Questions

(1) Does the number π^n have first three significant digits 3, 1, and 4 (in that order) for some $n \in \mathbb{N}$? If so, does

$$\lim_{N \to \infty} \frac{\# \{1 \leq n \leq N : \pi^n \text{ has first three significant digits 3, 1, and 4} \}}{N}$$

exist?

(2) Assume $T : \mathbb{T} \to \mathbb{T}$ is λ-preserving. Show that the following statements are equivalent:

(i) T is ergodic;

(ii) if $f \circ T(z) = f(z)$ holds for some (measurable, bounded) function $f : \mathbb{T} \to \mathbb{C}$ and λ-almost every $z \in \mathbb{T}$ then f is constant (λ-a.e.).

(3) (i) Is the sequence $(\log_{10} n)$ u. d. mod 1?

(ii) Let $\vartheta \in \mathbb{R}$ be irrational. Is the sequence $(n\vartheta + \log_{10} n)$ u. d. mod 1?

(4) Given a partition D_1, \ldots, D_9 of \mathbb{N} into nine infinite sets, write $D_j = \{d_{j,1}, d_{j,2}, \ldots \} = \{d_{j,n} : n \in \mathbb{N}\}$ with $d_{j,1} < d_{j,2} < \ldots$, and let $\delta_{j,n} = d_{j,n+1} - d_{j,n}$ for each $j \in \{1, \ldots, 9\}$ and $n \in \mathbb{N}$. Also, let $p = (p_1, \ldots, p_9) \in \mathbb{R}^9$ be a (non-degenerate) probability vector, i.e., $0 < p_j < 1$ and $\sum_{j=1}^{9} p_j = 1$. Consider the following three statements about the partition D_1, \ldots, D_9:

(a) $\lim_{N \to \infty} \frac{\# \{1 \leq n \leq N : n \in D_j \}}{N} = p_j$ $\forall j \in \{1, \ldots, 9\}$;

(b) $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \delta_{j,n} = \frac{1}{p_j}$ $\forall j \in \{1, \ldots, 9\}$;

(c) $\lim_{N \to \infty} \frac{\# \{1 \leq n \leq N : \delta_{j,n} = m \}}{N} = p_j (1 - p_j)^{m-1} \forall j \in \{1, \ldots, 9\}$ and $m \in \mathbb{N}$.

Turn (a)\heartsuit(b)\spadesuit(c) into a true logical statement by replacing \heartsuit, \spadesuit with either \Leftarrow, \Rightarrow, or \Leftrightarrow. Whenever your choice is \Leftarrow (resp. \Rightarrow) rather than \Leftrightarrow, give an example for which \Rightarrow (resp. \Leftarrow) is false.

(5) Given any sequence (a_n) of positive real numbers, let

$D_j = \{n \in \mathbb{N} : a_n \text{ has leading (decimal) digit } j \} \quad \forall j \in \{1, \ldots, 9\}$

Note that D_1, \ldots, D_9 is a partition of \mathbb{N}. Choose $p \in \mathbb{R}^9$ appropriately and determine which of the statements (a), (b), and (c) of Question 4 are correct for this partition, where

(i) $a_n = 6^n$ for all $n \in \mathbb{N}$;

(ii) $a_n = 6^{n^2}$ for all $n \in \mathbb{N}$.
Recommended reading.

Given the broad and diverse nature of the subject, the literature on dynamical systems is huge. Below is but a very short selection of books that you may find helpful when starting out to explore things for yourself. As far as I know, the University of Alberta library has copies of all of them. I’ll be happy to provide further references in case you need some.

