Notes to IUSEP Lectures in Mathematical Finance:

A Tour from the Binomial Model to the Black-Scholes Formula

$$
\text { July } 24 \text { \& 26, } 2018
$$

Christoph Frei
www.math.ualberta.ca/~cfrei
cfrei@ualberta.ca

1. Single-period binomial model

A single-period model for a financial market:

- Consider the following very simplistic model with one stock and a bank account over one period:

prices	initial value	terminal value
stock	S_{0}	$\left\{\begin{array}{cc}u S_{0} & \text { with probability } p \\ d S_{0} & \text { with probability } 1-p\end{array}\right.$
bank account	1	$1+\mathrm{r}$

for numbers $S_{0}>0,0 \leq d<u, p \in(0,1)$ and r.

- Assumptions: agent can invest in or short sell (= negative investment) the stock, and they can invest in and borrow from the bank account at the same interest rate r.
- We also assume

$$
d<1+r<u \quad \text { (no-arbitrage condition). }
$$

This assumption is reasonable. Example: if we had $d=2, u=3$ and $r=0$, the agent could borrow a positive dollar amount x from the bank account and invest in stock to make a risk-free profit:

	initial value	terminal value
bank account	$-x$	$-x(1+r)=-x$
stock	x	$\left\{\begin{array}{l}u x=3 x \text { with probability } p \\ d x=2 x \text { with probability } 1-p\end{array}\right.$
total	0	$\left\{\begin{array}{l}3 x-x=2 x \text { with probab. } p \\ 2 x-x=x \text { with probab. } 1-p\end{array}\right.$

Pricing financial derivatives:

- Consider now additionally a financial derivative with given payoff as follows:

initial value	terminal value
$x=?$	$\begin{cases}f_{u} & \text { if stock price }=u S_{0}(\text { probab. } p) \\ f_{d} & \left.\text { if stock price }=d S_{0} \text { (probab. } 1-p\right)\end{cases}$

for fixed numbers f_{u} and f_{d}.

- Example: (European) call option with strike K. A call option gives the buyer the right, but not the obligation to buy the stock at maturity for the strike price K. In our model the option payoff is

$$
\left\{\begin{array}{l}
\max \left\{u S_{0}-K, 0\right\} \quad \text { with probability } p \\
\max \left\{d S_{0}-K, 0\right\} \quad \text { with probability } 1-p
\end{array}\right.
$$

because

- two possibilities $u S_{0}$ or $d S_{0}$ for the stock price,
- the buyer will use (= exercise) the option only if the stock price is higher than K.
- How can we find an initial value x for the financial derivative?
We can use a replication argument because we will see that we can obtain here the same payoff by investing in the stock and bank account.

Consider a portfolio consisting of Δ units of the stock and Ψ units of the bank account.

initial value	terminal value
$\Delta S_{0}+\Psi$	$\begin{cases}\Delta u S_{0}+\Psi(1+r) & \text { if stock }=u S_{0} \\ \Delta d S_{0}+\Psi(1+r) & \text { if stock }=d S_{0}\end{cases}$

- We find Δ and Ψ of a replicating portfolio by setting its terminal value equal to that of the financial derivative, which implies

$$
\begin{aligned}
& f_{u}=\Delta u S_{0}+\Psi(1+r) \\
& f_{d}=\Delta d S_{0}+\Psi(1+r)
\end{aligned}
$$

Solving this system of two linear equations for the unknowns gives

$$
\Delta=\frac{f_{u}-f_{d}}{S_{0}(u-d)}, \quad \Psi=\frac{u f_{d}-d f_{u}}{(1+r)(u-d)}
$$

so that the initial value of the portfolio equals

$$
\begin{aligned}
\Delta S_{0}+\Psi & =\frac{f_{u}-f_{d}}{u-d}+\frac{u f_{d}-d f_{u}}{(1+r)(u-d)} \\
& =\frac{1}{1+r}\left(\frac{1+r-d}{u-d} f_{u}+\frac{u-1-r}{u-d} f_{d}\right)
\end{aligned}
$$

To avoid arbitrage ($=$ risk-free gains), this quantity must be equal to the initial value x of the financial derivative:

$$
x=\frac{1}{1+r}\left(\frac{1+r-d}{u-d} f_{u}+\frac{u-1-r}{u-d} f_{d}\right)
$$

Risk-neutral probabilities:

- Define

$$
q_{u}=\frac{1+r-d}{u-d}, \quad q_{d}=\frac{u-1-r}{u-d}
$$

so that we can write

$$
x=\frac{1}{1+r}\left(q_{u} f_{u}+q_{d} f_{d}\right)
$$

- Note that

$$
\begin{aligned}
& \cdot q_{u}+q_{d}=1 \\
& \cdot d<1+r<u \Longrightarrow q_{u}>0, q_{d}>0
\end{aligned}
$$

Therefore, we can consider q_{u}, q_{d} as the probabilities of a probability measure Q and we have

$$
x=\frac{1}{1+r} E^{Q}[f]=\frac{1}{1+r}\left(q_{u} f_{u}+q_{d} f_{d}\right)
$$

where f is the random variable of the option payoff and E^{Q} denotes the expectation under the measure Q. In other words,

$$
\text { option value }=\begin{aligned}
& \text { expectation of the discounted } \\
& \text { payoff under a measure } Q
\end{aligned}
$$

(discounted because payoff is divided by $1+r$).

