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Abstract

This is a brief introduction to the general theory of compound matrices empha-
sizing those aspects which are applicable to di¤erential equations. Much of the
original work is joint with Michael Li.
The notes were prepared for a series of lectures delivered at Departamento de

Matematicas, Facultad de Ciencias, Universidad de los Andes, Merida, Venezuela
on the invitation of Professor Marcos Lizana.



1. COMPOUND
MATRICES

1.1. Minors, Cofactors and Adjugates

Consider a m � n matrix: A =
�
aji
�
; 1 � i � m; 1 � j � n: We introduce some

notation for minors of A and, in the case m = n; for their cofactors.

De�nition 1. as1:::spr1:::rp = det
�
a
sj
ri

�
; 1 � i; j � p; is the minor of A determined by

the rows r1; :::; rp and the columns s1; :::; sp

For example, a1211 = 0; a1212 =

���� a11 a21
a12 a22

���� ; a1213 = ���� a11 a21
a13 a23

���� ;
a123122 = 0; a

123
123 =

������
a11 a21 a31
a12 a22 a32
a13 a23 a33

������ ; a124123 =
������
a11 a21 a41
a12 a22 a42
a13 a23 a43

������ :
De�nition 2. When p < m = n; A

s1:::sp
r1:::rp denotes the cofactor of a

s1:::sp
r1:::rp ; i.e. it is

the minor determined by the rows complementary to rows r1; :::; rp and by the
columns complementary to columns s1; :::; spmultiplied by (�1)r1+s1+:::+rp+sp :If
p = n;de�ne A12:::n12:::n = 1

When A =

24 a11 a21 a31
a12 a22 a32
a13 a23 a33

35 ; then we have
A11 = a2323 =

���� a22 a32
a23 a33

���� ; A32 = �a1213 = � ���� a11 a21
a13 a23

���� ; A1212 = a33; A
12
13 = �a32 and

A123123 = 1: Note that in this case we have

detA = a1iA
1
i + a2iA

2
i + a3iA

3
i ; i = 1; 2; 3

1



and
0 = a1iA

1
r + a2iA

2
r + a3iA

3
r; if i 6= r:

Analogous expressions hold with i; r as superscripts. In general we have the fol-
lowing expansions of detA due to Laplace.

Theorem 3. If A is a n� n matrix, then

detA =
nX
j=1

ajiA
j
i =

nX
i=1

ajiA
j
i

Moreover 0 =
Pn

j=1 a
j
iA

j
r ;if r 6= i and 0 =

Pn
i=1 a

j
iA

r
i ; if r 6= j:

De�nition 4. The cofactor matrix of a square matrix A is

cofA =
�
Aji
�
; i; j = 1; :::; n

and the adjugate (or classical adjoint) matrix of A is

adjA = (cofA)T :

From Theorem 5 and De�nition 6 we �nd that

A (adjA) = (adjA)A = (detA) I (1.1)

so that we obtain the following expression for A�1: If detA 6= 0; then

A�1 =
1

detA
adjA: (1.2)

Moreover, from (1:1),

det (cofA) = det (adjA) = (detA)n�1 (1.3)

The following expression for detA is also due to Laplace and generalizes The-
orem 3.

Theorem 5. If A is a n� n matrix and 1 � k � n; then

detA =
X

1�s1<:::<sk�n
as1:::skr1:::rk

As1:::skr1:::rk
; if 1 � r1 < ::: < rk � n

detA =
X

1�r1<:::<rk�n
as1:::skr1:::rk

As1:::skr1:::rk
; if 1 � s1 < ::: < sk � n

Moreover 0 =
P

(s) a
s1:::sk
r1:::rk

As1:::skt1:::tk
; if (r) 6= (t) ; and 0 =

P
(r) a

s1:::sk
r1:::rk

At1:::tkr1:::rk
, if (s) 6=

(t) :



Proof. This Theorem is obviously true when n = 1: If it holds for (n� 1)�(n� 1)
matrices, the result for n � n matrices follows by applying this to the matrices
obtained by replacing the �rst row of A by rows of the form (0; :::; 1; :::; 0) and
using the linearity of detA in the rows of A:

Corollary 6. If C = AB where A is n� p and B is p� n, then

detC =

� P
(t) a

t1t2:::tn
12::::n b12::::nt1t2:::tn

; if n � p

0; if n > p
(1.4)

Proof. Let � = detC: Since�
Inn �Anp
Opn Ipp

� �
Onn Anp
Bpn Ipp

�
=

�
�AB O
Bpn Ipp

�
;

it follows that

det

�
O A
B I

�
= det

�
�AB O
B I

�
Apply the Laplace expansion (k = n) by the minors from the �rst n rows to both
matrices. From the second we �nd that the value of the determinant is (�1)n �:
From the �rst the value is 0, if n > p; since every n�p minor from the �rst n rows
contains at least one zero column; � = 0 in this case as asserted. When n � p;
the �rst determinant is (�1)n

P
(t) a

t1t2:::tn
12::::n b12::::nt1t2:::tn

so that this equals (�1)n � and
the corollary follows:

1.2. Multiplicative Compounds

For anym�nmatrixA and 1 � k � min fm;ng ;the k�th multiplicative compound
( or k-th exterior power) A(k) of A is the

�
m
k

�
�
�
n
k

�
�dimensional matrix de�ned

as follows.

De�nition 7. If 1 � r �
�
m
k

�
and 1 � s �

�
n
k

�
; then the entry in the r�th row

and the s�th column of A(k) is as1:::skr1:::rk
; where (r) = (r1; :::; rk) is the r�th member

of the lexicographic ordering of the integers 1 � r1 < r2 < ::: < rk � m and
(s) = (s1; :::sk) is the s-th member in the lexicographic ordering of all k-tuples of
the integers 1 � s1 < s2 < ::: < sk � n:



Thus, if A =

2664
a11 a21
a12 a22
: :
a1m a2m

3775 ; a m�2 matrix, then A(2) =
2664
a1212
a1213
:
a12m�1;m

3775 ; a �m2��1
matrix. It is useful as usual to visualize the columns of A as representing a pair of
oriented line segments with the entry of any column in the i-th row representing
the projection of the line segment onto the i-th coordinate axis. In this picture we
can then consider A(2) as the oriented 2- dimensional parallelogram determined
by the columns of A; the entry in the r-th column, (r) = (r1; r2) ; is the projection
of this area onto the (r1; r2)-coordinate plane.
Note that, if A(k) 6= O and A(k+1) = O, then the rank of A is k:
The term multiplicative compound arises because of the Binet-Cauchy Theo-

rem.

Theorem 8. If AB = C; then A(k)B(k) = C(k);where A;B are n � p; p � n
matrices respectively.

Proof. Note that csr =
P

t a
t
rb
s
t ; so that the submatrix

�
c
sj
ri

�
; i; j = 1; :::; k; of C

is the product of
�
atri
�
; i = 1; :::; k; t = 1; :::; p and

�
b
sj
t

�
; t = 1; :::; p; j = 1; :::; n

and , from Corollary 6, its determinant is

cs1:::skr1:::rk
=
X
(t)

at1:::tkr1:::rk
bs1:::skt1:::tk

(1.5)

The left-hand side of (1:5) is the entry in the r-th row and s-th column of
C(k);where (r) = (r1; :::; rk) and (s) = (s1; :::; sk), while the right-hand side is the
product of the r�th row of A(k) and the s-th column of B(k): Thus C(k) = A(k)B(k)

as asserted.
Analogously to cofA and adjA we de�ne cof(k)A and adj(k)A (not to be confused

with cof
�
A(k)

�
or (cof A)(k) and adj

�
A(k)

�
or (adjA)(k); cf. Jacobi�s Theorem for

the precise relationships):

De�nition 9. Let (r) = (r1; :::; rk) and (s) = (s1; :::; sk) : The entry in the r-th
row and s-th column of cof(k)A is As1:::skr1:::rk

and adj(k)A = (cof(k)A)T :

Thus each entry in cof(k)A is the signed minor with respect to A of the
corresponding entry in A(k):

e.g. A(3) =

2664
a123123 a124123 a125123 :
a123124 a124124 a125124 :
a123125 a124125 a125125 :
: : : :

3775 ; cof(3)A =
2664
A123123 A124123 A125123 :
A123124 A124124 A125124 :
A123125 A124125 A125125 :
: : : :

3775



The entries in cof(k)A are clearly also the minors of order n � k of A; in fact
cof(k)A = UTA(n�k)U; where U is the unitary matrix de�ned by uji = (�1)

j+1 if
i+ j =

�
n
k

�
+ 1 and uji = 0 otherwise. Thus all entries in U are 0 except those on

the skew diagonal which are alternately �1:

The following result, known as Sylvester�s Theorem, relates the determinants
of A(k) and cof(k)A to the determinant of A:

Theorem 10.

detA(k) = (detA)(
n�1
k�1) ; (1.6)

det
�
cof(k)A

�
= det

�
adj(k)A

�
= (detA)(

n�1
k ) : (1.7)

Proof. Note that detA is a polynomial of degree n in the entries of A and that
it is prime, i.e. it is not the product of two such non-constant polynomials. As in
(1:1) it follows from Theorem 5 that, with I denoting the identity in dimension�
n
k

�
;

A(k)(adj(k)A) = (detA) I (1.8)

and therefore
det(A(k)) det

�
adj(k)A

�
= (detA)(

n
k) (1.9)

Now det
�
A(k)

�
and det

�
adj(k)A

�
are also polynomials in the entries of A and

(1:9) shows that they factor the polynomial (detA)(
n
k) : Thus, since the polynomial

detA is prime, there exist constants �; �;  such that �+ � =
�
n
k

�
and detA(k) =

 (detA)� , det
�
adj(k)A

�
= 1


(detA)� : Consideration of a pure diagonal matrix

A shows that � =
�
n�1
k�1
�
, � =

�
n�1
k

�
and  = 1 as asserted.

The following result, Jacobi�s Theorem, relates adj(A(k)) and (adjA)(k) to
adj(k)A:

Theorem 11.

adj
�
A(k)

�
= (detA)(

n�1
k�1)�1 adj(k)A (1.10)

(adjA)(k) = (detA)k�1 adj(k)A (1.11)



Proof. From (1:8) we see that
�
A(k)

��1
= 1

detA
adj(k)A; but we also know

from (1:2) that
�
A(k)

��1
= 1

detA(k)

�
adjA(k)

�
: Comparing these two expressions

and using Sylvester�s Theorem, we �nd (1:10) : Also, from (1:1) A (adjA) =
(detA) I;using the Binet-Cauchy Theorem, we �nd A(k) (adjA)(k) = (detA)k I(k):
Observing that I(k) is also the identity matrix of dimension

�
n
k

�
; it follows that

(adjA)(k) = (detA)k
�
A(k)

��1
= (detA)k�1adj(k)A; which is (1:11) :

Observe that, when A is singular, all minors of order 2 in adjA are zero. This
follows from k = 2 in (1:11).
To determine the spectrum of the k-th multiplicative compound A(k) of a n�n

matrix A, recall that there exists a non-singular matrix T such that

AT = T� (1.12)

where � is lower triangular and the diagonal elements are �1; :::; �n, the eigenvalues
of A repeated according to multiplicity. Conversely, if (1:12) is satis�ed for some
non-singular T and lower triangular �; then the diagonal entries of � are the
eigenvalues of A: From the Binet-Cauchy Theorem, we �nd that

A(k)T (k) = T (k)�(k) (1.13)

First the diagonal element in the s-th row and column of �(k) is �s1:::sks1:::sk
= �s1�s2 :::�sk

where (s) = (s1; :::sk) : Moreover �(k) is lower diagonal; to see this consider the
element �s1:::skr1:::rk

in the r-th row and s-th column of �(k): This element is above the
main diagonal provided r < s: i.e. ri < si < si+1 < ::: < sk for some i; 1 � i � k;
and rj = sj; j = 1; :::; k � 1; if k > 1: Then every k � k minor from the �rst i

rows of the matrix
h
�sqrp

i
; p; q = 1; :::; k is zero since there is at least on column of

zeros in each minor. Summarizing, we �nd the following theorem.

