A Research Story: Compound Equations and Dynamics. Part I

James Muldowney, University of Alberta

July 10, 2018

Compound Matrices

 $m \times n$ matrix:

$$A = \begin{bmatrix} a_i^j \end{bmatrix}$$
, $1 \le i \le m$, $1 \le j \le n$

 $p \times p$ minor:

$$a_{r_1\dots r_p}^{s_1\dots s_p}=\det\left[a_{r_i}^{s_j}
ight]$$
 , $1\leq i,j\leq p$,

minor of A determined by the rows $r_1, ..., r_p$ and the columns $s_1, ..., s_p$ examples:

$$\begin{vmatrix}
a_{11}^{12} &= \begin{vmatrix}
a_{1}^{1} & a_{1}^{2} \\
a_{1}^{1} & a_{1}^{2}
\end{vmatrix} = 0
a_{12}^{12} &= \begin{vmatrix}
a_{1}^{1} & a_{1}^{2} \\
a_{2}^{1} & a_{2}^{2}
\end{vmatrix}, a_{13}^{12} = \begin{vmatrix}
a_{1}^{1} & a_{1}^{2} \\
a_{3}^{1} & a_{3}^{2}
\end{vmatrix}$$

m = n > p, cofactor matrix:

$$A^{s_1...s_p}_{r_1...r_p}$$
 is the *cofactor* of $a^{s_1...s_p}_{r_1...r_p}$,

i.e. it is the *signed minor* determined by the rows complementary to rows $r_1, ..., r_p$ and by the columns complementary to columns $s_1, ..., s_p$ multiplied by $(-1)^{r_1+s_1+...+r_p+s_p}$.

If p = n, define

$$A_{12...n}^{12...n}=1.$$

$$3 \times 3 \text{ matrix } A = \begin{bmatrix} a_1^1 & a_1^2 & a_1^3 \\ a_1^2 & a_2^2 & a_2^3 \\ a_3^1 & a_3^2 & a_3^3 \end{bmatrix}$$
:

$$A_1^1 = a_{23}^{23} = \begin{vmatrix} a_2^2 & a_2^3 \\ a_3^2 & a_3^3 \end{vmatrix}$$
, $A_2^3 = -a_{13}^{12} = -\begin{vmatrix} a_1^1 & a_1^2 \\ a_3^1 & a_3^2 \end{vmatrix}$
 $A_{12}^{12} = a_3^3$, $A_{12}^{12} = -a_2^3$ and $A_{123}^{123} = 1$.

Note that in this case we have

$$\det A = a_i^1 A_i^1 + a_i^2 A_i^2 + a_i^3 A_i^3, \ i = 1, 2, 3$$

and

$$0 = a_i^1 A_r^1 + a_i^2 A_r^2 + a_i^3 A_r^3, \text{ if } i \neq r.$$

 $n \times n$ matrix A: Laplace expansion

by rows
$$\det A = \sum_{j=1}^n a_i^j \mathcal{A}_i^j, \qquad i=1,2,\cdots,n$$
 by columns $\det A = \sum_{j=1}^n a_i^j \mathcal{A}_i^j, \qquad j=1,2,\cdots,n$

IUSEP Edmonton () Compound Equations July 10, 2018

5 / 20

If A is a $n \times n$ matrix and $1 \le k \le n$, then the Laplace expansions by minors are:

$$\det A = \sum_{1 \le s_1 \le ... \le s_k \le n} a_{r_1 ... r_k}^{s_1 ... s_k} A_{r_1 ... r_k}^{s_1 ... s_k}, \text{ if } 1 \le r_1 < ... < r_k \le n$$

$$\det A = \sum_{1 \le r_1 < \dots < r_k \le n} a_{r_1 \dots r_k}^{s_1 \dots s_k} A_{r_1 \dots r_k}^{s_1 \dots s_k}, \text{ if } 1 \le s_1 < \dots < s_k \le n$$

Note:
$$0 = \sum_{(s)} a_{r_1...r_k}^{s_1...s_k} A_{t_1...t_k}^{s_1...s_k}$$
, if $(r) \neq (t)$, and $0 = \sum_{(r)} a_{r_1...r_k}^{s_1...s_k} A_{r_1...r_k}^{t_1...t_k}$, if $(s) \neq (t)$.

6 / 20

IUSEP Edmonton () Compound Equations July 10, 2018

 $n \times n$ matrix A: Cofactor matrix of A:

$$cof A = \left[A_i^j\right], i, j = 1, ..., n$$

adjugate (or classical adjoint) matrix of A:

$$adjA = (cofA)^T$$
.