A crucial observation is that the probability measure Q used in the pricing formula does not equal the historical (from the model construction) probability measure because in general

$$
q_{u}=\frac{1+r-d}{u-d} \neq p, \quad q_{d}=\frac{u-1-r}{u-d} \neq 1-p
$$

- If we calculate the expectation of the discounted stock price under Q, we obtain

$$
\begin{aligned}
& E^{Q}\left[\frac{\text { terminal value of stock }}{1+r}\right] \\
& =q_{u} \frac{u S_{0}}{1+r}+q_{d} \frac{d S_{0}}{1+r} \\
& =\frac{1+r-d}{u-d} \cdot \frac{u S_{0}}{1+r}+\frac{u-1-r}{u-d} \cdot \frac{d S_{0}}{1+r} \\
& =S_{0}
\end{aligned}
$$

which shows that the expectation of the discounted terminal stock price under Q equals its initial value. Therefore, q_{u} and q_{d} are called risk-neutral probabilities and Q a risk-neutral probability measure.

- Remark. A financial market (like that we considered here) where every payoff can be replicated is called complete. It can be proved that a riskneutral probability measure exists if there is no arbitrage in the market model and it is unique if the market is complete.
- The pricing formula we derived was based on a replication argument: we replicated the payoff of the derivative by investing in the stock and bank account. As a byproduct, we also saw the right number of stocks we need for the replication, which is $\Delta=\frac{f_{u}-f_{d}}{S_{0}(u-d)}$.

This means that as a buyer of the option, we can "neutralize" the option by investing $-\Delta$ in the stock. Conversely, as a writer ($=$ seller) of the option, we can buy Δ units of the stock to hedge against our risk. Consequently, this is called a replicating strategy or hedging strategy.

2. Two-period binomial model

- We can extend the model of Section 1 by adding a second period. We then have a tree of the form
time 0 time 1
stock:
$u S_{0}$

$S_{0} \xrightarrow[1-p]{\searrow}$

$$
u d S_{0} \quad 2 p(1-p)
$$ time 2 probability $u^{2} S_{0} \quad p^{2}$

bank account:

$$
1 \quad \rightarrow \quad 1+r \quad \rightarrow \quad(1+r)^{2}
$$

- Trading is now also possible at the intermediate time 1 . We still assume $d<1+r<u$.
- Let us consider a European call option with maturity 2. It has the following payoff at time 2 :

$$
\left\{\begin{array}{cl}
f_{u u}=\max \left\{u^{2} S_{0}-K, 0\right\} & \text { if stock }=u^{2} S_{0} \\
f_{u d}=\max \left\{u d S_{0}-K, 0\right\} & \text { if stock }=u d S_{0} \\
f_{d d}=\max \left\{d^{2} S_{0}-K, 0\right\} & \text { if stock }=d^{2} S_{0}
\end{array}\right.
$$

- By a replication argument similarly to that in Secton 1 applied to both trading periods, the price of the derivative equals

$$
\frac{1}{(1+r)^{2}}\left(q^{2} f_{u u}+2 q(1-q) f_{u d}+(1-q)^{2} f_{d d}\right)
$$

where $q=\frac{1+r-d}{u-d}$. Indeed, we have
derivative:

$$
\begin{aligned}
& f_{u u} \\
& f_{u d} \\
& f_{d d}
\end{aligned}
$$

Applying the reasoning of Section 1 to each branch of the tree gives

$$
\begin{aligned}
& f_{u}=\frac{1}{1+r}\left(q f_{u u}+(1-q) f_{u d}\right) \\
& f_{d}=\frac{1}{1+r}\left(q f_{u d}+(1-q) f_{d d}\right) \\
& x=\frac{1}{1+r}\left(q f_{u}+(1-q) f_{d}\right) \\
& =\frac{1}{(1+r)^{2}}\left(q^{2} f_{u u}+2 q(1-q) f_{u d}+(1-q)^{2} f_{d d}\right)
\end{aligned}
$$

This means that the price equals $\frac{1}{(1+r)^{2}} E^{Q}[f]$, where $f=\max \left\{S_{2}-K, 0\right\}$ is the option payoff and Q is the probability measure with probabilities $q^{2}, 2 q(1-q),(1-q)^{2}$ corresponding to the different states $u^{2} S_{0}, u d S_{0}, d^{2} S_{0}$, respectively, of the stock at time 2.

