists can observe matchings. This question is about whether the observations are consistent with the model.
- Given a $\gamma(x, y)$, is it a stable match for any $s(x, y)$?
- Economists can observe matchings. This question is about whether the observations are consistent with the model.
- The answer is always yes: take $s(x, y)=0$.

Testability

- Given a $\gamma(x, y)$, is it a stable match for any $s(x, y)$?
- Economists can observe matchings. This question is about whether the observations are consistent with the model.
- The answer is always yes: take $s(x, y)=0$.
- Refined question: is it the unique stable matching for any $s(x, y)$?

Testability

- Given a $\gamma(x, y)$, is it a stable match for any $s(x, y)$?
- Economists can observe matchings. This question is about whether the observations are consistent with the model.
- The answer is always yes: take $s(x, y)=0$.
- Refined question: is it the unique stable matching for any $s(x, y)$?
- If $\gamma(x, y)$ is pure (ie, $\gamma(x, y)=0$ unless $y=T(x)$), and $\operatorname{det} D T(x) \neq 0$ the answer is yes: take $s(x, y)=-|y-T(x)|^{2}$ (Chiappori-McCann-P 15).

Testability

- Given a $\gamma(x, y)$, is it a stable match for any $s(x, y)$?
- Economists can observe matchings. This question is about whether the observations are consistent with the model.
- The answer is always yes: take $s(x, y)=0$.
- Refined question: is it the unique stable matching for any $s(x, y)$?
- If $\gamma(x, y)$ is pure (ie, $\gamma(x, y)=0$ unless $y=T(x)$), and $\operatorname{det} D T(x) \neq 0$ the answer is yes: take $s(x, y)=-|y-T(x)|^{2}$ (Chiappori-McCann-P 15).
- The nondegeneracy $\operatorname{det} D T(x) \neq 0$ is key. If $n=m=1$, and T is neither globally increasing nor decreasing, there is no twisted or non-degenerate (ie, either sub or super modular) surplus for which $\gamma(x, y)$ is a stable match.

Testability

- Given a $\gamma(x, y)$, is it a stable match for any $s(x, y)$?
- Economists can observe matchings. This question is about whether the observations are consistent with the model.
- The answer is always yes: take $s(x, y)=0$.
- Refined question: is it the unique stable matching for any $s(x, y)$?
- If $\gamma(x, y)$ is pure (ie, $\gamma(x, y)=0$ unless $y=T(x)$), and $\operatorname{det} D T(x) \neq 0$ the answer is yes: take $s(x, y)=-|y-T(x)|^{2}$ (Chiappori-McCann-P 15).
- The nondegeneracy $\operatorname{det} D T(x) \neq 0$ is key. If $n=m=1$, and T is neither globally increasing nor decreasing, there is no twisted or non-degenerate (ie, either sub or super modular) surplus for which $\gamma(x, y)$ is a stable match.
- This might mean you don't have enough (or the correct) characteristics (your model should be multi-dimensional).

Extensions/related problems

- Hedonic probems: here buyers x have preferences $p(x, z)$ to choose goods of type z, while sellers/producers y have costs $c(y, z)$ to produce them (Ekeland 10).

Extensions/related problems

- Hedonic probems: here buyers x have preferences $p(x, z)$ to choose goods of type z, while sellers/producers y have costs $c(y, z)$ to produce them (Ekeland 10).
- This leads to matching with $s(x, y)=\max _{z}[p(x, z)-c(y, z)]$ (Chiappori-McCann-Nesheim 10).

Extensions/related problems

- Hedonic probems: here buyers x have preferences $p(x, z)$ to choose goods of type z, while sellers/producers y have costs $c(y, z)$ to produce them (Ekeland 10).
- This leads to matching with $s(x, y)=\max _{z}[p(x, z)-c(y, z)]$ (Chiappori-McCann-Nesheim 10).
- Multi-agent matching: some contracts require several agents to come together to form a match (Carlier-Ekeland 10).
- Hedonic probems: here buyers x have preferences $p(x, z)$ to choose goods of type z, while sellers/producers y have costs $c(y, z)$ to produce them (Ekeland 10).
- This leads to matching with $s(x, y)=\max _{z}[p(x, z)-c(y, z)]$ (Chiappori-McCann-Nesheim 10).
- Multi-agent matching: some contracts require several agents to come together to form a match (Carlier-Ekeland 10).
- This is equivalent to multi-marginal optimal transport (P 15, Kim-P 14). Here purity/uniqueness is much more subtle, and often fails.

Extensions/related problems

- Hedonic probems: here buyers x have preferences $p(x, z)$ to choose goods of type z, while sellers/producers y have costs $c(y, z)$ to produce them (Ekeland 10).
- This leads to matching with $s(x, y)=\max _{z}[p(x, z)-c(y, z)]$ (Chiappori-McCann-Nesheim 10).
- Multi-agent matching: some contracts require several agents to come together to form a match (Carlier-Ekeland 10).
- This is equivalent to multi-marginal optimal transport (P 15, Kim-P 14). Here purity/uniqueness is much more subtle, and often fails.
- Roomate problems: both x and y are chosen from the same distribution.

Extensions/related problems

- Hedonic probems: here buyers x have preferences $p(x, z)$ to choose goods of type z, while sellers/producers y have costs $c(y, z)$ to produce them (Ekeland 10).
- This leads to matching with $s(x, y)=\max _{z}[p(x, z)-c(y, z)]$ (Chiappori-McCann-Nesheim 10).
- Multi-agent matching: some contracts require several agents to come together to form a match (Carlier-Ekeland 10).
- This is equivalent to multi-marginal optimal transport (P 15, Kim-P 14). Here purity/uniqueness is much more subtle, and often fails.
- Roomate problems: both x and y are chosen from the same distribution.
- Related to optimal transport with symmetry (Chiappori-Galichon-Salanie 12).

Extensions/related problems

- Hedonic probems: here buyers x have preferences $p(x, z)$ to choose goods of type z, while sellers/producers y have costs $c(y, z)$ to produce them (Ekeland 10).
- This leads to matching with $s(x, y)=\max _{z}[p(x, z)-c(y, z)]$ (Chiappori-McCann-Nesheim 10).
- Multi-agent matching: some contracts require several agents to come together to form a match (Carlier-Ekeland 10).
- This is equivalent to multi-marginal optimal transport (P 15, Kim-P 14). Here purity/uniqueness is much more subtle, and often fails.
- Roomate problems: both x and y are chosen from the same distribution.
- Related to optimal transport with symmetry (Chiappori-Galichon-Salanie 12).
- There are many other economic problems that relate to optimal transport (even those that aren't transferable-utility matching problems). See Galichon's book.
- A. Galichon Optimal transport methods in economics. Princeton University Press, 2015.
- I. Ekeland Notes on optimal transportation. Econ. Theory, 42, p. 437 -459, 2010.
- G. Carlier Optimal transporation and economic applications. Lecture note for the IMA short course, New mathematical models in economics and finance, 2010.