Theorem 12. The eigenvalues of A(k) are �s1�s2 :::�sk , 1 � s1 < s2 < ::: < sk �
n, where �1; :::; �n are the eigenvalues of A:

Proof. By considering n � k matrices T whose columns are eigenvectors corre-
sponding to eigenvalues �1; :::; �k; we �nd that (1:12) is satis�ed by � =diag(�1; :::; �k) :
Then (1:13) is satis�ed again and �(k) = �1�2:::�k so that T (k) is an eigenvector of
A(k): The generalized eigenvectors of A(k) may also be discovered in this way and,
although they are related to the generalized eigenvectors of A, the relationship is
not as simple as this.



The singular values of a n � n matrix A are the non-negative real numbers
�1; :::; �n such that (�1)

2 ; :::; (�n)
2 are the eigenvalues of AA�: Since A(k)A(k)� =

(AA�)(k); it follows as in the preceding discussion that the singular values of A(k)

are the numbers �s1�s2 :::�sk ; 1 � s1 < s2 < ::: < sk � n:

1.3. Additive Compounds

Let A be a n� n matrix and let 1 � k � n: Then the k � th additive compound
A[k] of A is a

�
n
k

�
�
�
n
k

�
matrix de�ned as follows.

De�nition 13.

A[k] =
d

dt
(I + tA)(k)

����
t=0

= lim
h!0

h�1[(I + hA)(k) � I(k)] (1.14)

It follows that the entry bsr in B = A[k] is:

bsr =

8>><>>:
ar1r1 + � � �+ arkrk ; if (r) = (s)

(�1)i+j asjri ;
if exactly one entry ri in (r) does not occur
in (s) and sj does not occur in (r)

0; if (r) di¤ers from (s) in two or more entries

(1.15)

In the special cases k = 1; k = n;we �nd

A[1] = A; A[n] = TrA:

The term additive compound arises since

(A+B)[k] = A[k] +B[k] (1.16)

and indeed the map A 7! A[k] is linear. This may be deduced from the Binet-
Cauchy Theorem and the de�nition (1:14) since

(I + tA)(k) (I + tB)(k) = ((I + tA) (I + tB))(k) =
�
I + t (A+B) + t2AB

�(k)
:

Alternatively, (1:16) may be deduced directly from (1:15) : Since (1:12) implies

(I + tA)T = T (I + t�) (1.17)



we �nd from the Binet-Cauchy formula that

(I + tA)(k) T (k) = T (k) (I + t�)(k) (1.18)

and therefore
A[k]T (k) = T (k)�[k] (1.19)

so that the eigenvalues of A[k] are �s1 + �s2 + ::: + �sk where �1; :::�n are the
eigenvalues of A. The eigenvectors of A[k] are the same as those of A(k): The
important formula

(exp (A))(k) = exp
�
A[k]
�

(1.20)

may also be derived from (1:14) directly but is most readily obtained in the context
of di¤erential equations. First recall that the matrix

X (t) = exp (tA) = I +
t

1!
A+

t2

2!
A2 +

t3

3!
A3 + :::

is the unique function which satis�es _X = AX; X (0) = I so that X(t + h) =
(I + hA)X(t)+o(h) and therefore, from the Binet-Cauchy formula, X(k) (t+ h) =

(I + hA)(k)X(k)(t) + o (h) so that Y (t) = X(k)(t), from (1:14), satis�es _Y =
A[k]Y; Y (0) = I(k) and hence Y (t) = exp

�
tA[k]

�
: In particular, choosing t = 1

shows (exp (A))(k) = exp
�
A[k]
�
as asserted.

Another identity which may be proved directly from the de�nition but is most
easily established in a di¤erential equations context is

�
�
A[k]
�T
= UTA[n�k]U � (TrA) I; (1.21)

where U =
�
uji
�
; uji = (�1)

j+1, if i+ j =
�
n
k

�
+ 1 and uji = 0 otherwise. This will

be proved in the next chapter.



2. LINEAR DIFFERENTIAL EQUATIONS

2.1. Compound Equations

Motivated by the preceding considerations, we now consider a general �rst order
system of linear di¤erential equations

_x = A (t)x (2.1)

where t 7! A (t) is a continuous real or complex n � nmatrix-valued function on
[0;1): A solution is uniquely determined by its value x (t0) for any t0 2 [0;1):
A matrix solution of (2:1) is a n�m matrix-valued function t 7! X (t) such that
_X = A (t)X: A fundamental matrix is a non-singular n�n matrix solution X (t).
Thus x (t) is a solution of (2:1) if and only if

x (t) = X (t)X�1 (t0)x (t0) (2.2)

where X (t) is any fundamental matrix.
Conversely any continuously di¤erentiable matrix X (t) which is non-singular

for each t 2 [0;1) uniquely determines a di¤erential equation (2:1) for which it is
a fundamental matrix; here A (t) = _X (t)X�1 (t) :From Sylvester�s Theorem (1:6),
X(k) (t) is non-singular if X (t) is. Therefore, if X (t) is a fundamental matrix for
(2:1) ; Y (t) = X [k] (t) is a fundamental matrix for a system of dimension

�
n
k

�
: If

we do the computation directly, we �nd that _Y (t)Y �1 (t) = A[k](t) as speci�ed in
(1:15) so that Y (t) is a fundamental matrix for (2:3) below. We may also deduce
this from the de�nition of A[k]:
If X (t) is a n�mmatrix solution, X (t+ h) = (I + hA (t))X (t)+o (h) implies

X(k)(t + h) = (I + hA (t))(k)X (t) + o (h) and therefore Y (t) = X(k) (t) satis�es
_Y = A[k] (t)Y so that Y (t) is a matrix solution of

_y = A[k] (t) y (2.3)

This is the k-th compound equation associated with (2:1) :When k = 1; (2:3) is the
original equation (2:1); when k = n, it is the scalar equation _y =TrA (t) y: This is
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the Liouville-Jacobi equation whose general solution is y(t) = c exp
�R t

0
TrA

�
: In

particular, it is satis�ed by y (t) = detX (t) when X (t) is a n�n matrix solution
of (2:1) :
If x1(t); :::; xk(t) are solutions of (2:1), let y (t) = x1(t)^:::^xk (t) = X(k) (t), where

X (t) =
�
xji (t)

�
; i = 1; :::n; j = 1; :::k; y (t) is a solution of (2:3) : The solution

space of (2:3) is the linear span of all such exterior products of k-tuples of solutions
of (2:1) :
The formula (1:21) arises naturally in a discussion of adjoint di¤erential equa-

tions. When X (t) is non-singular, so also is X�1 (t) : It is an easy exercise to
check that Z (t) = X�1 (t)T = 1

detA
cofX (t) is a fundamental matrix for the

adjoint equation of (2:1);
_z = �AT (t) z; (2.4)

wheneverX (t) is a fundamental solution of (2:1) :Now, since cof(k)X = UTX(n�k)TU; it
follows thatW (t) =cof(k)X (t) satis�es _W = UTA[n�k]UW: Therefore, since d

dt
detX =

(TrA) detX; Z (t) =
�
X(k)

��1
(t) = 1

detX(t)
cof(k)X (t) = 1

detX(t)
W (t) satis�es

_Z =
�
UTA[n�k]U � (TrA) I

�
Z: But Z (t) is a fundamental solution for the ad-

joint of (2:3) ; so _Z = �
�
A[k] (t)

�T
Z: It follows that

�
�
A[k]
�T
= UTA[n�k]U � (TrA)I;

which is (1:21) :

2.2. Stability and Asymptotic Behaviour

Let X (t) be a fundamental matrix for (2:1) and let j�jdenote any matrix norm:We
may assume without loss of generality that the norm is induced by a vector norm.
The equation is said to be

(i) Stable if there is a constant K such that jX (t)j � K ; 0 � t <1:

(ii) Asymptotically stable if jX (t)j ! 0; as t!1:

(iii)Uniformly stable if there exists a constant K such that jX (t)X�1(t0)j �
K; 0 � t0 � t <1:

(iv)Uniformly asymptotically stable if there exist constants K; � > 0 such that
jX (t)X�1 (t0)j � Ke��(t�t0); 0 � t0 � t <1:



Since x (t) = X (t)X�1 (t0)x (t0) ; the equation is stable (asymptotically stable)
provided solutions are bounded (tend to zero). It is uniformly stable provided
solutions satisfy jx (t)j � K jx(t0)j and uniformly asymptotically stable provided
jx (t)j � Ke��(t�t0) jx (t0)j ; 0 � t0 � t <1:
Before developing concrete conditions for the various stability types, we illus-

trate with the following results how the compound equations (2:3) may be used to
give a more re�ned analysis of the asymptotic behaviour of the solutions of (2:1)
The �rst result is due to Macki and Muldowney.

Theorem 14. Suppose that (2:1) is uniformly stable. Then there is at least one
non-trivial solution x0 (t) of (2:1) such that limt!1 x0 (t) = 0 if and only if

lim
t!1

Z t

0

TrA = �1: (2.5)

Interpreted in the context of the present discussion, this theorem states that, for
a uniformly stable linear di¤erential equation (2:1), the dimension of the linear
subspace of the solution space which consists of those solutions which have limit
zero at in�nity is at least 1 if and only if the n � th multiplicative compound
equation, _y = (TrA(t)) y, a scalar equation, is asymptotically stable. This is seen

from the fact that its solutions are y (t) = c exp
�R t

0
TrA

�
and limt!1 y (t) =

0 provided (2:5) holds. The theorem is generalized by the following result of
Muldowney.

Theorem 15. Suppose that (2:1) is uniformly stable. Then the set of solutions
x0 (t) satisfying limt!1 x0(t) = 0 has dimension at least n � k + 1 if and only if
the k-th compound equation (2:3) of (2:1) is asymptotically stable.