- One can also show that

$$
\frac{1}{(1+r)^{2}}\left(q^{2} u^{2} S_{0}+2 q(1-q) u d S_{0}+(1-q)^{2} d^{2} S_{0}\right)
$$

equals S_{0} so that Q is a risk-neutral measure.

3. Multiperiod binomial model

- We can further extend the model to n periods so that we have time $n \quad$ probability
stock:

$$
\begin{array}{cc}
u^{n} S_{0} & p^{n} \\
u^{n-1} d S_{0} & n p^{n-1}(1-p) \\
\vdots & \vdots \\
u^{n-j} d^{j} S_{0} & \binom{n}{j} p^{n-j}(1-p)^{j} \\
\vdots & \vdots \\
u d^{n-1} S_{0} & n p(1-p)^{n-1} \\
d^{n} S_{0} & (1-p)^{n}
\end{array}
$$

bank account:

$$
(1+r)^{n}
$$

- A European call with maturity n and strike K has the payoff $\max \left\{S_{n}-K, 0\right\}$, which means

$$
\left\{\begin{array}{cc}
f_{u^{n}}=\max \left\{u^{n} S_{0}-K, 0\right\} & \text { if } S_{n}=u^{n} S_{0} \\
\vdots & \vdots \\
f_{u^{n-j} d^{j}}=\max \left\{u^{n-j} d^{j} S_{0}-K, 0\right\} & \text { if } S_{n}=u^{n-j} d^{j} S_{0} \\
\vdots & \\
f_{d^{n}}=\max \left\{d^{n} S_{0}-K, 0\right\} & \text { if } S_{n}=d^{n} S_{0}
\end{array}\right.
$$

- Extending the pattern of the two-period, the fair price of the option is given by

$$
\begin{gathered}
\frac{1}{(1+r)^{n}}\left(q^{n} f_{u^{n}}+\cdots+\binom{n}{j} q^{n-j}(1-q)^{j} f_{u^{n-j} d^{j}}\right. \\
\left.+\cdots+(1-q)^{n} f_{d^{n}}\right)
\end{gathered}
$$

where

$$
q=\frac{1+r-d}{u-d}
$$

- Associating to q the corresponding measure Q, we can write the option price as

$$
\frac{1}{(1+r)^{n}} E^{Q}[f]=\frac{1}{(1+r)^{n}} E^{Q}\left[\max \left\{S_{n}-K, 0\right\}\right]
$$ where we emphasize that it is the expectation under Q and not under the historical probability.

- Remark: Under the historical probability, S_{n} is related to a binomial distribution with parameters p and n. Under the probability measure Q, S_{n} is still related to a binomial distribution but with parameters $q=\frac{1+r-d}{u-d}$ and n. So for the
option pricing, we just change the parameters of the distribution of S_{n} and take then expectations of discounted values.

Pricing a call option by writing a MATLAB function

 callnperiod.m:```
function price = callnperiod(u,d,r,SO,K,n)
% calculate the price of a call option with ...
 strike K in an n period binomial model
if d<1+r && 1+r<u
 price=0;
 q = (1+r-d)/(u-d);
 for j=0:n
 price = price + ...
 nchoosek (n,j)*q^ (n-j)* (1-q)^j*....
 max(u^(n-j)*d^j*S0-K,0)/(1+r)^n;
 end
else
error('wrong parameters')
end
```

```
% plot the call price in dependence of the ...
 strike price
K = 0:0.05:10;
price = callnperiod(1.2,.95,.05,1,K,20);
plot(K,price,'LineWidth',3);
set(gca,'fontsize',14,'FontWeight','bold');
xlabel('strike price','fontsize',14);
```

```
ylabel('option price','fontsize',14);
axis([0 10 0 1]) % choosing suitable range ...
 for axes
```



## 4. Transition to continuous time

- The binomial model can be used as approximation for a model with continuous trading possibilities on some time interval $[0, T]$.

To show convergence, one lets tend the number $n$ of periods to infinity and, simultaneously, the length of each period tend to zero. This means that one makes specific choices for $u, d$ and $r$ depending on $n$; for details, please see the Appendix.

- The resulting continuous-time model has a bank account whose value at time $T$ equals $\exp (\rho T)$ and a stock whose price at time $T$ is given by

$$
S_{T}=S_{0} \exp \left(\left(\mu-\sigma^{2} / 2\right) T+\sigma \sqrt{T} N\right)
$$

where $\rho, \mu$ and $\sigma>0$ are constants and $N$ is a standard normally distributed random variable.

