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The Pre-FOMC Announcement Drift: A Pumping Explanation 
 
 

Abstract 
 
We provide a theoretical, cross-pumping explanation for the upward drift in equity prices before 

FOMC announcements.  The novel insight emerging from our model is that managers holding high 

beta stocks have incentives to pump stocks other than the ones they hold.  Studying five-minute 

order imbalances and returns, we find that the order imbalance for the market and for portfolios of 

mid- and high- beta stocks explains the drift for the market, beta, size, and size-BM portfolios, and 

for two major stock ETFs.  Stock-level tests highlight the important role of beta in the drift.  Our 

results are consistent with the model’s predictions, and suggest that cross-pumping provides a 

partial explanation for the pre-FOMC announcement drift. 
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1. Introduction 

The Federal Open Market Committee (FOMC) of the US Fed meets eight times a year to set US 

interest rate policy, and these meetings are closely watched.  Between September 1994 and March 

2011, the outcome has been announced at around 2:15 PM EST.  Lucca and Moench (2015) 

uncover an upward drift of 0.49% in the S&P 500 index over the 24-hour period before the FOMC 

announcement.  This pre-FOMC announcement drift cannot be explained by risk, illiquidity, or 

persistent good news associated with policy changes.  Panel A of Figure 1 shows a 0.48% pre-

announcement aggregate value-weighted return and a smaller 0.36% equally-weighted return over 

a slightly longer 1994-2014 sample period, while Panel B shows value-weighted buying pressure 

across all stocks, although the equally-weighted curve suggests selling of small stocks.   

In this paper, we link the results in the two panels by offering an explanation for the drift 

based on strategic investor buying of targeted stocks.  This is presented in the form of a simple 

model.  The model involves a market-maker, an informed investor, noise traders, and a long-only 

uninformed fund manager, and extends Bhattacharyya and Nanda (2013) to a multi-security 

economy with optimization over the fund’s prior holdings.  The informed investor maximizes the 

long-term profit taking advantage of his private knowledge about asset payoffs. Unlike the 

informed investor, the manager is compensated on short-term as well as long-term performance.  

The market maker sets asset prices given the aggregate order flow.  We assume that a factor 

structure governs asset payoffs, as is likely on days with important economy-wide news, such as 

FOMC rate announcements.  With a simplifying assumption about noise trading, the model makes 

three sharp predictions.  First, asset returns on FOMC days will be explained by the marketwide 

order imbalance and the asset’s own imbalance, and the slope coefficient on the marketwide 
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imbalance will increase with the asset’s beta, while that on the own imbalance will be constant 

across assets.  Second, if the market maker and the informed investor underestimate her holdings 

of some assets, the manager has incentives to buy those with highest betas.  We argue that this 

additional assumption is plausible in a large economy with numerous securities available for 

investment.  Third, under the same additional assumption and strong enough short termism, buying 

high beta assets that the manager is not believed to own, and indeed does not own, can generate 

larger profits than buying low beta assets.   

The intuition is as follows.  The factor structure on announcement days implies that factor 

returns will be transmitted to individual stocks more strongly.  This creates incentives for the 

manager to first hold high beta assets (before the announcement day) and then broadly drive up 

asset prices on the announcement day, thereby giving the value of her existing holdings a boost 

that is proportional to the beta.  This strategy positively influences the prices because the market 

maker cannot distinguish informed and uninformed (noise) trading as in Kyle (1985).  Further, on 

the announcement day, the manager’s profits from buying high beta assets will exceed those from 

buying low beta assets, because the price impact is larger for assets with higher betas.  This, in 

turn, gives rise to our prediction regarding the explanatory power for the drift of order flow both 

for the entire market and for high beta assets.1    

Our second contribution is to evaluate these predictions in the data.  We compile high-

frequency (five-minute) returns and order imbalances (to capture net buying pressure) for NYSE, 

AMEX and NASDAQ stocks.  The pre-announcement market is characterized by low volume, 

positive order imbalance, and large price impact.  This is possible if some traders buy stocks while 

                                                 
1 Assuming a factor structure in payoffs is uncontroversial.  There is an emerging ‘betting on beta’ literature suggesting 
that long-only managers have incentives to buy high beta stocks (e.g. Frazzini and Pedersen, 2014).  Recent evidence 
of portfolio pumping comes from Hu et al. (2014).  We add to these strands of research by exploring the role of cross-
pumping, i.e. trades by investors designed to drive up the prices of stocks they do not own. 