Proof. The necessity of the condition is seen by considering a fundamental matrix
X (t) of (2:1) so that Y (t) = X(k) (t) is a fundamental matrix for (2:3) : Without
loss of generality, it may be assumed that the �rst n�k+1 columns of X (t) have
limit 0; moreover all columns are bounded. Since every k-dimensional sub-matrix
of X (t) therefore has a zero-tending column, it follows that limt!1X

(k) (t) =
0 and (2:3) is asymptotically stable as asserted. To prove the su¢ ciency, again
let X (t) be a fundamental matrix for (2:1) : Since this is a bounded function, we
may choose a sequence ti ! 1 such that the n � n matrix M = limi!1X (ti)
exists. Moreover M (k) = limi!1X

(k) (ti) = O; from the asymptotic stability of
(2:3) ; so that the rank of M is at most k � 1: The set of solutions c of Mc = 0



then has dimension at least n � k + 1: The solutions x (t) = X (t) c must then
satisfy limi!1 x (ti) =Mc = 0 and the dimension of this set of solutions is at least
n� k+1: In fact these solutions satisfy limt!1 x (t) = 0 since jx (t)j � K jx (ti)j ;
if t � ti:
One relatively general approach to a stability analysis of (2:1) is a special case

of Lyapunov�s direct method. It gives rise to the concept of the Lozinski¼¬measure
or logarithmic norm of a matrix. Let j�j denote any vector norm in Rnand the
matrix norm which it induces. Then the Lozinski¼¬measure � (A) of a n�n matrix
A is de�ned by

� (A) = D+ jI + tAjt=0 = lim
h!0+

h�1 [jI + hAj � 1] (2.6)

For some standard vector norms, the matrix norms and the Lozinski¼¬measures
are given in the table.

norm: jxj jAj � (A)

l2 :
p
x�x �1 �1

l1 :
P

i jxij maxj
P

i ja
j
i j maxj

n
Re ajj +

P
i6=j
��aji ��o

l1 : maxi jxij maxi
P

j

��aji �� maxi

n
Re aii +

P
j 6=i
��aji ��o

Here �1 is the largest
singular value of A
and �1 is the largest
eigenvalue of
1
2
(A� + A)

(2.7)

More generally, we have the following expressions for k = 1; :::; n:

�
�
A[k]
�
=

8>><>>:
�1 + � � �+ �k

max(j)

n
Re
�
aj1j1 + � � �+ ajkjk

�
+
P

i=2(j)
���aj1i ��+ � � �+ ��ajki ���o

max(i)

n
Re
�
ai1i1 + � � �+ aikik

�
+
P

j =2(i)
���aji1��+ � � �+ ��ajik���o

(2.8)

where �1 � �2 � � � � � �n are the eigenvalues of 12 (A
� + A) :

The importance of the Lozinski¼¬measure arises when we use jxj as a Lyapunov
function for (2:1). Then jx (t+ h)j = jx (t) + h _x (t) + o (h)j = j(I + hA (t))x (t)j+
o (h) � jI + hA (t)j jx (t)j+ o (h) and therefore D+ jx (t)j � � (A (t)) jx (t)j so that
jx (t)j exp

�
�
R t
t0
� (A)

�
is decreasing. Similarly we �nd that jx (t)j exp

�R t
t0
� (�A)

�
is increasing. It follows that

jx (t)j exp
�
�
Z t

t0

� (A)

�
� jx (t0)j � jx (t)j exp

�Z t

t0

� (�A)
�
; t0 � t (2.9)



Proposition 16. The equation (2:1) is:

(i) Stable if
R t
0
� (A) is bounded 0 � t <1:

(ii) Asymptotically stable if
R t
0
� (A)! �1 as t!1:

(iii) Uniformly stable if
R t
t0
� (A) � K; 0 � t0 � t <1; where K is independent

of t0; t:

(iv) Uniformly asymptotically stable if
R t
t0
� (A) � �� (t� t0) + �, 0 � t0 � t <

1; where �; � > 0 are independent of t0; t:

Proof. This follows directly from (2:8) since jx (t)j � jx (t0)j exp
�R t

t0
� (A)

�
;

t0 � t:

Remark 1. If we replace � (A) by �
�
A[k]
�
the proposition, then gives stability

criteria for the compound equations (2:3) : Thus we can conclude from Theorem 15
that equation(2:1) has a (n� k + 1)�dimensional set of solutions x0 (t) satisfying
limt!1 x0 (t) = 0 if

R t
0
� (A) is bounded and limt!1

R t
0
�
�
A[k]
�
= �1:

Remark 2. A result of Ger¼sgorin states that every eigenvalue � of a n�n matrix
A lies in one of the n discs fz : jz � aiij � � (i)g ; where � (i) =

P
j 6=i
��aji �� : While

not every one of these discs contains an eigenvalue, it is nevertheless the case that
every connected component of their union contains m eigenvalues if it is the union
of m of these discs. It is of interest to note that the third expression for � (A) in
(2:7) is the upper bound on Re� implied by the Ger¼sgorin discs. Every � (A) is
in fact such an upper bound; nevertheless, it is well known that Proposition 16 is
no longer valid if � (A) is replaced by sup fRe� : � 2 spAg : The row sums in the
de�nition of � (i) may be replaced by column sums.

Remark 3. Applying Ger¼sgorin�s result to A[k]; any sum of k of the eigenvalues
of A is contained in one of the

�
n
k

�
discs

�
z :
��z � ai1i1 � � � � � aikik

�� � � (i)
	
; where

� (i) =
P

j =2(i)
���aji1��+ � � �+ ��ajik��� : Moreover, a set of m of these discs having no

points in common with the remaining
�
n
k

�
�m discs contains exactly m sums of

k eigenvalues of A: Of course, an analogous statement for column sums is valid.



3. NONLINEAR DIFFERENTIAL
EQUATIONS

3.1. The Variational Equation and its Compounds

Consider a non-linear system
_x = f (x) ; (3.1)

where f is a C1 function from Rn to Rn: A solution x = � (t; x0) is uniquely
determined by its initial value, the map (t; x0)! � (t; x0) is a C1 di¤eomorphism
from Rn to Rn and satis�es the group property � (0; x0) = x0; � (t; � (s; x0)) =
� (t+ s; x0) as long as these expressions exist. If f (x0) = 0; then � (t; x0) = x0 is a
constant solution, an equilibrium. The setsf� (t; x0) : t 2 Rg and f� (t; x0) : t � 0g
are the orbit and positive semi-orbit of x0 respectively.
For a given solution � (t) = � (t; x0) ; the associated linearization of (3:1) at

this solution is the equation

_y =
@f

@x
(� (t)) y; (3.2)

the variational equation. The n � n matrix Y (t) = @�
@x0
(t; x0) satis�es (3:2) and

Y (0) = I and is therefore a fundamental matrix for (3:2) : If x0 is an equilibrium,
then @f

@x
(� (t)) = @f

@x
(x0) ; a constant matrix, and

@�
@x0
(t; x0) = exp

�
t@f
@x
(x0)

�
: It is

also important to notice that y = _� is always a solution of (3:2) and is non-trivial
if x0 is not an equilibrium.
Here we will be primarily concerned with the compound equations associated

with (3:2) ; k = 1; :::; n;

_z =
@f

@x

[k]

(� (t)) z (3.3)

for which a fundamental matrix is Y (k) (t) = @�
@x0

(k)
(t; x0) a matrix whose en-

tries are Jacobian determinants of the form @
�
�i1 ; :::; �ik

�
=@
�
x0j1 ; :::; x0jk

�
(t; x0) :

14



When k = 1; this is equation (3:2) and when k = n; since @f
@x

[n]
= div f it is the

Liouville Equation
_z = div f (� (t)) z (3.4)

a scalar equation; a solution is

@ (�1; :::; �n) =@ (x01; :::; x0n) (t; x0) = det
@�

@x0
(t; x0) = exp

�Z t

0

div f (� (s)) ds

�
:

This is the Jacobian of the map x0 7! � (t; x0) so, for example, if div f < 0
throughout Rn, then n�dimensional volumes decrease under this map.
More generally, the equations (3:3) may be used to study the evolution in

time of measures of k-dimensional surface content under the dynamics of (3:1) :
Let fdx01; :::; dx0ng be a basis for the vector space of di¤erential 1�forms in
Rn. Under the map x0 7! x = � (t; x0) ; this basis is transformed into the basis
fdx1; :::; dxng given by

dxi =
nX
j=1

@�i
@x0j

(t; x0) dx0j; i = 1; :::; n: (3.5)

Thus the basis evolves in time as a solution of the variational equation (3:2). The
corresponding lexicographically ordered basis fdxi1 ^ ::: ^ dxik : 1 � i1 < ::: < ik � ng
for the di¤erential k�forms in Rn therefore satis�es

dxi1 ^ ::: ^ dxik =
X
(j)

@(�i1 ; :::; �ik)

@ (x0j1 ; :::; x0jk)
(t; x0) dx0j1 ^ ::: ^ dx0jk (3.6)

and evolves in time as a solution of (3:3) :
Consider now a function u 7!  0 (u) ; u = (u1; :::; uk) 2 D � Rk;  0(u) 2 Rn:

Such a function will be considered a k-surface in Rn; it is a smooth k-surface if it
is C1:A measure of the k-content of this surface is

�k ( 0) =

Z
D

����@ 0@u1
^ � � � ^ @ 0

@uk

���� = Z
D

�����@ 0@u

(k)
����� ; (3.7)

it is assumed that D is such that the integral makes sense. Di¤erent normsj�j
give rise to di¤erent measures �k the most common being that generated by

the l2 norm: �k ( 0) =
Z sP

(i)

�
@( 0i1 ;:::; 0ik)
@( u1;:::;uk)

�2
: While all such measures are



equivalent, the choice of norm for the applications may often be critical and it
may even be useful to consider more general expressions than (3:7) : Let  t (u) =
� (t;  0 (u)); as long as it exists this function is also a k-surface in Rn and �k ( t) =R
D

���@ t@u

(k)
��� from (3:7) : Now @ t

@u
= @�

@x0
(t;  0)

@ 0
@u
is a n� k matrix solution of the

variational equation (3:2) ; so @ t
@u

(k)
= @�

@x0

(k)
(t;  0)

@ 0
@u

(k)
is a solution of (3:3) for

each  0 =  0 (u) ; u 2 D: From (2:9), if t � t0;�����@ t@u

(k)
����� �

�����@ t0@u

(k)
����� exp

"Z t

t0

�

 
@f

@x

[k]

(� (s;  0))

!
ds

#
(3.8)

and �����@ t@u

(k)
����� �

�����@ t0@u

(k)
����� exp

"
�
Z t

t0

�

 
�@f
@x

[k]

(� (s;  0))

!
ds

#
: (3.9)

From (3:8) [(3:9)] ; �k ( t) decreases [increases] as t increases if the trace of

the k-surface  t lies in a region where �
�
@f
@x

(k)
�
� 0

h
�
�
�@f
@x

(k)
�
� 0
i
: Thus,

for example, the usual k-dimensional measure �k ( t) decreases in time as long as
solutions � (t; x0) with initial values x0 =  0 (u) ; u 2 D; remain in a region where
�1+ � � �+ �k � 0; where �1 � �2 � � � � � �n are the eigenvalues of 12

�
@f
@x

�
+ @f

@x

�
:

This the �rst of the expressions for �
�
A(k)

�
; A = @f

@x
; given in (2:8) : The other

row and column expressions in (2:8) are in fact easier to calculate; however the
speci�c choice of a Lozinski¼¬measure may be none of these and may be dictated
to some extent by the problem under consideration.

3.2. Bendixson�s Condition

A solution � (t) of (3:1) is periodic if there exists ! > 0 such that � (t+ !) = � (t);
! is a period . Obviously an equilibrium is a periodic solution; a periodic solution
is called non-trivial if it is not an equilibrium. Conditions which guarantee the
existence or non-existence of periodic solutions are of considerable interest and
are known in great generality for 2-dimensional systems

_x = P (x; y) ; _y = Q (x; y) (3.10)

where f : (x; y) 7! (P (x; y) ; Q (x; y)) is C1: The Poincaré-Bendixson theory al-
lows us to conclude the existence of a periodic solution of (3.10) from the existence



of a bounded solution. Bendixson�s condition div f = @P
@x
+ @Q

@y
6= 0 in a simply

connected region D allows us to conclude that there exists no non-trivial periodic
solution whose orbit lies in D: The elegant classical proof is as follows:

Suppose that (x; y) = (�1 (t) ; �2 (t)) is a periodic solution of least pe-
riod ! > 0 and orbitC: Then Green�s Theorem implies that

R
C
(Pdy �Qdx) =

�
R
D

�
@P
@x
+ @Q

@y

�
dxdy 6= 0; but (3:10) implies that

R
C
(Pdy �Qdx) =R !