```
function convergenceS(mu,sigma,T,n)
% compares the cumulative distribution ...
 function of S_n in a binomial model with ...
 that of the corresponding log-normal ...
 distribution
u = exp((mu-sigma^2/2)*T/n+sigma*(T/n)^.5);
% appropriate choice of u
d = exp((mu-sigma^2/2)*T/n-sigma*(T/n)^.5);
% appropriate choice of d
j=0:n;
```

```
Sn = d.^(n-j).*u.^j; % S_n for p = 1/2
bin=binocdf(0:n,n,1/2); % cumulative ...
 distribution function of S_n
points = 0:.05:Sn(n+1); % choose equidistant ...
 points for plot
lognorm=logncdf(points,(mu-sigma^2/2)*T,...
 sigma*T^.5); % cumulative distribution ...
 function of S
plot(points,lognorm,Sn,bin,'r.','LineWidth',...
 3,'MarkerSize',18) % r = red, . = point
set(gca,'fontsize',14,'FontWeight','bold');
title('cumulative distribution functions');
legend('continuous time','discrete ...
 time','location','best');
```



- Similarly to the binomial model, the price of a European call option with strike $K$ and maturity $T$ is given by

$$
\frac{1}{\exp (\rho T)} E^{Q}\left[\max \left\{S_{T}-K, 0\right\}\right]
$$

for some probability measure $Q$. This probability measure is such that

$$
S_{T}=S_{0} \exp \left(\left(\rho-\sigma^{2} / 2\right) T+\sigma \sqrt{T} \tilde{N}\right)
$$

for a random variable $\tilde{N}$ that is normally distributed under $Q$. Using this fact, we can rewrite the price of the European call as

$$
c=S_{0} \Phi\left(d_{1}\right)-K \exp (-\rho T) \Phi\left(d_{1}-\sigma \sqrt{T}\right),(\star)
$$

where

$$
\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} \exp \left(-u^{2} / 2\right) \mathrm{d} u
$$

is the standard-normal distribution function and $d_{1}=\frac{\log \frac{S_{0}}{K}+\rho T}{\sigma \sqrt{T}}+\frac{1}{2} \sigma \sqrt{T}$.

## Comments:

- ( $\star$ ) is the famous Black-Scholes formula. Note $c$ depends on $S_{0}, K, \rho, \sigma$ and $T$, but not on $\mu$.
- In continuous time, the underlying process of the stock price dynamics is related to a Brownian motion.
- The partial derivatives of the Black-Scholes formula ( $\star$ ) with respect to its parameters are called Greeks.

1. Delta $=\frac{\partial c}{\partial S_{0}}=\Phi\left(d_{1}\right) \in(0,1)$ is the amount of the risky asset held in the replicating portfolio.
2. Gamma $=\frac{\partial^{2} c}{\partial S_{0}^{2}}=\Phi^{\prime}\left(d_{1}\right) \frac{1}{S_{0} \sigma \sqrt{T}}>0$;
if Gamma is big, frequent adjustments of the replicating portfolio are necessary.
3. Theta $=-\frac{\partial c}{\partial T}$
$=-\frac{S_{0} \sigma \Phi^{\prime}\left(d_{1}\right)}{2 \sqrt{T}}-K \rho \exp (-\rho T) \Phi\left(d_{1}-\sigma \sqrt{T}\right)$ $<0$.
4. Rho $=\frac{\partial c}{\partial \rho}=K T \exp (-\rho T) \Phi\left(d_{1}-\sigma \sqrt{T}\right)>0$.
5. Vega $=\frac{\partial c}{\partial \sigma}=S_{0} \sqrt{T} \Phi^{\prime}\left(d_{1}\right)>0$.

- The principle of valuation under $Q$ holds generally. The price of a derivative with payoff $f\left(S_{T}\right)$ is

$$
\begin{aligned}
& \exp (-\rho T) E^{Q}\left[f\left(S_{T}\right)\right] \\
& =\mathrm{e}^{-\rho T} E^{Q}\left[f\left(S_{0} \exp \left(\left(\rho-\sigma^{2} / 2\right) T+\sigma \sqrt{T} \tilde{N}\right)\right)\right]
\end{aligned}
$$

for a normally distributed $\tilde{N}$ under $Q$.

Comparison of Black-Scholes with Binomial model:
function [priceBin, priceBS] = ...
compareCall (rho, mu, sigma, T, K, n)
\% compares the call option price in a ...
binomial model with the continuous-time
analogue from the Black-Scholes formula
u = exp((mu-sigma^2/2)*T/n+sigma*(T/n)^.5);
\% appropriate choice of u
$d=\exp ((m u-s i g m a \wedge 2 / 2) * T / n-s i g m a *(T / n) \wedge .5) ;$
\% appropriate choice of d
r = rho*T/n; \% appropriate choice of r
priceBin = callnperiod(u,d,r,1,k,n);
$\mathrm{d} 1=(\log (1 . / \mathrm{K})+\mathrm{rho} \mathrm{T}) / \mathrm{sigma} / \mathrm{T}^{\wedge} .5+\ldots$
sigma*T^.5/2;
priceBS = normcdf(d1) - ...
K.*exp (-rho*T).*normcdf (d1-sigma*T^.5);
\% or, alternatively, by applying the ...
Financial Toolbox, we could use
\% priceBS = blsprice(1,K,rho,T,sigma);

Plot the comparison of the Call option prices using the script compareCallPlot.m:

```
% plot comparison of Call option prices in ...
 binomial model and Black-Scholes model
K=0:.05:1.5;
[a,b] = compareCall(.05,.5,.2,1,K,10);
plot(K,a,K,b,'LineWidth',3);
set(gca,'fontsize',14,'FontWeight','bold');
xlabel('strike price','fontsize',14);
ylabel('option price','fontsize',14);
legend('Binomial model','Black-Scholes')
```



## 5. Implied volatility

- The value of $\sigma$ is hard to determine $\rightarrow$ idea: find $\sigma$ by inverting the Black-Scholes formula and using the market price of the option.
- The implied volatility $\sigma_{\text {impl }}$ is defined as the unique $\sigma$ such $c_{\mathrm{BS}}(\sigma)=c_{\text {market }}$, where $c_{\text {market }}$ is the market price of the option and $c_{\mathrm{BS}}$ is the value of the Black-Scholes formula ( $\star$ ) depending on $\sigma$.
- If the Black-Scholes model is correct, $\sigma_{\text {impl }}$ does not depend on $K, S_{0}, T$ and $\rho$. But in reality, one sees a strong dependence on $K$ (volatility smile/skew).

```
% The financial toolbox has the function
 blsimpv to calculate implied volatility:
 blsimpv(Current price of Stock S_0,
 Strike K, Interest rate rho, Time to ...
 maturity T, Option price)
>> blsimpv(100, 95, 0, 0.25, 10)
ans=
 0.3722
```


## We now calculate the implied volatility on EUR/USD Call options, writing a script volaEURUSD.m. The resulting plot shows a volatility smile.