3 
 

most others wait for important macroeconomic news.  Such a quiet market helps uninformed 

strategic traders such as the fund manager in our model disguise themselves as being informed. 

As test assets, we choose portfolios formed on beta, size, and BM, the market portfolio and 

two prominent ETFs (SPY and QQQ).  Most portfolios exhibit statistically and economically 

significant drift, e.g. 0.71% for the highest beta decile.  In the pre-FOMC period, most portfolios 

are also subject to stronger buying pressure, which increases with portfolio beta.  This is consistent 

with the model’s second prediction that there will be stronger buying pressure for high beta stocks.   

We then regress the return for each portfolio on the marketwide and portfolio (i.e. own) 

imbalances.  Consistent with the model’s first prediction, the marketwide and own order 

imbalances together explain the drift for each portfolio.  Looking separately at the explanatory 

power of these two regressors, we find that the own imbalance cannot entirely explain the drift 

while the aggregate imbalance does.  The regression R2 tends to increases with beta, also consistent 

with the model’s predictions. 

To explore the underlying channel further, we construct order imbalances for beta tercile 

portfolios and relate the drift for the test portfolios to the order imbalance for the low, mid and 

high beta portfolios.  If the drift has its origins in the purchases of high beta stocks, we expect the 

high beta imbalance to be most influential in explaining the drift.  This turns out to be the case. In 

addition, we find that the mid beta imbalance can also explain the drift.  By contrast, the low beta 

imbalance cannot eliminate the drift.  The success of the imbalances for the mid beta stocks in 

explaining the drift is consistent with the cross-pumping implied by the model, because fund 

managers would hold high beta stocks and yet buy other stocks to boost their values.   

We examine the robustness of these results. First, we split trades into small, medium and 

large, following Lee and Radhakrishnan (2000) and Barber et al. (2009).  Imbalances comprising 
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medium trades, and to a lesser extent, small trades, are able to explain the drift on all the test assets.  

Given the trade fragmentation that characterizes much of our sample period, the success of medium 

and small trade imbalances is consistent with institutional investors being important contributors 

to the drift.  Second, we confirm that beta is the only characteristic that explains the cross section 

of the drift for individual stocks.  Specifically, panel regressions controlling for characteristics that 

are known to spread returns, such as size, the book-to-market ratio, momentum, and more provide 

evidence of the strong explanatory power for beta.  Finally, we document wide cross-sectional 

dispersion in beta, an important premise for the betting on beta strategy to work. 

The idea of cross-pumping builds on the recent theoretical literature on pumping.  

Bhattacharyya and Nanda (2013) show that a fund manager has an incentive to pump her holding 

when she is compensated on the short-term fund value, even though it hurts long-term performance.  

Pasquariello and Wang (2017) propose and test a theory of “pumping by disclosing,” in which a 

speculator optimally discloses a mixture of her private information and position to induce the 

market maker to revise the price in the direction of her position. We extend the scope of trading to 

multiple correlated securities endowing the fund manager with no private information to disclose.  

We aim to explain the pre-announcement drift in a quiet market with no apparent public 

news.  Ai and Bansal (2017) provide conditions for the existence of a positive announcement 

premium and a pre-announcement drift under non-expected utility.  A critical condition for the 

pre-announcement drift is that investors receive exogenous informative signals prior to 

announcements. In our model, as a “signal” the market maker privately receives a noisy 

aggregation of endogenous order flows from optimizing agents. 

Two recent papers study the effects of FOMC announcements empirically.  Bernile et al. 