0
(P _y �Q _x) dt =

R !

0
(PQ�QP ) dt = 0; a contradiction. Thus no

such solution can exist.

This proof does not lend itself readily to higher dimensional generalizations of the
Bendixson result. The following proof does give some insight into this situation:

Let � (t;x0; y0) denote the solution of (3:10) such that � (0; x0; y0) =
(x0; y0) : Then the Jacobian determinant z =

@(�1;�2)
@(x0;y0)

(t;x0; y0) is a
solution of the Liouville equation (3:4) and therefore, if D0 is any
region in the plane, the area of the corresponding region � (t;D0) isZ

�(t;D0)

dxdy =

Z
D0

@ (�1; �2)

@ (x0; y0)
(t;x0; y0) dx0dy0

=

Z
D0

exp

�Z t

0

�
@P

@x
+
@Q

@y

� ��
�(s;x0;y0) ds

�
dx0dy0:

Evidently this area is strictly decreasing or increasing depending on
the sign of @P

@x
+ @Q

@y
: But the area � (t;D0) is constant ifD0 is the region

enclosed by a periodic orbit C: This contradiction again establishes the
Bendixson result. In fact it shows that no simple closed curve C can
be invariant with respect to (3:10),� (t; C) = C; since this would also
imply that the area of � (t;D0) is constant. This also follows from the
classical proof although it is not so immediate.

The preceding argument works because C is the boundary of a region D0which
is invariant under the dynamics of the di¤erential equation, � (t;D0) = D0. In a
space of dimension higher than 2, let C be a simple closed curve which is invariant
with respect to (3:1) and let D0 be the trace of a 2-surface whose boundary is C
and whose surface area is a minimum.: Since C is invariant, � (t;D0) is also the
trace of a 2-surface with boundary C; its area can not be less than that of D0: But



if (3:1) is such that 2-surface areas decrease (increase) strictly, the area of � (t;D0)
is strictly less than that of D0; t > 0 (t < 0) contradicting the minimality of the

area of D0: If j�j is any norm in R (
n
2); then (3:7) de�nes a measure of 2-surface

area in Rn. From (3; 8) and (3:9) ; this area of � (t;D0) is strictly decreasing
(increasing) as long as � (t;D0) is in a region where

�

 
@f

@x

[2]
!
< 0

"
��
 
�@f
@x

[2]
!
> 0

#
: (3.11)

Either of these is a higher dimensional version of Bendixson�s condition; when
n = 2, the �rst is div f < 0 and the second is div f > 0: For the l2; l1; l1 norms in
R(

n
2)respectively, we have from (2:8) the following concrete expressions for these

Lozinski¼¬measures:

�

 
@f

@x

[2]
!
=

8>>>>>><>>>>>>:

�1 + �2

maxr 6=s

n
@fr
@xr
+ @fs

@xs
+
P

q 6=r;s

���� @fr@xq

���+ ��� @fs@xq

����o
maxr 6=s

n
@fr
@xr
+ @fs

@xs
+
P

q 6=r;s

���� @fq@xr

���+ ��� @fq@xs

����o
(3.12)

��
 
�@f
@x

[2]
!
=

8>>>>>><>>>>>>:

�n�1 + �n

minr 6=s

n
@fr
@xr
+ @fs

@xs
�
P

q 6=r;s

���� @fr@xq

���+ ��� @fs@xq

����o
minr 6=s

n
@fr
@xr
+ @fs

@xs
�
P

q 6=r;s

���� @fq@xr

���+ ��� @fq@xs

����o
(3.13)

where �1 � �2 � ��� � �n are the eigenvalues of 12 (@f=@x
� + @f=@x) : ABendixson

condition is satis�ed if any of the expressions in (3:12) is negative or if any of those
in (3:13) is positive. With some other technical restrictions, any such condition
should imply the non-existence of invariant closed curves, in particular the non-
existence of non-constant periodic solutions.
Broadly speaking, the preceding argument is correct. There are however tech-

nical questions which arise:

� How do we know that, for a simple closed curve C in the region D where
one of (3:11) is satis�ed, there is a 2-surface with boundary C for which



the corresponding measure of area is a minimum? This is a deep geometric
question. Fortunately, it will not be necessary for us to answer it here. We
will see that our requirements will be met if we can ensure that a minimizing
sequence of surfaces with boundary C exists in the region where (3:11) holds.

� What can be said if the geometry of D is such that no minimizing sequence
of surfaces exists in D? In this situation we will still sometimes be able to
conclude the non-existence of invariant closed curves C if we can establish
that there is a positive lower bound for the areas of those surfaces which
have a given C as their boundary.

The �rst result of this type seems to be due to RA Smith who showed that, if
(3:1) is dissipative and �1 + �2 < 0; then there is no simple closed curve which is
invariant. The proof shows that under these conditions the Hausdor¤ dimension
of the global attractor is less than 2 and the desired contradiction is obtained by
showing that the dimension of the attractor is at least 2 if it contains a simple
closed curve. There is an error in this part of the proof but the general approach is
valid and highly original; the result as stated is correct. Smith�s approach can also
be used here for dissipative systems as it can be shown that the general condition
�
�
@f
@x

[2]
�
< 0 also implies that the Hausdor¤ dimension of the attractor is less

than 2: However the approach which we use here relies on evolution of areas rather
than estimations of Hausdor¤ dimension.
We will give two general approaches to the question developed by Muldowney

and Li & Muldowney:

� The �rst one shows that in any open region D in which a measure of 2-
surface area decreases strictly, there is no invariant closed curve which is
the boundary of a minimizing sequence of 2�surfaces for this area. This
imposes strong restrictions on the shape of D: This is not so restrictive
on the di¤erential equation; it does not, for example require that solutions
originating in D exist for all time t but only for t close to 0:

� The second approach only requires that D be simply connected. Then any
simple closed curve in D is homotopic to a point in D and is therefore the
boundary of a 2�surface inD. By showing that the areas of all such surfaces
have a positive lower bound which depends only on the boundary, requiring
that solutions exist for all time and imposing a condition that implies the
area of such a surface tends to 0 as t!1; we again reach a contradiction



if the closed curve is invariant. This approach relaxes the restrictions on D
but has stronger requirements on the di¤erential equation in terms of global
existence of solutions.

Let D � Rn and let U = B2 (0; 1) ; the open unit disc in R2, U is its closure and
@U is its boundary. A function  2Lip

�
U ! D

�
is a simply connected recti�able

2-surface in D; a function  2Lip(@U ! D) is a closed recti�able curve in D and
is simple (a Jordan curve) if it is one-to-one. If  is the restriction of  to @U ,
then  is the boundary of  , which is denoted  = @ : The sets  

�
U
�
;  (@U) are

the traces of  ;  respectively.

Proposition 17. (a) If  is a Jordan curve in Rn, there is a simply connected
recti�able 2-surface  in Rn such that  = @ :
(b) Let C be the trace of a Jordan curve  in Rn and let �2 be a measure of

2-surface area corresponding to a norm j�j in R(
n
2) as de�ned in (3:7) There exists

m > 0 which depends only on C such that

m � �2 ( ) (3.14)

for every simply connected recti�able 2-surface  such that  = @ is a Jordan
curve with trace C:

Proof. The proof of Part (a) is left as an exercise. To prove Part (b), it is

su¢ cient to consider only the case jyj = (y�y)1=2 ; since all norms in R(
n
2) are

equivalent. We will consider only curves  which are C2; less smooth curves can
be handled by approximation. It is also su¢ cient to consider only surfaces  
whose trace lies in the convex hull of C: This follows from the fact that if � is
any (n� 1)-dimensional hyperplane which does not intersect C we can replace  ;
by orthogonal projection of sections onto � if necessary, by a surface  0 such that
@ 0 = @ =  and �2 ( 0) � �2 ( ) : Let x 7! a (x) ; be a C1 function from Rn
to Rnan let � be the 1-form de�ned by � =

P
i ai (x) dxi: Then Stokes�Theorem,

� (@ ) = d� ( ) ; impliesZ
(@U)

X
i

ai (x) dxi =

Z
 (U)

X
i<j

�
@aj
@xi

� @ai
@xj

�
dxi ^ dxj: (3.15)

The expression on the left of (3:15) does not depend on the particular parame-
trization  of C chosen. Now, for some particular ; if x =  (cos �; sin �), let



a (x) = � (cos �; sin �) =
d
d�
 (cos �; sin �) and extend a as a continuously di¤er-

entiable function to Rn: The length l of C satis�es, by the Cauchy-Bunyakowski-
Schwarz inequality,

1

2�
l2 �

Z 2�

0

�� � d� =

Z
(@U)

X
i

ai (x) dxi: (3.16)

With this choice of a;Z
 (U)

X
i<j

�
@aj
@xi

� @ai
@xj

�
dxi ^ dxj =

Z
U

z� (u) y (u) du; (3.17)

where zi (u) =
�
@ai2
@xi1

� @ai1
@xi2

� ��
x= (u) ; yi (u) =

@( i1 ; i2)
@(u1;u2)

and (i) = (i1; i2) : Since

 (u) is in the convex hull of C, there is a constant M such that jz (u)j �M and
so Z

U

z� (u) y (u) du �M�2 ( ) : (3.18)

Combining (3:15) � (3:18) ;we �nd l2

2�M
� �2 ( ) so that we may choose m =

l2

2�M
:

Let j�jbe a norm in R(
n
2):A subset D of Rn has the minimum property

with respect to the area de�ned by j�j if each Jordan curve with trace C
in D is such that there exists a sequence of simply connected recti�able
2-surfaces

�
 k
	
in D,

�
 k
�
U
�
: k = 1; 2; :::

	
has compact closure in

D and limk!1 �2
�
 k
�
= m0; the in�mum of the surface areas of all

such 2-surfaces  with  (@U) = C:We note that any convex open set
has the minimum property with respect to the area de�ned by the l2

norm.

