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Plan of the lectures

Today: introductory material.

What is optimal transport?
What is known? What sort of mathematics is involved?
Why should I care? What can I do with it? Applications?

Monday: a deeper look at one selected topic. At the end of today’s
talk, we can vote to decide on the topic. The choices include:

Matching theory (economics): what sort of patterns emerge
when agents match together (for instance, workers and firms
on the labour market, or husbands and wives on the marriage
market).
Density functional theory (physics/chemistry): how does a
system of electrons organize itself to minimize interaction
energy.
Curvature and entropy (geometry): How does curvature relate
to the behavior of densities along interpolations?

Both talks will focus on ideas and we will try to avoid getting
bogged down in too many details.
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The basic model

Consider a collection of firms matching with a collection of
workers (other interpretations are possible).

Let X ⊂ Rn be a collection of firm types. We differentiate
between firms using their characteristics; for example, the
physical location of their headquarters, their size, etc..... The
dimension n is the number of characteristics we are using.

For example, if n = 3, we might use firm location (two
variables) and size to differentiate among them.
x = (x1, x2, x3) represents a firm located at (x1, x2) with x3
employees.

Y ⊂ Rm represents the set of worker types, differentiated by
m characteristics, such as age, home location, experience,....

In discrete models, there are x1, x2, ...., xk ∈ X types of firms
and y1, ..., y l ∈ Y types of workers. There are fi := f (x i )
firms of type i and gj := g(y j) workers of type j .
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More on the basic model: matchings

Assume that each each firm hires exactly one worker, and
each worker takes exactly one job (these assumptions can be
relaxed, but we’ll keep it simple here). In this case, we’d
better have

∑k
i=1 f (x i ) =

∑l
j=1 g(x j).

If a firm of type x hires a worker of type y , they generate a
surplus of s(x , y). We can think of this as the profit firm x
would earn if they had worker y working for them. By varying
the worker’s wages, this surplus can be divided any they want.

A matching is a k × l matrix γ with nonnegative entries,
γij ≥ 0, such that

∑k
i=1 γij = g(y j), and

∑l
j=1 γij = f (x i ). γij

is the number of workers of type j hired by firms of type i .
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More on the basic model: stability

Functions u(x) and v(y) are called payoff functions for γ if
u(x i ) + v(y j) = s(x i , y j) whenever γij 6= 0. They represent a
division of the surplus; v(y j) is the salary payed to worker y j ,
u(x i ) is the profit kept by the firm.

A matching is called stable if there are payoff functions u(x)
and v(y) such that u(x i ) + v(y j) ≥ s(x i , y j) for all i , j .

How does this capture stability?
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The continuum limit

If there are a lot of worker and firm types, one can
approximate the problem by a continuous problem.

Now we have densities f (x) and g(y) of firm and worker
types, such that

∫
X f (x)dx =

∫
Y g(y)dy = 1.

We look for a matching, γ(x , y) ≥ 0, with∫
X γ(x , y)dx = g(y) and

∫
Y γ(x , y)dy = f (x), and payoff

functions with u(x) + v(y) = s(x , y) whenever γ(x , y) 6= 0.

The matching is stable if we can find payoff functions with
u(x) + v(y) ≥ s(x , y) for all x , y .

The continuous limit is useful, as we can exploit calculus and
geometry/topology to understand the solution.
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Connection with optimal transport

Let Γ(f , g) be the set of all matchings.

Theorem (Shapley-Shubik 1971, Gretsky-Ostroy-Zame 1992)

A matching is stable if and only if it maximizes∫
X×Y s(x , y)γ(x , y)dxdy almong γ ∈ Γ(f , g).

This is exactly the Monge-Kantorovich problem (we could
rewrite it to minimize

∫
X×Y c(x , y)γ(x , y)dxdy for

c(x , y) = −s(x , y)).

Shapley-Shubik dealt with the discrete case (in which case you
get a discrete optimal transport, or assignment, problem).
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Proof (sketch)

First assume γ(x , y) is stable, with payoff functions u(x) and
v(y).

For any matching γ̄(x , y) we have∫
X×Y

s(x , y)γ̄(x , y)dxdy ≤
∫
X×Y

[u(x) + v(y)]γ̄(x , y)dxdy

=

∫
X

u(x)f (x)dx +

∫
Y

v(y)g(y)dy

The last line doesn’t depend on γ̄.