(2016) find that imbalances for S&P and NASDAQ futures contracts and ETFs in the 10-20 
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minutes before FOMC and other macro announcements are positively correlated with the nature 

of the news, consistent with information leaks.  However, leaks cannot explain the entire pre-

FOMC drift since the news is provided to news agencies only 30 minutes prior to its official release.  

Cieslak et al. (2014) suggest that the drift is part of a broader Fed cycle, with the equity premium 

over the past 20 years arising in weeks 0, 2, 4 and 6 of roughly a six-seven week Fed cycle (week 

0 starts the day before an FOMC meeting).  The paper provides suggestive evidence that the returns 

are driven by risks associated with information arrival and decision making at the Fed, which also 

follow a two-week cycle.  The cyclical pattern is stronger for high beta portfolios.  In contrast, our 

analysis of the FOMC window studies the patterns in, and importance of, order imbalance and 

provides support for a cross-pumping explanation. 

Frazzini and Pedersen (2014) suggest that high beta stocks have low alphas because 

constrained institutional investors bid up their prices to bet on beta. They show that a strategy that 

is long leveraged low-beta assets and short high-beta assets yields a significantly positive alpha.  

Christoffersen and Simutin (2015) document that defined-contribution pension funds shift 

exposure from low beta stocks to high beta stocks with low idiosyncratic volatility to beat market 

benchmarks while minimizing tracking error.  Our analysis suggests that the pre-FOMC 

announcement period is a prime opportunity for constrained investors both to bet on beta and in 

particular, via cross-pumping, to strategically enhance the returns to high beta bets. 

We do not view our ‘order imbalance explains the drift’ results as being a ‘dog bites man’ 

story.  If direct buying pressure were driving the drift, own order imbalance would explain the drift 

on each portfolio.  But own order imbalance fails to explain the drift on several portfolios, and it 

is specific imbalances that explain the drift for all portfolios.       
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The rest of the paper proceeds as follows.  The next section develops our hypotheses. 

Section 3 establishes our main results on the drift and trading activity.  Section 4 demonstrates the 

robustness of our result. Section 5 concludes. 

2. Betting on Beta for Cross-pumping 

2.1. Motivating Evidence  

Before turning to our theoretical predictions, we provide brief empirical motivation.  First note 

that the Federal Funds Rate affects the short end of the yield curve and thereby alters firms’ cost 

of debt and investors’ savings behavior. FOMC rate decision announcements thus release public 

information of a ‘systematic’ nature, i.e. with implications for the entire stock market.2   

We characterize trading activity surrounding FOMC announcements by calculating, at the 

five-minute frequency within a five-day window centered on the FOMC announcement day, the 

value-weighted share turnover across domestic NYSE, AMEX and NASDAQ stocks.3  Mean 

turnover drops from 0.0082% per five minutes on day -2 and 0.0085% on day -1 to 0.0079% on 

day 0 before the announcement (we do not tabulate these statistics to save space).  Following the 

announcement, there is a sharp rise in turnover to 0.0125% per five minutes for the rest of day 0, 

and turnover remains elevated on day +1 (0.0094%) and even on day +2 (0.0091%).  These patterns 

in stock turnover are consistent with Lucca and Moench’s (2015) finding of a drop in e-mini futures 

volume before the announcement and a pick-up thereafter.  The drop in trading activity is 

consistent with investors with discretion staying out of the market while waiting for the news, and 

provides the empirical backdrop for our theoretical hypothesis that some investors (who are betting 

on beta) exert buying pressure as other investors withdraw from the market.   