Theorem 18. Suppose that (a)D is an open subset ofRn which has the minimum
property with respect to the area de�ned by a norm j�j :
(b) Either �

�
@f
@x

[2]
�
< 0 or �

�
�@f
@x

[2]
�
< 0 in D where � is the Lozinski¼¬

measure corresponding to j�j :
Then there is no Jordan curve in Dwhich is invariant with respect to (3:1) :



Proof. Suppose C � D is the trace of a Jordan curve  which is invariant
with respect to (3:1) ; ie: � (t; C) = C; and that �

�
@f
@x

[2]
�
< 0 in D. Let

�
 k
	

be a sequence of simply connected 2-surfaces in D such that  k0 (@U) = C;  k0
is one-to-one on @U and limk!1 �2

�
 k0
�
= m0, the in�mum of the areas of all

2-surfaces which have boundary C. Since
�
 k0
�
U
�
: k = 1; 2; :::

	
is a compact

subset of D, every solution �
�
t;  k0 (u)

�
=  kt (u) exists for t 2 [�"; "] for some

" > 0 and u 2 U . Also, since �
�
@f
@x

[2]
�
< 0 in D; �

�
@f
@x

[2] �
 kt (u)

��
� �� < 0, if

t 2 [0; "]. Therefore (3:7) and (3:8) imply �2
�
 k"
�
� e��"�2

�
 k0
�
; k = 1; 2; ::: But

the surfaces  k" also have C as their boundary since C is invariant with respect
to (3:1) so that m0 � �2

�
 k"
�
and hence m0 � e��"m0 < m0, since m0 > 0: This

contradiction shows that C can not be invariant. A similar argument applies by
considering the surfaces  kt ; t 2 [�"; 0] when �

�
�@f
@x

[2]
�
< 0:

Given a familyM of n�n matrix functions A; we consider the corre-
sponding di¤erential equations _x = A (t)x; A 2 M: These equations
are equi-asymptotically stable if the fundamental matrices X (t) satisfy
limt!1 jX (t)X�1 (0)j = 0 uniformly with respect A 2 M. Equiva-
lently, if " > 0 there exists T > 0 such that all solutions x (t) of the
equations satisfy jx (t)j � " jx0j if t � T: A su¢ cient condition for equi-
asymptotic stability is limt!1

R t
0
� (A) = �1 uniformly with respect

to A 2M:

Theorem 19. Suppose that (a) D is an open simply connected subset of Rn.
(b) If x0 2 D; � (t; x0) exists for all t � 0:
(c) The equations _y = @f

@x

[2]
(� (t; x0)) y; x0 2 S; are equi-asymptotically stable

if S is a compact subset of D:
Then there is no Jordan curve in D which is invariant with respect to (3:1) :

Proof. Suppose that C � D is the trace of a Jordan curve  which is invari-
ant with respect to (3:1) : Let  0 be a simply connected recti�able surface in D
which is one-to-one on @U and  0 (@U) = C: Then u 7!  t (u) = � (t;  o (u))
is also a simply connected recti�able 2-surface which is one-to-one on @U and

 t (@U) = C: Then, since@ t
@u
(u) = @�

@x0
(t;  0 (u))

@ 0
@u
(u) implies y = @ t

@u

(2)
(u) =

@�
@x0

(2)
(t;  0 (u))

@ 0
@u

(2)
(u) is a solution of _y = @f

@x

[2]
(t; x0) y; x0 =  0 (u) ; u 2 U .



These equations are equi-asymptotically stable and limt!1

���@�t@u

(2)
(t;  0 (u))

��� = 0
uniformly with respect to u 2 U:Therefore limt!1

���@ t@u

(2)
(u)
��� = 0 uniformly with

respect to u 2 U so that limt!1 �2 ( t) =
R
 t(U)

���@ t@u

��� = 0: But Proposition 17

shows that m � �2 ( t) for some m > 0:Thus C can not be invariant.

Corollary 20. Suppose that D is open and simply connected, � (t; x0) exists for
all t > 0 [t < 0] and

lim
t!1

Z t

0

�

 
@f

@x

[2]

(� (t; x0))

!
= �1

"
lim
t!�1

Z t

0

�

 
�@f
@x

[2]

(� (t; x0))

!
=1

#

uniformly with respect to x0 2 S; if S is any compact subset of D, then there is
no Jordan curve in D which is invariant with respect to (3:1) :

The �rst of these conditions implies the equi-asymptotic stability requirement
(c) of Theorem 19 and the corollary may be deduced by applying Proposition 16(ii)

to A (t) = @f
@x

[2]
(� (t; x0)) ; the second may be inferred from this by considering

behaviour as t! �1 instead of t!1:

Remark 4. Corollary 20 illustrates the fact that, in contrast to Theorem 18,
Theorem 19 does not require that Bendixson�s condition hold everywhere but
rather in some averaged sense along orbits. For example, we have seen that if
@P
@x
+ @Q

@y
< 0 in a simply connected subset D of the plane then (3:10) has no

non-trivial periodic orbits in D: The corollary shows that the same conclusion can
be drawn if instead we assume that solutions � (t;x0; y0) exist for all t � 0 when
(x0; y0) 2 D and limt!1

R t
0

�
@P
@x
+ @Q

@y

� ��
�(s;x0;y0) ds = �1 uniformly with respect

to (x0; y0) in compact subsets of D:

A generalization of Bendixson�s condition for planar systems (3:10) is Dulac�s
Condition: @

@x
(�P ) + @

@y
(�Q) 6= 0; where (x; y) 7! � (x; y) is real-valued. This

condition can also be shown to preclude an invariant Jordan curve C in a simply
connected region D by considering

R
C
(�P ) dy � (�Q) dx in the classical proof.

Alternatively, this may also be demonstrated by showing that this condition im-
plies

R
�(t;D0)

� (x; y) dxdy is either strictly increasing or decreasing, contradicting
the fact that it is a constant if D0 is the region enclosed by an invariant Jordan
curve C: The introduction of this arbitrary function � is in fact just a change



in the 2�measure under consideration and adds considerable versatility to the
criterion. This can be extended to higher dimensions by considering, instead of

�2 ( t) ; more general functionals of the form
R
U

���A ( t) @ t@u

(2)
���, where A is any�

n
2

�
�
�
n
2

�
matrix-valued function, and formulating conditions under which this

decreases or increases as in the preceding paragraphs. This adds great versatility
to the criterion: the matrix A represents

�
n
2

�2
arbitrary functions which may be

used to test the system.
Many physical and biological systems have �rst integrals: functions which are

constant along solutions such as conservation laws. An important observation of
M Li is that, if (3:1) has m independent �rst integrals, then the conditions given
above on the system (3:3) with k = 2 may be relaxed to conditions on (3:3) with
k = m+2: Thus, where �1+�2 < 0 is, with appropriate restrictions on the shape
of the region, a Bendixson condition for (3:1): when (3:1) has m independent �rst
integrals, this condition may be relaxed to �1+�2+ � � �+�m+2 < 0: For example,
when n = 3; div f < 0 on R3 does not preclude non-trivial periodic solutions of
(3:1) in general but does so when the system has a �rst integral.

3.3. Orbital Stability of Periodic Solutions

The preceding section was primarily concerned with investigating the implications
of the compound equations for the behaviour of measures in the dynamics of (3:1) :
Here we will be more concerned with algebraic aspects of the equations and the
manner in which they reveal the stability of periodic orbits. Suppose that x = � (t)
is a periodic solution of (3:1) with least period ! > 0: � (t+ !) = � (t), with orbit
C, a simple closed curve in Rn: This solution is orbitally stable if, for each " > 0;
there exists � > 0 such that d (x0; C) < � implies d (� (t; x0) ; C) < " for all t � 0:
It is orbitally asymptotically stable if it also satis�es limt!1 d (� (t; x0) ; C) = 0
and orbitally asymptotically stable with asymptotic phase if, additionally, there is
a �0 > 0 and whenever d (x0; C) < �0 there is a real number � (x0) such that
limt!1 j� (t+ � (x0) ; x0)� � (t)j = 0:
A useful approach to the stability problem is by means of the Poincaré map. If

x0 2 C; let � = fx : (x� x0)
� f (x0) = 0g ; the (n� 1)-dimensional hyperplane at

x0 perpendicular to the vector �eld of (3:1) at that point. It is an exercise in the
implicit function theorem to show that there is a unique real-valued C1 function
x 7! ! (x) ; ! (x0) = !; such that � (! (x) ; x) 2 �: The Poincaré map P is the
restriction P (x) = � (! (x) ; x) jx2� . Evidently the �xed point x0 of this C1 map



corresponds to the periodic solution � and the stability character of C may be
determined by studying the stability of x0 with respect to iterations of the map P.
In particular, if limn!1Pn (x) = x0 for all x 2 � near x0, where P0 (x) = x and
Pn (x) = P �Pn�1 (x) ; n = 1; 2; � � � , the �xed point x0 is said to be asymptotically
stable with respect to iterations of the map P. This is a necessary and su¢ cient
condition for the solution � to be orbitally asymptotically stable with asymptotic
phase. Finally, a su¢ cient condition for the asymptotic stability of the �xed point
x0 with respect to the Poincaré map and hence for the orbital stability of � is that
all eigenvalues � of the operator DP (x0) satisfy j�j < 1:
The linearization of (3:1) ; _x = f (x) ; with respect to the !-periodic solution

x = � (t) is the di¤erential equation (3:2) ; _y = @f
@x
(� (t)) y, a linear system with

periodic coe¢ cient matrix. Therefore the Floquet theory applies and, if Y (t)
is a fundamental matrix, there exists a non-singular n � n matrix V such that
Y (t+ !) = Y (t)V and hence Y (t+ n!) = Y (t)V n; n = 1; 2; � � �: Thus the sta-
bility of (3:2) is determined by the eigenvalues of V . These eigenvalues are called
the Floquet multipliers of the system; the system is asymptotically stable,for ex-
ample, if and only if every Floquet multiplier � satis�es j�j < 1. Further (3:2) has
a non-trivial periodic solution if and only if � = 1 is a Floquet multiplier. Since
y = _� (t) is a non-trivial periodic solution of (3:2), it follows that at least one
multiplier of the system (3:2) equals 1: Since Y (t) = @

@x
� (t; x) ; x = x0; is a fun-

damental matrix for (3:2)with Y (0) = I it follows that V = @
@x
� (!; x) ; x = x0;

in this case and that f (x0) is an eigenvector of V corresponding to the multiplier
1. The remaining Floquet multipliers are the eigenvalues of DP (x0).
Thus, from the preceding two paragraphs, the periodic solution � (t) is or-

bitally asymptotically stable with asymptotic phase if all but one of the Floquet
multipliers � of the system (3:2) satisfy j�j < 1: This condition is di¢ cult to check
in practice. However, we have the following orbital stability condition of Poincaré:

When n = 2; a !-periodic solution � (t) of (3:1) is orbitally asymp-
totically stable with asymptotic phase if

R !
0
div f (� (s)) ds < 0: To see

this, recall that z (t) = det @
@x
� (t; x0) is the solution of _z = div f (� (t)) z; z (0) =

1 so that

detV = det
@

@x
� (!; x0) = exp

�Z !

0

div f (� (s)) ds

�
< 1:

But detV = �1�2 and one of these Floquet multipliers �1 = 1 so 0 <
�2 < 1 and the result follows. Recall that, when n = 2; div f = @f

@x

[2]



so the Poincaré stability criterion has the following generalization to
higher dimensions.

Theorem 21. The periodic solution � (t) of _x = f (x) is orbitally asymptotically
stable with asymptotic phase if

_z =
@f

@x

[2]

(� (t)) z (3.19)

is asymptotically stable.

Proof. The equation (3:19) is also a system with periodic coe¢ cient matrix
and Z (t) = Y (t)(2) is a fundamental matrix if Y (t) is a fundamental matrix for
(3:2). Therefore Y (t+ !) = Y (t)V implies Y (2) (t+ !) = Y (2) (t)V (2) so that
Z (t+ !) = Z (t)V (2)and �i�j; 1 � i < j � n; are the Floquet multipliers of
(3:19) if �1; � � �; �n are the Floquet multipliers for (3:2) : Therefore the stability
of (3:19) implies j�i�jj < 1: But �1 = 1 is a multiplier for (3:2) since z = _� (t) is
a periodic solution and thus j�ij < 1; i = 2; :::; n and the result follows.
Amore concrete generalization of the Poincaré criterion is given in the corollary

where the given condition implies the asymptotic stability of (3:19) by
Proposition16(ii).