Properties:

$$A (adjA) = (adjA) A = (det A) I$$

$$A^{-1} = \frac{1}{\det A} adjA$$

$$\det (cof A) = \det (adj A) = (\det A)^{n-1}$$

Multiplicative Compounds

 $n \times m$ matrix A, $1 \le k \le \min\{n, m\}$ k—th multiplicative compound is the $\binom{n}{k} \times \binom{m}{k}$ matrix

$$A^{(k)} = \left[a_{r_1 \dots r_k}^{s_1 \dots s_k}\right] = \left[a_{(r)}^{(s)}\right]$$

The entry in the r-th row and the s-th column of $A^{(k)}$ is $a_{r_1...r_k}^{s_1...s_k} = a_{(r)}^{(s)}$, where $(r) = (r_1, ..., r_k)$ is the r-th member of the lexicographic ordering of the integers $1 \le r_1 < r_2 < ... < r_k \le m$ and $(s) = (s_1, ...s_k)$ is the s-th member in the lexicographic (dictionary) ordering of all k-tuples of the integers $1 \le s_1 < s_2 < ... < s_k \le n$:

$$1 \le r_1 < r_2 < r_3 \le 5$$

(1) = (123), (2) = (124), (3) = (125), (4) = (134), (5) = (135),

$$(6) \ = \ (145) \, , \ (7) = (234) \, , \ (8) = (235) \, , \ (9) = (245) \, , (10) = (345) \, .$$

Example:

$$A = \begin{bmatrix} a_1^1 & a_1^2 \\ a_2^1 & a_2^2 \\ \vdots & \vdots \\ a_m^1 & a_m^2 \end{bmatrix}_{m \times 2}, \ A^{(2)} = \begin{bmatrix} a_{12}^{12} \\ a_{13}^{12} \\ \vdots \\ a_{m-1,m}^{12} \end{bmatrix}_{\binom{m}{2} \times 1}$$

Binet-Cauchy Theorem:

$$AB = C \Rightarrow A^{(k)}B^{(k)} = C^{(k)}$$

Sylvester's Theorem:

$$\det A^{(k)} = (\det A)^{\binom{n-1}{k-1}}$$

Linear Differential Equations

$$\dot{x} = A(t)x \tag{L}$$

 $t \in [0, \infty)$, $x \in \mathbb{R}^n$, $t \to A(t)_{n \times n}$ continuous.

A solution x(t) of (L) is uniquely determined by its value $x(t_0)$ at any point $t_0 \in [0, \infty)$.

 $X\left(t\right)_{n\times m}$ is a solution matrix of (L) if $\dot{X}\left(t\right)=A\left(t\right)X\left(t\right)$

X(t) is a fundamental matrix of (L) if it is $n \times n$, non-singular and

$$\dot{X}(t) = A(t)X(t)$$

The columns of a fundamental matrix span the solution space of (L): x(t) is a solution of $(L) \iff$ there exists $c \in \mathbb{R}^n$ such that

$$x(t) = X(t) c.$$

Equivalently, the columns of X(t) are solutions of (L) which span the solution space of (L).

In particular, each column of X(t) is a solution of (L).

Suppose that $X\left(t\right)$ is a fundamental matrix of (L), then a $n\times n$ matrix $Y\left(t\right)$ is a fundamental matrix of (L) if and only if there is a constant non-singular matrix C such that $Y\left(t\right)=X\left(t\right)C$.

Any continuously differentiable $n \times n$ matrix X(t) is a fundamental matrix for *some* linear differential equation $(L) \iff X(t)$ is non-singular:

$$A(t) = \dot{X}(t)X^{-1}(t)$$

$$\dot{X}(t) = A(t)X(t)$$

Compound Differential Equations

Recall, from Sylvester's Theorem, $\det X(t)^{(k)} = (\det X(t))^{\binom{n-1}{k-1}}$ so that $\det X(t) \neq 0 \Rightarrow \det X^{(k)}(t) \neq 0$. So $Y(t) = X^{(k)}(t) = [x_{r_1 \dots r_k}^{s_1 \dots s_k}(t)]$ is a fundamental matrix for a $\binom{n}{k}$ -dimensional equation. The coefficient matrix in this equation is denoted $A^{[k]}$

$$\dot{y} = A^{[k]}(t) y \tag{k}$$

the k-th compound equation of (L). Note that $A^{[1]} = A$, $A^{[n]} = \operatorname{tr} A$

$$\dot{y} = A(t) y \tag{1}$$

$$\dot{y} = \operatorname{tr} A(t) y \tag{n}$$

In the case k=n, $X^{(n)}(t)=\det X(t)$, and (n) is the famous Abel-Jacobi scalar equation which gives

$$\det X\left(t
ight)=\det X\left(t_{0}
ight)\exp \left(\int_{t_{0}}^{t}\operatorname{tr}A\left(s
ight)ds
ight)$$

| USEP Edmonton () | Compound Equations | July 10, 2018 | 13 / 20

If X(t) is a $n \times m$ solution matrix of (L), then $Y(t) = X^{(k)}(t)$ is a $\binom{n}{k} \times \binom{m}{k}$ solution matrix of (k) Example:

$$X = \begin{bmatrix} x_1^1 & x_1^2 \\ x_2^1 & x_2^2 \\ \vdots & \vdots \\ x_m^1 & x_m^2 \end{bmatrix}_{m \times 2}, \ x^{(2)} = \begin{bmatrix} x_{12}^{12} \\ x_{13}^{12} \\ \vdots \\ x_{m-1,m}^{12} \end{bmatrix}_{\binom{m}{2} \times 1}$$