                                                 
2 Such effects are documented in, for example, Savor and Wilson (2013). 
3 Details on the sample and data are provided in Section 3 and the appendix. 
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As a measure of such buying pressure, the second panel of Figure 1 shows the mean 

cumulative five-minute value- and equally-weighted signed share turnover, or ASTOV. 4  

Indicative of net buying pressure for big stocks, the blue value-weighted ASTOV series rises 

steadily between day -2 and day +2.  The pattern in the value-weighted series resembles that in the 

cumulative excess return in the first panel, though the return series is noisier.  In contrast to value-

weighted ASTOV, the steady decline in equally-weighted ASTOV (shown in pink) on day -1 

implies selling pressure for small stocks.  While the pink line flattens on day 0 and days +1 and 

+2, we never see aggressive buying pressure when stocks are equally-weighted.  Thus, the pre-

FOMC announcement drift appears to be, for the most part, a large stock phenomenon.  In 

untabulated analysis, we examine the five-minute aggregate order imbalance.  With value-

weighting, there is buying pressure throughout the five-day window, but it picks up on day -1 and 

on day 0 before the announcement, and surges post-announcement.   

In a quiet market, we expect transactions that do occur to move prices to a greater extent, 

notably because there is a higher likelihood of their being placed by informed investors.  We 

examine the sensitivity of price to order imbalance by estimating ‘price impact’ regressions of the 

five-minute return on the contemporaneous order imbalance.  The results (untabulated) show that 

the price impact of trades (positive throughout) increases significantly in the pre-FOMC window.5  

Thus, investors placing trades move prices more aggressively in the pre-FOMC period.  This result 

points to the potential success of cross-pumping strategies in this window.   

In Figure 2, we plot the average cumulative intraday return for selected value-weighted 

beta-decile portfolios over the three days centered on the FOMC announcement, deferring the 

                                                 
4 The details are in Appendix A.2.  Briefly, the difference between the volume of trades classified as buys and sells 
in a five-minute interval is scaled by the number of shares outstanding and then aggregated across stocks. 
5 We provide selected price impact coefficients in Table 2. 
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details on variable construction until the next section.  The pre-announcement cumulative returns 

of the beta portfolios generally line up with their decile ranks.  The shapes of the graphs for mid- 

to high-beta portfolios are similar to that for the S&P 500 index in Lucca and Moench’s (2015) 

Figure 1, except that opening returns are more pronounced for our portfolios of individual stocks.  

It is evident that the returns are larger for higher beta stocks. That is, beta “works” in the FOMC 

announcement window, a fact also pointed out by Cieslak et al. (2016).  This is somewhat 

surprising given the well-known failure of beta to explain the cross section of stock returns in tests 

of the Capital Asset Pricing Model.  However, this is not an issue in correlated markets prior to 

the FOMC announcement. 

Betting on beta for (cross) pumping. The positive relation between return and beta in the 

pre-FOMC period creates an incentive for investors to bet on beta and engage in direct or indirect 

pumping. In both cases, investors build a position in high beta stocks before FOMC announcement 

days. With direct pumping, the investors buy the high beta stocks they already hold in order to 

boost their prices on the announcement day.  While it provides the most direct route to gains, the 

high beta stocks that investors hold may be costly to trade in the quiet pre-announcement market.  

Moreover, aggressively buying stocks already held runs the risk of detection and prosecution for 

market manipulation.  Both these concerns can be mitigated with indirect pumping, or what we 

call cross-pumping. Under this pumping technique, investors buy other stocks, say big, mid-beta 

stocks, to push up the market and hence the value of their high-beta holdings proportionally. Big 

stocks tend to be more liquid and can allow investors to camouflage their real trading motives.6 

                                                 
6 Buying illiquid stocks can increase prices rapidly but will not directly benefit investors if they do not hold these 
stocks (institutions are unlikely to have large positions in illiquid stocks).  Moreover, the impact of these price changes 
on the broader market will be limited since illiquid stocks are not widely followed. 
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Cross-pumping can work in the pre-announcement period, given the positive relation between beta 

and return in Figure 2.  

 We will now formalize these mechanisms in a model with strategic trading. 

2.2. A Model of Betting on Beta for Cross-pumping 

This section presents a formal model of strategic trading with short termism in correlated markets. 

Our claim has two parts, one that depends only on the factor structure that an intraday 

macroeconomic announcement induces, and the other that builds on it: betting on beta for pumping. 