```
\% volaEURUSD.m needs financial toolbox
응
\% Implied volatility of currency options.
 We have the following data: 1 EUR \(=1.1678 \ldots\)
 USD (July 1st, 2018); the matrix A gives...
 the prices (in USD) of call options with ...
 maturity end of September [such data can ...
 be found at http://www.cmegroup.com/]
 \(A=[1.150 .0253 ; 1.1550 .0214 ; 1.16 \ldots\)
 \(0.0182 ; 1.1650 .0152 ; 1.170 .0126 ; 1.175 \ldots\)
 \(0.0105 ; 1.180 .0088 ; 1.1850 .0072 ; 1.19 \ldots\)
 0.0059 ; 1.1950 .0047 ; 1.20 0.0038; 1.205 ...
 0.0030 ; 1.21 0.0024];
\% calculate the implied volatilities:
\(A(:, 3)=\mathrm{bl} \operatorname{simpv}(1.1678, A(:, 1), 0,3 / 12, A(:, 2))\);
\% until end of September \(=3\) months
\% \(A(:, 2)\) means all numbers of the 2 nd column
plot (A (: , 1) , A (: , 3) , 'LineWidth', 3) ;
set (gca, 'fontsize', 14, 'FontWeight' ' 'bold') ;
xlabel ('strike price', 'fontsize', 14);
ylabel ('implied volatility', 'fontsize', 14);
\(x \lim ([A(1,1), A(e n d, 1)])\)
title('volatility smile')
```



There exist indices which measure the implied volatility. A popular measure is VIX, which reflects the implied volatility of options on the stock index S\&P 500. VIX is often referred to as "fear index", because a high level of VIX means a lot of uncertainty in the market; see the development of VIX on the next page.

## VIX over the last ten years



## Appendix: additional explanations

## and proofs to Section 4

## A. 1 Choice in the continuous-time model

In the continuous-time situation, we model the terminal value of the bank account as $B_{T}=\exp (\rho T)$ and the terminal value of the stock as

$$
\begin{equation*}
S_{T}=S_{0} \exp \left(\left(\mu-\sigma^{2} / 2\right) T+\sigma \sqrt{T} N\right) \tag{1}
\end{equation*}
$$

where $\rho, \mu$ and $\sigma>0$ are constants and $N$ is a standard normally distributed random variable.

## A. 2 Explanations behind choice

The reason behind these choices is as follows. In continuous time, the bank account models continuous interest, which means

$$
\mathrm{d} B_{t}=\rho B_{t} \mathrm{~d} t .
$$

We can interpret this as that the infinitesimal change $\mathrm{d} B_{t}$ in the bank account is equal to the continuous interest rate $\rho$ times the capital $B_{t}$. This equation is
equivalent to $\frac{\mathrm{d} B_{t}}{\mathrm{~d} t}=\rho B_{t}$, which yields $B_{T}=\exp (\rho T)$ using that $B_{0}=1$.

To explain the form (1) of the stock price, we can say that on average (which means in expectation) the stock should have a similar growth form than the bank account. Hence, $E\left[S_{T}\right]=S_{0} \exp (\mu T)$ for some constant $\mu$ (typically $\mu$ will be bigger than $\rho$ to compensate for the risk in the stock), using that $S$ starts at $S_{0}$ and not necessarily at 1 , in contrast to the bank account. Now, $S_{T}$ will not just be equal to the deterministic value $S_{0} \exp (\mu T)$, but will also reflect some random factor because we do not know future prices. Hence, $S_{T}$ is of the form

$$
\begin{equation*}
S_{T}=S_{0} \exp (\mu T) \times(\text { positive random factor }) \tag{2}
\end{equation*}
$$

The reason for this positive random factor is related to the so-called Brownian motion. At the moment, you should just accept that we can model it with a normally distributed random variable, but because it should be positive, we take the exponential of this normally distributed random variable so that positive random factor $=\exp (c N)$
where $c$ is some constant and $N$ is a standard normally distributed random variable. The bigger $T$, the longer the time horizon is and more uncertain $S_{T}$ is. Therefore, $c$ should depend on $T$, and we will again see later that the right form is $c=\sigma \sqrt{T}$, hence it grows like square root in $T$ times some constant $\sigma$, which gives us how big the fluctuation in $S_{T}$ is. Combining this with (2) and (3), we get

$$
\begin{equation*}
S_{T}=S_{0} \exp (\mu T+\sigma \sqrt{T} N) \tag{4}
\end{equation*}
$$

for some normally distributed $N$. Recall we wanted to have $E\left[S_{T}\right]=S_{0} \exp (\mu T)$ so that $\mu$ has the interpretation of the mean growth rate, but we can calculate

$$
\begin{aligned}
& E\left[S_{0} \exp (\mu T+\sigma \sqrt{T} N)\right] \\