Corollary 22. The periodic solution � (t) of _x = f (x) is orbitally asymptotically
stable with asymptotic phase ifZ !

0

�

 
@f

@x

[2]

(� (s))

!
ds < 0; (3.20)

where � is a Lozinski¼¬measure.

Analogous to Li�s result on generalized Bendixson criteria, if the system (3:1)

has m independent �rst integrals, then @f
@x

[2]
may be replaced by @f

@x

[m+2]
in Theo-

rem 21 and Corollary 22 and a similar result on orbital stability with respect to
solutions in the integral manifold containing the periodic orbit may be proved.



3.4. General Orbital Stability

In this section we will consider the implications of Poincaré�s stability condition if
the assumption of periodicity of � (t) is relaxed to one of boundedness and it is still
assumed that (3:19) is uniformly asymptotically stable. Note that the quali�cation
�uniformly�is not included in the statement of Theorem 21 since that is implied
when � (t) is periodic. It turns out that this has strong implications for the omega
limit set 
 of �(t), where 
 is the set of points x such that limn!1 � (tn) = x for
some sequence tn !1: It will be shown that the cited stability condition on (3:19)
implies that either 
 contains an equilibrium or it is a stable hyperbolic periodic
orbit. �Stable hyperbolic�here means that the Floquet multipliers � of the periodic
orbit, with the exception of a single multiplier which equals 1; all satisfyj�j < 1:
The importance of this type of result lies in the fact that it infers the existence
of a periodic orbit, a limit cycle, from the stability of a general orbit. The most
well-known result of this type is the Poincaré-Bendixson Theorem which shows
that, in a 2-dimensional system, if � (t) is a bounded solution then its omega limit
set is either a periodic orbit if it does not contain an equilibrium.
The main results of this section are special cases of results for general semi-

�ows in metric spaces by Li and Muldowney. These results generalize theorems
of Pliss and of Sell among others and are outlined in Section 3.4.3. We will �rst
consider the situation of equilibria.

3.4.1. Stable Hyperbolic Equilibria

If f (x0) = 0, then � (t; x0) = x0 and x0 is an equilibrium of (3:1) ; _x = f (x). Then
the variational equation with respect to this solution is

_y =
@f

@x
(x0) y: (3.21)

The equation is uniformly asymptotically stable if and only if every eigenvalue
� of @f

@x
(x0) satis�es Re� < 0: This is equivalent to

�� @
@x
� (t; x0)

�� � Ke��t; t �
0;where K;� > 0: Then x0 is said to be a stable hyperbolic equilibrium of the non-
linear system (3:1) and x0 attracts all nearby points exponentially: j� (t; x)� x0j �
Ke��t for some K;� > 0 and all x in a neighbourhood of x0.
We assume for simplicity that the domain of f is Rn and investigate the con-

sequences of the stability of (3:21) if the equilibrium x0 is replaced by a bounded
solution � (t) :



Theorem 23. Let � (t)be a bounded solution of (3:1) ; _x = f (x). Then the
omega limit set 
 of � is a stable hyperbolic equilibrium if and only if (3:2) ;
_y = @f

@x
(� (t)) y; is uniformly asymptotically stable.

Proof. Let C+ = f� (t) : t � 0g, the positive semi-orbit of �: First, suppose that
(3:2) is uniformly asymptotically stable: this is equivalent to���� @@x� (t; x)

���� � Ke��t; 0 � t <1; (3.22)

for all x 2 C+, where K;� are positive constants. By continuity, (3:22) is satis�ed
also at every omega limit point of �: Next, since y = _� (t) is a solution of (3:2),
it follows that limt!1 _� (t) = 0 and hence limt!1 f (� (t)) = 0 so that every
omega limit point x of � is an equilibrium. From (3:22), it is a hyperbolic stable
equilibrium and therefore isolated; 
 is thus a single stable hyperbolic equilibrium.
Conversely, suppose that the omega limit set 
 = fx�g ;where x� is a stable
hyperbolic equilibrium. Then (3:22) is satis�ed at x = x�: First, choose �; L; T >

0 such that � < �; L > K and T su¢ ciently large that L � e
�
2
T and hence

Le��T � e�
�
2
T : Then, by continuity, there is a neighbourhood U of x� such that���� @@x� (t; x)

���� � Le��t; 0 � t � T (3.23)

and � (t) 2 U for t su¢ ciently large. Let tk = kT and xk = � (tk; x0) 2 U; k =
0; 1; 2; � � � � : Suppose that t 2 [tN ; tN+1): Then � (t+ s; x) = � (t; � (s; x)) implies
� (t; x) = � (t� tN ; � (tN � tN�1; � � �; � (t1 � t0; x) � ��)) and hence

@

@x
� (t; x0) =

@

@x
� (t� tN ; xN)

@

@x
� (tN � tN�1; xN�1) � � �

@

@x
� (t1 � t0; x0) :

Therefore
�� @
@x
� (t; x0)

�� � Le��(t�tN )
�
Le��T

�N � Le�
�
2
(t�NT )

�
e�

�
2
T
�N

= Le�
�
2
t,

from (3:23), and it follows that (3:2) is uniformly asymptotically stable.

Corollary 24. A su¢ cient condition for the omega limit set of a bounded solution
� (t) of (3:1) to be a stable hyperbolic equilibrium isZ t

t0

�

�
@f

@x
(� (s))

�
ds � �� (t� t0) + �; 0 � to � t <1

where � > 0; � are constants and � is any Lozinski¼¬measure.



Proof. This follows from Proposition 16(iv).

Remark 5. The condition of Corollary 24 is satis�ed if �
�
@f
@x
(x)
�
� �� < 0 for

all x 2 clC+, the closure of the semi-orbit of � (t) :

3.4.2. Stable Hyperbolic Periodic Orbits

Theorem 25. Let � (t) be a bounded solution of (3:1) ; _x = f (x) ; and let 
 be
its omega limit set. If 
 contains no equilibrium, then it is a stable hyperbolic
periodic orbit if and only if (3:21) ; _z = @f

@x

[2]
(� (t)) z; is uniformly asymptotically

stable.

The proof depends on the following result on dichotomies for a linear system.
Let X (t) be a fundamental matrix for a system (2:1) ; _x = A (t)x; then Y (t) =
X(2) (t) is a fundamental matrix for its second compound equation _y = A[2] (t) y:

Proposition 26. Suppose that:
(a) There exist constants K;L; � such that

jx (t)j � K jx (s)j e�(t�s); 0 � s � t <1

for all solutions x (t) of (2:1) and

jx1 (t)j � L jx1 (s)j ; 0 � s; t <1

for some non-zero solution x1 (t) of (2:1) :
(b)The second compound equation of (2:1) is uniformly asymptotically stable.

Then (2:1) is uniformly stable and there exist supplementary projections P1; P2
on Rn where rkP1 = 1; rkP2 = n� 1; and constants C; � > 0 such that��X (t)P1X�1 (s)

�� � C; 0 � s; t <1��X (t)P2X�1 (s)
�� � Ce��(t�s); 0 � s � t <1 (3.24)

In particular, (2:1) is uniformly stable.

Condition (a) requires that all solutions of (2:1) grow no faster than exponen-
tially (true if A (t) is bounded) and that it has a 1-dimensional strongly stable
subspace (roughly, a solution which is bounded and bounded away from zero).
The conclusion then is that there is also a (n� 1)�dimensional subspace which



is uniformly asymptotically stable and that the angle between the two subspaces
is bounded away from zero provided that the second compound equation is uni-
formly asymptotically stable. A proof is given by Li and Muldowney.

Proof of Theorem 25(sketch).First, since � (t) is bounded, A (t) = @f
@x
(� (t))

is bounded and the solution x1 (t) = _� (t) is bounded and bounded away from
0 since 
 contains no equilibrium so condition (a) of Proposition 26 is satis�ed
by the variational equation _x = @f

@x
(� (t))x. Suppose that (b) is also satis�ed:

_z = @f
@x

[2]
(� (t)) z is uniformly asymptotically stable. Then the proposition implies

that the solution space of the variational equation splits into two subspaces as
described in (3:24) : Moreover, the conditions (a), (b) are su¢ ciently robust that
they are also satis�ed if � (t) is replaced by any solution in the omega limit set 

which is invariant. We will therefore assume that � (t) = � (t; x0) where x0 2 

and so � (t) 2 
, 0 � t < 1: Now let z = x � � (t) ; then (3:1) ; _x = f (x) ; is
equivalent to

_z =
@f

@x
(� (t)) z + F (t; z) ; F (t; z) = f (� (t) + z)� f (� (t))� @f

@x
(� (t)) z;

(3.25)
where F (t; 0) = 0 and F (t; z) = o (jzj) uniformly with respect to t � 0 when jzj is
small. Consider the Banach space B = fz (�) 2 C ([0;1)! Rn; kz (�)k <1g ;
where kz (�)k = supt�0 et jz (t)j. If 0 <  < � and � 2 Rn; P1� = 0; then (3:24)
with X (t) = @

@x
� (t; x0) implies that the map z (�) 7! T� z (�) de�ned by

T� z (t) = X (t) �+

Z t

0

X (t)P2X
�1 (s)F (s; z (s)) ds�

Z 1

t

X (t)P1X
�1 (s)F (s; z (s)) ds

(3.26)
on a su¢ ciently small neighbourhood of 0 2 B is a contraction and the contrac-
tion constant may be chosen independent of � if j�j is small. From the Uniform
Contraction Mapping Principle, there is a unique �xed point z (�) ; z (t) = z (t; �) ;
and the map � 7! z (�; �) is C1: Moreover (3:26) implies that � (t) + z (t; �) is a
solution (3:1) :

� (t; x) = � (t) + z (t; �) ; x = z (0; �) = x0 + � +G (�) (3.27)

where G (�) = P1
R1
0
X�1 (s)F (s; z (s)) ds: From (3:24) ; (3:25) and (3:26) and

the fact that � (�) is bounded, G (�) = o (j�j) when � ! 0: The linearization at
0 of the map � 7! x0 + � + G (�) is therefore the identity map � 7! �: For �



su¢ ciently small, the set of all x satisfying (3:27) ; j�j < �; P1� = 0 is a manifold
S� of dimension n� 1 and x 2 S� implies

lim
t!1

j� (t; x)� � (t)j = 0; (3.28)

S� is transverse to the �ow at x0 since P1� = 0; P1f (x0) = f (x0) and P1+P2 = I:
Thus every orbit which comes close to x0 crosses S� : Since x0 2 
; there exist
x1; x2 2 S� such that � (t1; x1) = x2; t1 > 0 and a sequence tk !1, � (tk; x1)!
x0; k !1: Now (3:28) with x = x1; x = x2 implies limt!1 j� (t; x1)� � (t; x2)j =
0 so that

lim
t!1

j� (t; x1)� � (t1; � (t; x1))j = 0 (3.29)

since � (t; x2) = � (t; � (t1; x1)) = � (t+ t1; x1) = � (t1; � (t; x1)) : Letting t = tk
in (3:29) we �nd limk!1 j� (tk; x1)� � (t1; � (tk; x1))j = 0 so that x0 = � (t1; x0) ;
thus � (0) = � (t1) and � (�) is periodic with period t1: From Theorem 25, this
orbit is stable hyperbolic and therefore attracts all nearby orbits; its orbit is thus
the whole set 
: Conversely, if 
 is a stable hyperbolic periodic orbit, Theorem
21 implies that

���@�@x (2) (t; x)��� � Ke��t ; if x 2 
; 0 � t < 1; where K;� > 0:

As in the proof of Theorem 23, if L > K; T > 0 and 0 < � < �; there exists a
neighbourhood U of 
 such that�����@�@x (2) (t; x)

����� � Le��t; if x 2 U; 0 � t � T: (3.30)

Since � (t+ s; x) = � (t; � (s; x)) implies @�
@x
(t+ s; x) = @�

@x
(t; � (s; x)) @�

@x
(s; x) ;

it follows that @�
@x

(2)
(t+ s; x) = @�

@x

(2)
(t; � (s; x)) @�

@x

(2)
(s; x) by the Binet-Cauchy

Theorem. By choosing T su¢ ciently large and using (3:30) analogously to (3:23)

in the proof of Theorem 23, we �nd that
���@�@x (2) (t; x)��� � Le��t; if x 2 U; 0 � t <

1: Thus, if � (t) is any solution of (3:1) with omega limit set 
; the equation

_z = @f
@x

[2]
(� (t)) z is uniformly asymptotically stable.