The factor structure produces beta, and creates an environment where investors can take advantage 

of the predictable price movements that they are able to create. 

 The model is set up in a multiple-security economy populated by a market maker and three 

types of traders: a fund manager (pumper), an informed trader, and noise traders. All optimizing 

traders are assumed to be risk-neutral.  There are three dates, t = 0, 1, and 2. K risky stocks and a 

risk-free bond are traded in the market. At t = 2, the stocks pay a vector of normally distributed 

random payoffs, v ~ N(μ, Σv), where μ is a K by 1 mean vector and Σv is a K by K symmetric 

positive-definite variance-covariance matrix. The prices of the stocks are denoted by the vector Pt, 

t = 0, 1. Given the risk-neutrality of all the relevant agents, we set 

0 [ ]P E v     (1)

by convention. For simplicity, we normalize the interest rate on the bond to zero. 

An uninformed manager oversees a fund. At t = 0, the fund receives capital, I0 > 0, and the 

manager purchases equities by taking positions, z ≥ 0. The positivity of z reflects the short-selling 

restriction that some institutions such as mutual funds face. At t = 1, the manager places an 

additional, proprietary trade, x. At each point in time, she cares about both the interim profit at t = 

1 and the terminal profit at t = 2. Specifically, following Bhattacharyya and Nanda (2013), we 
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assume that she maximizes W, the expected weighted average of the interim profit, 1 0'( )z P P , 

and the terminal profit, z’(v – P0) + x’(v – P1), with weights γ and 1 – γ, 0 ≤ γ ≤ 1, respectively: 

0 1 0 0 1'( ) (1 )[ '( ) '( )].W I z P P z v P x v P           (2)

The parameter γ represents the degree of short termism. The manager receives no private 

information about the payoffs at any point. 

At t = 1, the informed trader receives perfect information about the dividends and places a 

market order, ξ. Noise traders submit a normally-distributed random order u ~ N(0, Σu), where Σu 

is a K by K symmetric positive-definite matrix. The market maker receives the net order flow, 

,y x u     (3)

and sets the price as the expected payoff conditional on it, 

1 [ | ].P E v y   (4)

As usual in a Kyle model, this can be viewed as a competitive zero-profit condition. Assuming the 

normality of y, the date-1 price in (4) is given by linear projection, 

1 0 ( ),P P y y     (5)

where Λ is a matrix version of Kyle’s lambda and y  is the prior mean of the order flow before the 

market maker receives it, both to be determined in equilibrium. 

At t = 0, the fund manager maximizes the expected value of her objective function in (2) 

over z. She faces a short-selling restriction, z ≥ 0, and a capital constraint such that the fund’s stock 

investment is no more than fraction h of its total net assets, I0: 

0

0 0

max [ ]

s.t. ' ,

0,

z
E W

P z h I

z

 


  (6)
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where E0[∙] denotes the conditional expectation given her information set at time 0. The case of h 

< 1 represents a fund that holds fraction 1 – h in the bond. Mutual funds typically do so to meet 

redemption needs, and insurance companies to pay claims (Frazzini and Pedersen (2014)). z is not 

observable to the market maker or the informed trader. They conjecture that it is constant at z . 

For simplicity, we now make assumptions about two key quantities, the payoffs and noise 

trading. 

Assumption 1: (Factor structure in payoffs) The payoffs have the following factor 

structure: 

0 ,Mv v v   1   (7)

where v0 > 0 is a constant mean scalar, 1 is a K by 1 vector of ones, 2~ (0, )M MN    is the common 

factor, δ is a K by 1 vector of positive factor loadings, and 2~ (0, )N I   is a K by 1 vector of 

uncorrelated idiosyncratic noise. 

 In our context, we can think of vM as a common interest-rate factor affecting the whole 

stock market. The next assumption implies that market prices inherit the properties of payoffs. 