& =S_{0} \exp (\mu T) E[\exp (\sigma \sqrt{T} N)] \\
& =S_{0} \exp \left(\mu T+\sigma^{2} T / 2\right)
\end{aligned}
$$

using the formula that $E[\exp (\alpha N)]=\exp \left(\alpha^{2} / 2\right)$ for any constant $\alpha$ and standard normally distributed $N$. Therefore, to get $E\left[S_{T}\right]=S_{0} \exp (\mu T)$, we need to divide (3) by $\exp \left(\sigma^{2} T / 2\right)$, which leads to (1).

## A. 3 Convergence proofs

We show now that under suitable choices of $r_{n}, d_{n}$ and $u_{n}$, the terminal values of the bank account and stock in the binomial model converge to $B_{T}=\exp (\rho T)$ and $S_{T}$ given in (1).

Proposition 1 For $r_{n}=\rho T / n$, we have

$$
\lim _{n \rightarrow \infty}\left(1+r_{n}\right)^{n}=\exp (\rho T)
$$

Proof.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}(1+\rho T / n)^{n} & =\exp \left(\ln \left(\lim _{n \rightarrow \infty}(1+\rho T / n)^{n}\right)\right) \\
& =\exp \left(\lim _{n \rightarrow \infty} \ln (1+\rho T / n)^{n}\right) \\
& =\exp \left(\lim _{n \rightarrow \infty} n \ln (1+\rho T / n)\right) \\
& =\exp \left(\lim _{n \rightarrow \infty} \frac{\ln (1+\rho T / n)}{1 / n}\right),
\end{aligned}
$$

which equals

$$
\begin{aligned}
\exp \left(\lim _{n \rightarrow \infty} \frac{\ln (1+\rho T / n)}{1 / n}\right) & \stackrel{(*)}{=} \exp \left(\lim _{s \searrow 0} \frac{\ln (1+\rho T s)}{s}\right) \\
& \stackrel{(* *)}{=} \exp \left(\lim _{s}{ }^{2} \frac{\rho T}{1+\rho T s}\right) \\
& =\exp (\rho T)
\end{aligned}
$$

$(*)$ set $s=1 / n$, then $n \rightarrow \infty \Longleftrightarrow s \searrow 0$
$(* *)$ L'Hôpital's rule using $\frac{d}{d s} \ln (1+\rho T s)=\frac{\rho T}{1+\rho T s}$

Proposition 2 Set $p=1 / 2$ and define

$$
\begin{aligned}
& u_{n}=\exp \left(\left(\mu-\sigma^{2} / 2\right) \frac{T}{n}+\sigma \sqrt{\frac{T}{n}}\right) \\
& d_{n}=\exp \left(\left(\mu-\sigma^{2} / 2\right) \frac{T}{n}-\sigma \sqrt{\frac{T}{n}}\right)
\end{aligned}
$$

then $S_{n}$ in the $n$-period binomial model converges to $S_{T}$ in (1).

Proof. If $S_{n}$ reflects $j$ times $u_{n}$ and $n-j$ times $d_{n}$, we have

$$
\begin{aligned}
S_{n}= & S_{0} u_{n}^{j} d_{n}^{n-j} \\
= & S_{0} \exp \left(\left(\mu-\sigma^{2} / 2\right) \frac{T}{n} j+\sigma \sqrt{\frac{T}{n}} j\right) \\
& \times \exp \left(\left(\mu-\sigma^{2} / 2\right) \frac{T}{n}(n-j)-\sigma \sqrt{\frac{T}{n}}(n-j)\right) \\
= & S_{0} \exp \left(\left(\mu-\sigma^{2} / 2\right) T+\sigma \sqrt{T} \frac{2 j-n}{\sqrt{n}}\right)
\end{aligned}
$$

Comparing this with (1), it remains to show that $\frac{2 j-n}{\sqrt{n}}$ converges to a standard normally distributed random variable. Define random variables $X_{i}$ by

$$
X_{i}= \begin{cases}1, & \text { if we have } u_{n} \text { in period } i  \tag{5}\\ -1, & \text { if we have } d_{n} \text { in period } i\end{cases}
$$

and note that if we have $j$ times $u_{n}$ and $n-j$ times $d_{n}$, then

$$
\sum_{i=1}^{n} X_{i}=j+(n-j)(-1)=2 j-n .
$$

Therefore, we can write

$$
\begin{equation*}
\frac{2 j-n}{\sqrt{n}}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i} . \tag{6}
\end{equation*}
$$

We now apply the Central Limit Theorem, which says that for independent and identically distributed random variables $X_{1}, X_{2}, \ldots$ with mean $\mu=E\left[X_{i}\right]$ and finite variance $\sigma^{2}=\operatorname{Var}\left(X_{i}\right)$,

$$
\begin{equation*}
\frac{\sqrt{n}}{\sigma}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}-\mu\right) \tag{7}
\end{equation*}
$$

converges (in distribution) to a standard normally distributed random variable. In our case of $X_{i}$ given by
(5) with equal probability $1 / 2$ for the two cases (because $p=1 / 2$ by assumption), we have

$$
\begin{aligned}
\mu & =E\left[X_{i}\right]=\frac{1}{2} \cdot 1+\frac{1}{2} \cdot(-1)=0 \\
\sigma^{2} & =\operatorname{Var}\left(X_{i}\right)=E\left[X_{i}^{2}\right]=\frac{1}{2} \cdot 1^{2}+\frac{1}{2} \cdot(-1)^{2}=1
\end{aligned}
$$

Therefore, (7) simplifies in our case to $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}$. Because of (6), this shows that $\frac{2 j-n}{\sqrt{n}}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}$ converges (in distribution) to a standard normally distributed random variable.