3.5. A Note on Semi�ows

Both Theorem 23 and Theorem 25 may be generalized to a semi�ow in a metric
space fX; dg : If t 2 R+; x 2 X; the map (t; x) 7! � (t; x) 2 X is a semi�ow on X
if:



(i) � (0; x) = x

(ii) � (t+ s; x) = � (t; � (s; x))

(iii) (t; x) 7! � (t; x) is continuous

(a) For any x 2 X; the positive orbit of x is C+ (x) =
S
t�0 � (t; x) and the

omega limit set is 
 (x) =
T
s�0 cl

S
t�s � (t; x) ; where cl denotes the topological

closure.
(b) C+ (x) is periodic with period ! if � (t+ !; x) = � (t; x) for some ! > 0:
(c) The semi�ow is Lagrange stable at x if clC+ (x) is compact.
(d) The semi�ow is Lyapunov stable at S � X if, for each " > 0 there exists

� > 0 such that x0 2 S and d [x0; x] < � implies d [� (t; x0) ; � (t; x)] < ": When
S = C+; an orbit, this is the usual concept of uniform Lyapunov stability of C+:
(e) The semi�ow is asymptotic at S � X if there exists � > 0 such that x0 2 S

and d [x0; x] < � implies

lim
t!1

d [� (t; x0) ; � (t; x)] = 0:

(f) The semi�ow is phase asymptotic at S � X if there exist �; � > 0 such
that, for each x0 2 S there is a real-valued function (x0; x) 7! h (x0; x) with
jh (x0; x)j < � and d [x0; x] < � implies

lim
t!1

d [� (t; x0) ; � (t+ h; x)] = 0:

Note: The quantities �; � are independent of x0 2 S here. However the phase
function h in general depends on (x0; x): This dependence is suppressed in the
notation.

In the following theorems, the phrases in square brackets may either be included
or excluded. Theorem 28 generalizes results of Pliss(1966 English translation) and
Sell(1966).

Theorem 27. Suppose that the semi�ow � is Lagrange stable at x�: Then � is
asymptotic [and Lyapunov stable] at C+ (x�) if and only if 
 (x�) is an equilibrium
at which � is asymptotic [and Lyapunov stable].

Proof. Suppose that � is asymptotic at C+ (x�) : First we will show that �
is asymptotic at 
 (x�) : Let x0 2 
 (x�) ; if d [x; x0] < �=2; then there ex-
ists x1 2 C+ (x�) such that d [x0; x1] < �=2: Thus also d [x1; x] < � and hence



limt!1 d [� (t; x0) ; � (t; x1)] = 0 and limt!1 d [� (t; x1) ; � (t; x)] = 0: It follows
that x0 2 
 (x�) and d [x0; x] < �=2 implies limt!1 d [� (t; x0) ; � (t; x)] = 0 and so
� is asymptotic at 
 (x�) with � replaced by �=2 in (e). To see that 
 (x�) is a single
equilibrium, observe that x1 2 
 (x�) ; d [x0; x1] < �=2 implies d [x0; � (s; x1)] <
�=2; 0 � s � "; for some " > 0; and therefore limt!1 d [� (t; x0) ; � (t; � (s; x1))] =
0; 0 � s � ": Thus

lim
t!1

d [� (t; x1) ; � (s; � (t; x1))] = lim
t!1

d [� (t; x1) ; � (t; � (s; x1))] = 0; 0 � s � ":

(3.31)
With x1 2 C+ (x�) ; we may choose tk !1 such that � (tk; x1)! x0; as k !1;
and (3:31) implies limk!1 d [� (tk; x1) ; � (s; � (tk; x1))] = 0; thus x0 = � (s; x0) ; if
0 � s � "; and therefore for 0 � s < 1. Thus x0 is an equilibrium. Since it
attracts all nearby orbits, 
 (x�) = fx0g : Conversely, if � is asymptotic at an
equilibrium x0; it is asymptotic at every orbit attracted to x0: Finally, the phrase
in square brackets may be included throughout this argument.

Theorem 28. Suppose that the semi�ow � is Lagrange stable at x�: Then �
is phase asymptotic [and Lyapunov stable] at C+ (x�) if and only if 
 (x�) is a
periodic orbit at which � is phase asymptotic [and Lyapunov stable].

Proof. Suppose that � is phase asymptotic at C+ (x�) : We will show that �
is phase asymptotic at 
 (x�) : Let x0 2 
 (x�) ; if d [x0; x] < �=2; then there
exists x1 2 C+ (x�) such that d [x0; x1] < �=2: Thus also d [x1; x] < � and both
limt!1 d [� (t; x1) ; � (t+ h0; x0)] = 0; limt!1 d [� (t; x1) ; � (t+ h; x)] = 0 are sat-
is�ed. It follows that, if x0 2 
 (x�) and d [x0; x] < �=2; then

lim
t!1

d [� (t+ h0; x0) ; � (t+ h; x)] = 0

so that
lim
t!1

d [� (t; x0) ; � (t+ h� h0; x)] = 0:

Thus � is phase asymptotic at 
 (x�) with �; � of the de�nition (f) replaced
by �=2; 2� and the phase h replaced by h � h0; where jh� h0j < 2�: To see
that 
 (x�) is a periodic orbit, observe that, if x0 2 
 (x�) ; there exist x1; x2 2
C+ (x�) such that d [x0; xi] < �; i = 1; 2; x2 = � (t1; x1) ; where t1 > 2�: Then
limt!1 d [� (t; x0) ; � (t+ hi; xi)] = 0; i = 1; 2; implies limt!1 d [� (t+ h1; x1) ; � (t+ h2; x2)] =



0 so that

lim
t!1

d [� (t; x1) ; � (t1 + h2 � h1; � (t; x1))]

= lim
t!1

d [� (t; x1) ; � (t+ h2 � h1; � (t1; x1))]

= lim
t!1

d [� (t; x1) ; � (t+ h2 � h1; x2)]

= lim
t!1

d [� (t+ h1; x1) ; � (t+ h2; x2)] = 0;

hence

lim
t!1

d [� (t; x1) ; � (!; � (t; x1))] = 0;where ! = t1 + h2 � h1 � t1 � 2� > 0 (3.32)

Now x0 2 
 (x�) ; x1 2 C+ (x�) implies there exists a sequence tk !1; � (tk; x1)!
x0; as k !1 so that, from (3:32) ; x0 = � (!; x0) : � is periodic with period ! > 0
at x0: Evidently, C+ (x0) � 
 (x�) and, since � is phase asymptotic at C+ (x0) ; this
orbit attracts all nearby orbits and C+ (x0) � 
 (x�) : therefore C+ (x0) = 
 (x�) :
Conversely, if � is phase asymptotic at a omega limit set 
; it is phase asymptotic
at every orbit attracted to 
: The parenthetic statement on Lyapunov stability
may be included throughout this proof.

Exercise 3.5.1. Prove that a omega limit set 
 is a periodic orbit at which � is
phase asymptotic if and only if � is phase asymptotic at some x0 2 
:

Exercise 3.5.2. Formulate and prove analogous results on omega limit sets for
discrete dynamical systems (t; x) 7! � (t; x) where t 2 Z+ = f0; 1; 2; � � �g :

Exercise 3.5.3. A system _x = f (t; x) ;where x; f (t; x) 2 Rn; f (t+ !; x) =
f (t; x) and solutions are uniquely determined by initial conditions, is known to
have a periodic solution if and only if it has a bounded solution when n = 1:
This result also holds when n = 2 provided a global existence requirement is
satis�ed by solutions but does not hold in generality when n > 2: It is known
that this conclusion can in fact be drawn for any n when f has the special form
f (t; x) = A (t)x + b (t) : These results are due to Massera. Sell(1966) shows
that, if  (t) is a bounded solution, then there is a periodic solution of period k!,
1 � k 2 Z+; if the linear equation _y = @f

@x
(t;  (t))y is uniformly asymptotically

stable. Prove this result. Give, in terms of the linear system, a su¢ cient condition
for the existence of a periodic solution of period ! for the non-linear equation.

Exercise 3.5.4. Suppose that @
@x
f (t; x) < 0 for all (t; x) 2 [0; !]�Rn: Show that

the system in Exercise 3.5.3 has at most one periodic solution.



3.6. Convergence of Solutions

Recall Bendixson�s condition for the non-existence of periodic orbits of (3:1) in a
simply connected set D � R2: div f 6= 0 on D: Recall also the Poincaré stability
condition for the orbital asymptotic stability of a periodic solution � (t) in R2 :
_z = div f (� (t)) z is uniformly asymptotically stable. For a general Lagrange
stable solution � (t) ; this condition is necessary and su¢ cient that the omega
limit set of the solution is orbitally asymptotically stable hyperbolic periodic as
long as the omega limit set does not contain an equilibrium. When D � Rn; one
generalization of Bendixson�s condition, Theorem 19 is that the linear equations
_z = @f

@x

[2]
(� (t; x0)) z; x0 2 S; are equi-asymptotically stable for every compact

subset S � D: The corresponding Poincaré necessary and su¢ cient condition for
the equilibrium-free omega limit set of a Lagrange stable solution � (t) to be a

periodic orbit is that _z = @f
@x

[2]
(� (t)) z be uniformly asymptotically stable. We see

that this condition, when restricted to a particular orbit, ensures that the omega
limit set is a periodic orbit if it does not contain an equilibrium. However, when it
is satis�ed on all orbits with initial points in a simply connected set, it precludes
the existence of non-constant periodic orbits and we conclude that every omega
limit set contains an equilibrium. In fact, in a 2-dimensional system which satis�es
Bendixson�s condition, each non-empty omega limit set is a single equilibrium. It
is an interesting exercise to prove this; an elementary proof is given in a classroom
note by McCluskey & Muldowney. This is a useful observation. For example, if
Bendixson�s condition holds and there is a single equilibrium, then it attracts all
bounded orbits. Also in such a system, if a lone equilibrium is asymptotically
stable locally, then it is globally asymptotically stable provided all solutions are
bounded. This observation may be extended to higher dimensional systems by the
following argument which is based on a use of the Pugh Closing Lemma introduced
by R.A.Smith and on the centre manifold theorem.