Assumption 2: (Independently and identically distributed noise trading) Noise trading 

is uncorrelated across the stocks and has a common variance, σu
2, i.e., Σu = σu

2I. 

With the linear price P1 in (5), the manager’s weighted profit in (2) is concave quadratic in 

demand, x. Moreover, the informed trader’s problem is standard. Therefore, the standard procedure 

as in Kyle (1985), suitably adjusted for a multiple-security economy and short termism, gives a 

unique equilibrium at date 1. 

Theorem 1: (Equilibrium at date 1) Under Assumptions 1 and 2, there exists a unique 

equilibrium at date 1 with the fund manager’s demand 
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1
( ),

2 1
x z z




 


   (8)

 

the informed trader’s demand 

1
0

1
( ),

2
v P      (9)

 

and the price vector in (5) with a symmetric price-impact coefficient matrix 

1/21

2 v
u

     (10)

whose elements all are positive and expected order flow 

.
1

y z






  (11)

 

Proof: All proofs are given in Appendix A.1. █ 

As in Bhattacharyya and Nanda (2013), the equilibrium demand x in (8) exhibits pumping; 

i.e., the manager trades in the same direction as the existing position, z. 

Equation (7) from Assumption 1 implies that δ contains the unstandardized coefficients of 

the first principal component of dividends, and under Assumption 2, that of asset prices as well, 

through Equation (10). Moreover, it represents the only principal component whose coefficients 

all are positive, i.e., with no short position.7 Therefore, we define the aggregate market portfolio 

by the vector of shares held in assets, δ. Since the vector of dollar returns is P1 – P0, the dollar 

return on the market is given by (P1 – P0)’δ. So, define the vector of market betas as the slope 

coefficient in a regression of the former on the latter, 

                                                 
7 All the other principal components have coefficients orthogonal to δ, and therefore must contain at least one negative 
coefficient. This is a part of the mathematical result known as the Perron-Frobenius theorem. 
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1 0 1 0

1 0

( , ( ) ' )
.

(( ) ' )

Cov P P P P

Var P P




 



  (12)

Lemma 1: (Market beta) Under Assumption 1, the vector of market betas is proportional 

to the vector of factor loadings, δ. 

Since the date 0 price is identical across assets under Assumption 1, this lemma and the 

following propositions also hold for beta with respect to the percentage return, rather than the 

dollar return, as well. With the factor structure in Assumption 1, the linearity of the price function 

gives us a sharp prediction about the relation between return and trade in a regression framework. 

Proposition 1: (Regressing the drift on order flows) Under Assumptions 1 and 2, the 

drift of an asset is a positive linear combination of the common aggregate order flow and the asset’s 

own order flow. In a multiple regression of the drift on the two order flows with an intercept, the 

slope coefficient on the aggregate order flow is proportional to the asset’s beta, while the slope 

coefficient on the asset’s own order flow is identical across the assets. The R-squared of the 

multiple regression is 1. In a simple regression of the drift on the aggregate order flow with an 

intercept, the slope coefficient on the aggregate order flow is again proportional to the asset’s beta. 

Moreover, the R-squared of the simple regression increases with beta. 

Given the optimal strategy at date 1, we can step back in time and dynamically solve for 

the problem at date 0. 

Proposition 2: (Betting on beta) Under Assumptions 1 and 2, for sufficiently small z , 

the fund manager will invest all capital in the stock with the highest beta at time 0. 

This is so because short termism (γ > 0) makes the value function at time 0 convex quadratic 

in the equity position, z, centered at the market maker’s prior, z . Moreover, the value function 

increases in the betas of invested stocks. For z  small enough, this implies that the manager will 

allocate all capital to the stock with the highest beta. In reality, no fund follows such an extreme 
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strategy. It is straightforward to impose more realistic restrictions such as minimizing tracking 

error at the cost of complexity, but this is beyond the scope of our analysis. 