## A. 4 Derivation of the Black-Scholes formula

Similarly to the binomial model, the price for a payoff $f$ in the Black-Scholes model is given by $\frac{1}{\mathrm{e}^{\rho T}} E^{Q}[f]$ where the terminal value of the stock price is

$$
S_{T}=S_{0} \exp \left(\left(\rho-\sigma^{2} / 2\right) T+\sigma \sqrt{T} \tilde{N}\right)
$$

with $\tilde{N}$ standard normally distributed under $Q$. In the case of a call option with strike price $K$, the price

## equals

$$
\begin{aligned}
c & =\frac{1}{\mathrm{e}^{\rho T}} E^{Q}\left[\max \left\{S_{T}-K, 0\right\}\right] \\
& =\frac{1}{\mathrm{e}^{\rho T}} E^{Q}\left[\max \left\{S_{0} \mathrm{e}^{\left(\rho-\sigma^{2} / 2\right) T+\sigma \sqrt{T} \tilde{N}}-K, 0\right\}\right] \\
& =\frac{1}{\mathrm{e}^{\rho T}} \int_{-\infty}^{\infty} \max \left\{S_{0} \mathrm{e}^{\left(\rho-\sigma^{2} / 2\right) T+\sigma \sqrt{T} x}-K, 0\right\} \frac{\mathrm{e}^{-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} x \\
& =\int_{-\infty}^{\infty} \max \left\{S_{0} \mathrm{e}^{-\sigma^{2} T / 2+\sigma \sqrt{T} x}-K \mathrm{e}^{-\rho T}, 0\right\} \frac{\mathrm{e}^{-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} x
\end{aligned}
$$

Now, we use the equivalences

$$
\begin{aligned}
& S_{0} \mathrm{e}^{-\sigma^{2} T / 2+\sigma \sqrt{T} x}-K \mathrm{e}^{-\rho T} \geq 0 \\
& \Longleftrightarrow S_{0} \mathrm{e}^{-\sigma^{2} T / 2+\sigma \sqrt{T} x} \geq K \mathrm{e}^{-\rho T} \\
& \Longleftrightarrow \mathrm{e}^{-\sigma^{2} T / 2+\sigma \sqrt{T} x} \geq \frac{K}{S_{0}} \mathrm{e}^{-\rho T} \\
& \Longleftrightarrow-\sigma^{2} T / 2+\sigma \sqrt{T} x \geq \log \left(\frac{K}{S_{0}}\right)-\rho T \\
& \Longleftrightarrow x \geq \frac{\log \left(K / S_{0}\right)-\rho T}{\sigma \sqrt{T}}+\sigma \sqrt{T} / 2
\end{aligned}
$$

Therefore, defining $d=\frac{\log \left(K / S_{0}\right)-\rho T}{\sigma \sqrt{T}}+\sigma \sqrt{T} / 2$ allows us to write

$$
\begin{aligned}
c= & \int_{-\infty}^{\infty} \max \left\{S_{0} \mathrm{e}^{-\sigma^{2} T / 2+\sigma \sqrt{T} x}-K \mathrm{e}^{-\rho T}, 0\right\} \frac{\mathrm{e}^{-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} x \\
= & \int_{d}^{\infty}\left(S_{0} \mathrm{e}^{-\sigma^{2} T / 2+\sigma \sqrt{T} x}-K \mathrm{e}^{-\rho T}\right) \frac{\mathrm{e}^{-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} x \\
= & \int_{d}^{\infty} S_{0} \mathrm{e}^{-\sigma^{2} T / 2+\sigma \sqrt{T} x} \frac{\mathrm{e}^{-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} x \\
& -\int_{d}^{\infty} K \mathrm{e}^{-\rho T} \frac{\mathrm{e}^{-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} x .
\end{aligned}
$$

For the first term, we calculate

$$
\begin{aligned}
& \int_{d}^{\infty} S_{0} \mathrm{e}^{-\sigma^{2} T / 2+\sigma \sqrt{T} x} \frac{\mathrm{e}^{-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} x \\
& =S_{0} \mathrm{e}^{-\sigma^{2} T / 2} \int_{d}^{\infty} \frac{\mathrm{e}^{\sigma \sqrt{T} x-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} x \\
& =S_{0} \mathrm{e}^{-\sigma^{2} T / 2} \int_{d}^{\infty} \frac{\mathrm{e}^{-(x-\sigma \sqrt{T})^{2} / 2} \mathrm{e}^{\sigma^{2} T / 2}}{\sqrt{2 \pi}} \mathrm{~d} x \\
& =S_{0} \int_{d-\sigma \sqrt{T}}^{\infty} \frac{\mathrm{e}^{-y^{2}}}{\sqrt{2 \pi}} \mathrm{~d} y \\
& =S_{0}(1-\Phi(d-\sigma \sqrt{T})) \\
& =S_{0} \Phi(-d+\sigma \sqrt{T})
\end{aligned}
$$

A10
For the second term, we have

$$
\begin{aligned}
\int_{d}^{\infty} K \mathrm{e}^{-\rho T} \frac{\mathrm{e}^{-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} x & =K \mathrm{e}^{-\rho T} \int_{d}^{\infty} \frac{\mathrm{e}^{-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} x \\
& =K \mathrm{e}^{-\rho T}(1-\Phi(d)) \\
& =K \mathrm{e}^{-\rho T} \Phi(-d) .
\end{aligned}
$$

## Defining

$$
d_{1}=-d+\sigma \sqrt{T}=\frac{\log \left(K / S_{0}\right)+\rho T}{\sigma \sqrt{T}}+\frac{1}{2} \sigma \sqrt{T} .
$$

we obtain

$$
\begin{aligned}
c= & \int_{d}^{\infty} S_{0} \mathrm{e}^{-\sigma^{2} T / 2+\sigma \sqrt{T} x} \frac{\mathrm{e}^{-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} x \\
& -\int_{d}^{\infty} K \mathrm{e}^{-\rho T} \frac{\mathrm{e}^{-x^{2} / 2}}{\sqrt{2 \pi}} \mathrm{~d} x \\
= & S_{0} \Phi\left(d_{1}\right)-K \mathrm{e}^{-\rho T} \Phi\left(d_{1}-\sigma \sqrt{T}\right),
\end{aligned}
$$

which is the Black-Scholes formula.