Additive Compounds

$$A = \left\lceil a_i^j \right\rceil$$
, $1 \le i, j \le m = n$

 $C = A^{[k]}$, $1 \le k \le m = n$ is called the k-th additive compound A

$$c_r^s = \left\{ \begin{array}{l} a_{r_1}^{r_1} + \dots + a_{r_k}^{r_k}, & \text{ if } (r) = (s) \\ (-1)^{i+j} \, a_{r_i}^{s_j}, & \text{ does not occur in } (s) \text{ and } s_j \\ 0, & \text{ if } (r) \text{ differs from } (s) \text{ in two} \\ & \text{ or more entries} \end{array} \right.$$

Additivity:

$$(A+B)^{[k]} = A^{[k]} + B^{[k]}$$

- < □ > < □ > < 亘 > < 亘 > □ ■ 9 < @

Examples:

$$n=2$$
:

$$A^{[1]} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = A$$
 $A^{[2]} = a_{11} + a_{22} = \text{tr}A$

n = 3:

$$A^{[1]} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = A$$

$$A^{[2]} = \begin{bmatrix} a_{11} + a_{22} & a_{23} & -a_{13} \\ a_{32} & a_{11} + a_{33} & a_{12} \\ -a_{31} & a_{21} & a_{22} + a_{33} \end{bmatrix}$$

$$A^{[3]} = a_{11} + a_{22} + a_{33} = \text{tr}A$$

n = 4:

$$A^{[2]} = \begin{bmatrix} a_{11} + a_{22} & a_{23} & a_{24} & -a_{13} & -a_{14} & 0 \\ a_{32} & a_{11} + a_{33} & a_{34} & a_{12} & 0 & -a_{14} \\ a_{42} & a_{43} & a_{11} + a_{44} & 0 & a_{12} & a_{13} \\ -a_{31} & a_{21} & 0 & a_{22} + a_{33} & a_{34} & -a_{24} \\ -a_{41} & 0 & a_{21} & a_{43} & a_{22} + a_{44} & a_{23} \\ 0 & -a_{41} & a_{31} & -a_{42} & a_{32} & a_{33} + a_{44} \end{bmatrix}$$

$$A^{[3]} = \begin{bmatrix} a_{11} + a_{22} + a_{33} & a_{34} & -a_{24} & a_{14} \\ a_{43} & a_{11} + a_{22} + a_{44} & a_{23} & -a_{13} \\ -a_{42} & a_{32} & a_{11} + a_{33} + a_{44} & a_{12} \\ a_{41} & -a_{31} & a_{21} & a_{22} + a_{33} + a_{44} \end{bmatrix}$$

$$A^{[4]} = a_{11} + a_{22} + a_{33} + a_{44} = trA$$

(ロ) (部) (差) (差) 差 から(*)

IUSEP Edmonton ()

Geometrical Interpretation

Solutions $x^{1}\left(t\right)$, $x^{2}\left(t\right)$ of (L) with n=3 may be interpreted as oriented line segments in \mathbb{R}^{3} whose projections on a basis e^{1} , e^{2} , e^{3} are $\begin{bmatrix} x_{1}^{1}\left(t\right) \\ x_{2}^{1}\left(t\right) \\ x_{3}^{1}\left(t\right) \end{bmatrix}$

,
$$\begin{vmatrix} x_1^2(t) \\ x_2^2(t) \\ x_3^2(t) \end{vmatrix}$$
 and whose evolution in time is governed by (L) . If

$$X\left(t\right) = \left[\begin{array}{cc} x_{1}^{1}\left(t\right) & x_{1}^{2}\left(t\right) \\ x_{2}^{1}\left(t\right) & x_{2}^{2}\left(t\right) \\ x_{3}^{1}\left(t\right) & x_{3}^{2}\left(t\right) \end{array} \right] \text{, then } X^{(2)}\left(t\right) = \left[\begin{array}{c} x_{12}^{12} \\ x_{13}^{12} \\ x_{23}^{12} \end{array} \right] \text{ satisfies (2) and }$$

may be considered as an oriented 2-dimensional parallelogram in \mathbb{R}^3 whose projection onto the (e^i,e^j) coordinate plane, i< j, is a parallelogram with area x_{ii}^{12} .

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 釣 久 ②

If $x^1\left(t\right),\cdots,x^k\left(t\right)$ are considered as an ordered set of oriented line segments in \mathbb{R}^n changing with time, then $y\left(t\right)=x_{r_1r_2\cdots r_k}^{12\cdots k}\left(t\right)$ may be interpreted as the projection of the corresponding k-dimensional oriented parallelopiped in \mathbb{R}^n onto the k-dimensional coordinate subspace spanned by e_{r_1},\cdots,e_{r_k} .

$$(\exp A)^{(k)} = \exp\left(A^{[k]}\right)$$

$$\frac{d}{dt} \left(I + tA \right)^{(k)} \Big|_{t=0} = A^{[k]}$$

The last expression is sometimes taken as the definition of $A^{[k]}$