In equilibrium, the fund manager’s expected wealth is given by (substitute the expected 

order flow (32) into the maximized wealth (29) in the appendix) 

1 0

0

2

[ ] (1 ) '
1 1

1 1
(1 ) ( ) ' ( )

2 1 2 1

1
( ) ' ( ).

4 1

E W I x z x z

I x z z x z z

z z z z

 
 

 
 




   
            

   
              

   


  (13)

Since Λ is positive definite, the quadratic form in the second line of (13) is weakly negative. 

Therefore, zeroing it out given z maximizes the expected wealth and confirms the solution, 

1
( )

2 1
x z z




 


, in (8). With a plan to place that optimal order at time 1, dynamically stepping 

back to time 0 and building a position z z  (as the market maker and the informed trader expect) 

will also nullify the last line of (13) and earn just zero expected profit, so that the expected terminal 

wealth equals the initial wealth, I0. This is the benchmark case. On the other hand, building an 

initial position z z  and subsequently placing the optimal order will earn the maximal positive 

profit that equals the last term of (13). However, this runs the risk of detection and prosecution 

because x directly pumps the preexisting position, z. If the manager is afraid of such unmodeled 

risk, she may place a suboptimal order that buys stocks not held in z, dubbed cross-pumping: 

Definition 1: (Cross-pumping) Cross-pumping is an order x that buys stocks not held in 

the preexisting position, z, in correlated markets. 

When the manager builds a position z z  at time 0, she outwits the market maker and the 

informed trader. She can further go against their expectations by purchasing the stocks that she 
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does not hold at time 1. Such cross-pumping is suboptimal, but can still be profitable in correlated 

markets such as those prior to the FOMC announcement. Somewhat surprisingly, when the market 

maker underestimates the manager’s existing position, the manager can always find a profitable 

cross-pumping strategy as the next proposition states. 

Proposition 3: (Cross-pumping) Consider a preexisting long position z that does not hold 

at least one stock. For sufficiently small z , there exist multiple profitable cross-pumping strategies 

x that buy only those stocks not held by z. Moreover, under strong enough short termism, a high 

beta strategy earns a larger profit than a comparable low beta strategy with an equal sum of squared 

shares traded. 

Theorem 1 and Proposition 1 require only the factor structure in payoffs and uncorrelated 

noise trading in Assumptions 1 and 2, while Propositions 2 and 3 additionally assume the common 

prior belief that the fund’s holdings, z , is small. This latter assumption can be interpreted as the 

underestimation of preexisting holdings amenable to pumping. Since Proposition 2 predicts that 

the manager will invest all capital in the highest beta stock for sufficiently small z , the extreme 

belief that 0z   is actually correct for all stocks but the one with the highest beta. This has a 

pricing implication; Equation (5) implies that order flow y must exceed expectations y  to 

positively influence the prices, which is a general feature of a Kyle model. Small z , and hence y  

in (11), allows this to happen on average. What is special in positively correlated markets is that 

underestimation of the pumping motive for just one stock results in price appreciation for all stocks.  

The next two sections provide empirical evidence consistent with this explanation. 
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3. Results 

3.1. Data  

We collect 163 FOMC meeting dates from the FOMC website and study the period, September 

1994–December 2014.  While data on FOMC meeting dates go back to the 1950s, rate decisions 

have explicitly been announced at approximately 2:15 pm EST since September 1994; before 1994, 

policy decisions could only be inferred from the open market operations that followed the meetings. 

Two of our propositions relate to beta. To examine their implications, we form beta-sorted 

decile portfolios and six size-beta sorted portfolios, where beta is estimated from the previous six 

months of daily returns skipping a month.  Here, size is meant to measure tradability. We also 

employ the six Fama-French portfolios sorted by size and BM, as these characteristics form 

widely-followed investment styles. Finally, we include two major exchange-traded funds, SPY 

(which tracks the S&P 500) and QQQ (which tracks NASDAQ). These ETFs provide affordable 

broad market exposure to institutional and individual investors.   