A point x0 2 Rn is wandering with respect to (3:1) if there is a neigh-
bourhood U of x0 and T > 0 such that U \ � (t; U) is empty if t � T:
Thus, for example any equilibrium, periodic point or, more generally,
an omega limit point is non-wandering. The Pugh Closing Lemma
shows that, if x0 is a non-wandering point of (3:1) and f (x0) 6= 0; then
for each neighbourhood U of x0 there exists a C1 function x 7! g (x)
arbitrarily C1�close to x 7! f (x) with g (x) = f (x) ; if x 2 DnU; and
such that the equation _x = g (x) has a non-constant periodic orbit



through x0:

Let M be a set of n � n matrix-valued functions A: The equations
_x = A (t)x; A 2 M; are uniformly equi-asymptotically stable if there
exist constants K;� > 0 such that each fundamental matrix satis�es
jX (t)X�1 (s)j � Ke��(t�s); 0 � s � t <1:

Theorem 29. Suppose that
(a) D is an open simply connected subset of Rn:
(b) If x0 2 D; then � (t; x0) exists for all t � 0:
(c) The equations _z = @f

@x

[2]
(� (t; x0)) z; x0 2 S; are uniformly equi-asymptotically

stable if S is a compact subset of D:
Then
(e) Every non-wandering point of (3:1) is an equilibrium.
(f) Every non-empty alpha or omega limit set is a single equilibrium.
(g) Every equilibrium in D is the alpha limit set of at most two distinct non-
equilibrium trajectories.

Proof. Recall that Z (t) = @�
@x0

(2)
(t; x0) is a fundamental matrix for the equa-

tion in (c). The uniform equi-asymptotic stability condition is equivalent to the

existence of constants K;� > 0 such that
��� @�@x0: (2) (t; x0)��� � Ke��t; 0 � t < 1;

if x0 2 S: It follows that all systems which are C1-close to (3:1) in the sense of
Pugh�s Lemma also satisfy (b) and (c); the assertion about (c) can be established
with a use of the group property of the �ow similar to that in the proof of Theorem
23. From Theorem 19, none of these systems have nontrivial periodic solutions.
Therefore the Closing Lemma implies that every non-wandering point of (3:1) is
an equilibrium, which is the assertion (e) of the theorem. From this, we see that
every alpha or omega limit point is an equilibrium. To see that every non-empty
omega limit set is a single equilibrium, let x� 2 
 (x0). Now the uniform asymp-

totic stability of the constant coe¢ cient equation _z = @f
@x

[2]
(x�) z follows from (c)

and is equivalent to Re (�i + �j) < 0, if i 6= j; where �1; � � �; �n are the eigenvalues
of @f

@x
(x�) : Thus, with at most one exception, all the eigenvalues satisfy Re� < 0;

there is a stable manifold associated with x� whose dimension is at least n � 1
and an unstable or centre manifold of dimension at most 1: If the stable manifold
has dimension n; then clearly x� is the unique omega limit point . Suppose now
that the stable manifold has dimension n� 1 and that the omega limit set is not
a single point. Then, since all of the limit points are equilibria, the component of



the omega limit set containing x� is a continuum of equilibria. Thus, exactly one
eigenvalue satis�es Re� = 0 and there is a non-trivial centre manifold of dimen-
sion 1 which contains all nearby equilibria and therefore all nearby points of the
omega limit set. The centre manifold theorem now implies limt!1 � (t; x0) = x�
and x� = 
(x0) ; this is assertion (f). When x� is an alpha limit point of a non-
constant solution � (t; x0), a similar argument shows that limt!�1 � (t; x0) = x�
and that the orbit lies in a 1-dimensional unstable or centre manifold. The un-
stable manifold is always unique and, in this case, the centre manifold theorem
implies that the 1-dimensional centre manifold is always unique if it exists; this
gives assertion (g).
A more elementary proof of Theorem 29 which uses neither the Pugh lemma

nor the centre manifold theorem is also possible but longer than that given here.
A similar result may be based on the Bendixson criterion given in Theorem 18

rather than that in Theorem 19.

Theorem 30. Suppose that
(a) D is an open set in Rn which has the minimum property with respect to

the norm j�j :
(b) �

�
@f
@x

[2]
�
< 0 in D [or �

�
�@f
@x

[2]
�
< 0 in D], where � is the Lozinski¼¬

measure corresponding to the norm j�j .
Then the conclusions (e), (f) and (g)[with �alpha� replaced by �omega�] of

Theorem 29 are satis�ed.

3.7. Appendix

Exterior product approach

�
V

kRn = span
�
v1 ^ � � � ^ vk : vi 2 Rn

	 �= R(nk)
� A : Rn ! Rm linear, 1 � k � m;n

� A(k) :
Vk Rn !

Vk Rm is de�ned by

A(k)
�
v1 ^ � � � ^ vk

� def
= Av1 ^ � � � ^ Avk; vi 2 Rn;

extended by linearity to
V

kRn

� A(k) : k�th multiplicative compound (exterior power) of A. Binet-Cauchy
Theorem: (AB)(k)=A(k)B(k)



� A[k] :
Vk Rn !

Vk Rn is de�ned by (m = n)

A[k]
�
v1 ^ � � � ^ vk

� def
=

kX
j=1

v1 ^ � � � ^ Avj ^ � � � ^ vk; vi 2 Rn;

extended by linearity to
V

kRn

� A[k] : k �th additive compound of A:
linearity ) (A+B)[k] = A[k] +B[k]

� matrix: m� n
A =

�
aji
�
; 1 � i � m; 1 � j � n

� k-th multiplicative compound:
�
m
k

�
�
�
n
k

�
B = A(k); 1 � k � m;n
bsr = as1���skr1���rk
where (r) = (r1; � � �; rk) ; (s) = (s1; � � �; sk) ; 1 � r �

�
m
k

�
; 1 � s �

�
n
k

�
� e.g. 3� 3 :

A(1) = A =

24 a11 a21 a31
a12 a22 a32
a13 a23 a33

35 ; A(2) =
24 a1212 a1312 a2312
a1213 a1313 a2313
a1223 a1323 a2323

35 ; A(3) = a123123

� k-th additive compound:
�
m
k

�
�
�
n
k

�
C = A[k]; 1 � k � m = n;

� csr = ar1r1 + � � �+ arkrk ; if (r) = (s)

� csr = (�1)i+j asjri ;if exactly one entry ri in (r) does not occur in (s) and sj
does not occur in (r)

� csr = 0 if (r) di¤ers from (s) in two or more entries

� n = 2 :

A[1] =

�
a11 a12
a21 a22

�
= A

A[2] = a11 + a22 = trA



n = 3 :

A[1] =

24 a11 a12 a13
a21 a22 a23
a31 a32 a33

35 = A

A[2] =

24 a11 + a22 a23 �a13
a32 a11 + a33 a12
�a31 a21 a22 + a33

35
A[3] = a11 + a22 + a33 = trA

n = 4 :

A[1]=

2664
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

3775= A

A[2] =

26666664
a11+a22 a23 a24 �a13 �a14 0
a32 a11+a33 a34 a12 0 �a14
a42 a43 a11+a44 0 a12 a13
�a31 a21 0 a22+a33 a34 �a24
�a41 0 a21 a43 a22+a44 a23
0 �a41 a31 �a42 a32 a33+a44

37777775

A[3] =

2664
a11+a22+a33 a34 �a24 a14

a43 a11+a22+a44 a23 �a13
�a42 a32 a11+a33+a44 a12
a41 �a31 a21 a22+a33+a44

3775
A[4]= a11+a22+a33+a44= trA

Properties

1. (AB)(k) = A(k)B(k) Binet-Cauchy Theorem

2. (A+B)[k] = A[k] +B[k]



3. A[k] = d
dt
(I + tA)(k) jt=0 = limh!o

1
h

h
(I + hA)(k) � I(k)

i
4. (expA)(k) = exp

�
A[k]
�
; log (expA)(k) = A[k]

5. A(1) = A[1] = A

6. A(n) = detA; A[n] = trA

7. X (t): matrix solution of _x = A (t)x)
X(k) (t) : matrix solution of _z = A[k] (t) z

8. If �1; � � �; �n are the eigenvalues of A; then the eigenvalues of A(k) and A[k]
are �i1�i2 � � ��ik and �i1 +�i2 + � � �+�ik ; respectively, 1 � i1 < � � � < ik � n:

9. The corresponding eigenvectors of both A(k) and A[k] are vi1 ^vi2 ^� � �^vik if
vi1 ; vi2 ; � � �; vik are independent eigenvectors of A corresponding to �i1 ; �i2 ; � �
�; �ik ; respectively

10. A symmetric, eigenvalues �1 � �2 � � � � � �n

�
�1 = max

x�Ax

x�x
; x 2 Rn; x 6= 0

�1�2 � � � �k = max
y�A(k)y

y�y
; y = x1 ^ x2 ^ � � � ^ xk; y 6= 0

�
�1 + �2 + � � �+ �k = max

y�A[k]y

y�y
; y = x1 ^ x2 ^ � � � ^ xk; y 6= 0

11. Ger¼sgorin disks for A : ��z � aii
�� �X

j 6=i

��aji ��
contain the eigenvalues �i of A:

12. Ger¼sgorin disks for A(k) :��z � ai1���iki1���ik

�� � X
(j) 6=(i)

��aj1���jki1���ik

��
contain the eigenvalues �i1�i2 � � � �ik of A(k):



13. Ger¼sgorin disks for A[k] :��z � �ai1i1 + � � �+ aikik
��� �X

j =2(i)

���aji1��+ � � �+ ��ajik���
contain the eigenvalues �i1 + �i2 + � � �+ �ik of A

[k]:

Ordinary Di¤erential Equations

� If Y (t; s) is the evolution matrix of _y = A (t) y, then Z (t; s) = Y (k) (t; s) is
the evolution matrix of _z = A[k] (t) z:

� In particular, if y1 (t) ; � � �; yk (t) are solutions of _y = A (t) y, then z (t) =
y1 (t) ^ � � � ^ yk (t) is a solution of _z = A[k] (t) z

y1 (t) ^ � � � ^ yk (t) = Y (t; s) y1 (t) ^ � � � ^ Y (t; s) yk (t)
= Y (k) (t; s) y1 (s) ^ � � � ^ yk (s)

� If y1 (t) ; � � �; yk (t) are considered as an ordered set of oriented line seg-
ments in Rn changing with time, then z (t) may be interpreted as the corre-
sponding k�dimensional oriented parallelopiped.The

�
n
k

�
components of z (t)

are the determinants z1���ki1���ik (t) which are the projections of z (t) onto the
k�dimensional coordinate subspace spanned by ei1 ; � � �; eik and jz (t)j is a
measure of the k�dimensional volume of z (t) if j�j is any norm on

Vk Rn:

� The nonlinear autonomous di¤erential equation in Rn; _x = f (x) ; generates
a semigroup � (t; x) :

� Under the map x0 7! xt = � (t; x0) ; an in�nitesimal oriented line segment
dx0 evolves in time as dxt =

@�
@x0
(t; x0) dx0; a solution of _y =

@f
@x
(� (t; x0)) y

� An oriented in�nitesimal k�dimensional volume dx10 ^ � � � ^ dxk0 evolves as
dx1t ^ � � � ^ dxkt = [ @�@x0 (t; x0) dx

1
0] ^ � � � ^ [ @�@x0 (t; x0) dx

k
0]

= @�
@x0

(k)
(t; x0) dx

1
0 ^ � � � ^ dxk0; which is a solution of _z = @f

@x

[k]
(� (t; x0)) z:

� In particular, the evolution of in�nitesimal n�dimensional volumes is gov-
erned by the Liouville equation, _z = div f (� (t; x0)) z