If γ̄ = γ, the inequality u(x) + v(y) ≥ s(x , y) is an equality
on the points where γ(x , y) 6= 0, so we get∫

X×Y
s(x , y)γ(x , y)dxdy =

∫
X

u(x)f (x)dx +

∫
Y

v(y)g(y)dy
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Proof (sketch, cont.)

Now assume γ(x , y) solves the Kantorovich problem.

Let u(x) and v(y) solve the dual problem. Then
u(x) + v(y) ≥ s(x , y) for all x , y and∫

X
u(x)f (x)dx +

∫
Y

v(y)g(y)dy =

∫
X×Y

s(x , y)γ(x , y)dxdy

This is only possible if u(x) + v(y) = s(x , y) whenever
γ(x , y) > 0.
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An application

Corollary

There exists at least one stable matching.

The proof is by continuity-compactness in the right topology.

This is not just mathematical tomfoolery. In matching with
non-transferable utility, there might not be any stable
matching!

Other information, such as uniqueness and structure of the
solution, can be deduced under certain conditions.
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Purity

A solution is called pure if it is concentrated on a graph:
γ(x , y) = 0 unless y = T (x).

These are what mathematicians call Monge solutions! The
economic interpretation is that every firm of type x hires a
worker of the same type y = T (x) (there is no
randomization).

In one dimension, the Spence-Mirrlees condition, ∂2s
∂x∂y > 0,

implies purity of solutions (they are monotone maps).

Economic interpretation: y 7→ ∂s
∂x (marginal suplus) is

increasing. So y 7→ s(x1, y)− s(x0, y) is increasing if
x1 > x0. Having a higher end worker (more experienced,
perhaps) makes a bigger difference for a higher end (larger,
maybe) firm.
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Purity in higher dimesions

Brenier’s theorem implies the solution is pure when
s(x , y) = −|x − y |2 ≈ x · y (when n = m).

This result has been extended by Gangbo (95),
Gangbo-McCann (96), Caffarelli (96),... to the twisted case,
where y 7→ ∇xs(x , y) is 1− 1 for each fixed x .

A delicate regularity theory of optimal maps has been
developed by Caffarelli (91), Ma-Trudinger-Wang (05), Loeper
(10).....

This falls apart when n 6= m (P 12). When m = 1, but n > 1,
explicit solutions and regularity can be recovered under some
conditions (Chiappori-McCann-P 15).
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Low dimensional solutions

Solutions concentrate on Lipschitz graphs over r variables,
where r is the rank of D2

xy s(x , y), an n ×m matrix.
(McCann-P-Warren 12, P 11).

This holds for the discrete case, too.

Brendan Pass (U. Alberta) Matching under transferable utility



Low dimensional solutions

Solutions concentrate on Lipschitz graphs over r variables,
where r is the rank of D2

xy s(x , y), an n ×m matrix.
(McCann-P-Warren 12, P 11).

This holds for the discrete case, too.

Brendan Pass (U. Alberta) Matching under transferable utility



Testability

Given a γ(x , y), is it a stable match for any s(x , y)?

Economists can observe matchings. This question is about
whether the observations are consistent with the model.

The answer is always yes: take s(x , y) = 0.

Refined question: is it the unique stable matching for any
s(x , y)?

If γ(x , y) is pure (ie, γ(x , y) = 0 unless y = T (x)), and
det DT (x) 6= 0 the answer is yes: take
s(x , y) = −|y − T (x)|2 (Chiappori-McCann-P 15).

The nondegeneracy det DT (x) 6= 0 is key. If n = m = 1, and
T is neither globally increasing nor decreasing, there is no
twisted or non-degenerate (ie, either sub or super modular)
surplus for which γ(x , y) is a stable match.
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Extensions/related problems

Hedonic probems: here buyers x have preferences p(x , z) to
choose goods of type z , while sellers/producers y have costs
c(y , z) to produce them (Ekeland 10).

This leads to matching with s(x , y) = maxz [p(x , z)− c(y , z)]
(Chiappori-McCann-Nesheim 10).
Multi-agent matching: some contracts require several
agents to come together to form a match (Carlier-Ekeland 10).
This is equivalent to multi-marginal optimal transport (P 15,
Kim-P 14). Here purity/uniqueness is much more subtle, and
often fails.
Roomate problems: both x and y are chosen from the same
distribution.
Related to optimal transport with symmetry
(Chiappori-Galichon-Salanie 12).
There are many other economic problems that relate to
optimal transport (even those that aren’t transferable-utility
matching problems). See Galichon’s book.
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