 We process intraday data off the TAQ database for five-day intervals centered on the 

FOMC announcements during the 1994-2014 sample period, and collect data for domestic 

ordinary common stocks trading on the NYSE, AMEX and NASDAQ.  ETF data begin in 

September 1994 for SPY and in March 1999 for QQQ.  Appendix A.2 has details about variable 

construction and screens.  We use only quotes and trades that meet no-arbitrage and eligibility 

conditions, and calculate the five-minute mid-quote return, volume, and order imbalance at the 

stock level.  The return is based on the last NBBO-eligible quote posted in each five-minute 

interval.  The return over the first interval (ending at 9:35 am) includes the overnight return from 

4:00 pm on the previous day.  We opt to include the overnight return to be consistent with Lucca 

and Moench (2015).  Trades are signed using the Lee-Ready (1991) algorithm. 
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3.2. Measuring the Drift 

Table 1 quantifies and decomposes the drift for several portfolios of interest, via the following 

regression: 

Rit = ai + b1iPREt + b2iINIt + b3iINIt×PREt + εit, (14)

where Rit is the excess return on asset i in five-minute period t, PREt and INIt are dummy variables 

defined below, ai is the intercept (shown as “Const”), b1i, b2i, and b3i are slope coefficients, and εit 

is the residual. PREt is one in the period between 9:30 am and 2:00 pm on FOMC announcement 

days and zero otherwise, and INIt is one for the first five-minute interval in a day and zero 

otherwise. The model is estimated for the value-weighted market portfolio, ten beta-sorted 

portfolios, six size-beta sorted portfolios, six size-BM sorted portfolios, and the SPY and QQQ 

ETFs. 

The estimated coefficient on PRE in the table is positive and significant for all but a few 

low-beta portfolios, implying that most portfolios have a significant pre-FOMC drift. The 

coefficient on the interaction of INI and PRE is positive and significant for the high beta portfolios.  

Thus, high beta stocks experience additional large returns at the open on FOMC news days. The 

third to last column, labeled “Close-2pm drift,” shows the average return from the close on the day 

before the announcement to 2:00 pm on the announcement day.8 As shown in the first row of the 

table, the close-to-2 pm drift for the value-weighted market portfolio is 0.342% over the same 

sample period as Lucca and Moench (2015). This is close to the 0.335% figure in the “Close-to-2 

pm” column in their Table II.  Thus, using individual stocks on the NYSE, AMEX, and NASDAQ, 

                                                 
8 Lucca and Moench (2015) include overnight returns in the drift. In the same spirit, we include the overnight return 
in the first five-minute period, which is captured by the INI coefficient. Thus, the average return from the market close 
on the day before the announcement to 9:35am on the announcement day is PRE + INI + INI×PRE + Const. The 
average return in each of the 53 five-minute periods from 9:35am to 2:00pm on the announcement day is PRE + Const. 
The close-to-2pm return compounds the former once and the latter 53 times. 
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we have effectively replicated their result based on the intraday S&P 500 cash index.  The rest of 

our analysis focuses on the full 1994-2014 sample period.  The close-to-2pm drift is 0.71% for the 

highest beta decile, compared to 0.01% for the lowest beta decile.  Our goal is to explain the large 

spread in the drift, which points to the strong profitability of a cross-pumping / betting-on-beta 

strategy on FOMC announcement days.    

3.3. Drift and Trading Activity 

The mean turnover (TOV) for the portfolios is shown in the last column of Table 1.  TOV tends to 

increase in beta, and more so for mid to high beta portfolios, indicating active trading of higher 

beta stocks.  Turnover for the highest beta decile, 172.9 millionths of shares outstanding per five 

minutes, is the largest of all the portfolios. The second to last column of Table 1 shows the average 

order imbalance (STOV for “signed turnover”) during the pre-announcement window.  Like the 

drift, STOV increases almost monotonically with beta except for the lowest decile.  While positive 

throughout, STOV for the bottom four beta-sorted portfolios is half or less that for the top three 

deciles and jumps appreciably for the highest beta portfolio.  This heavy buying of high beta stocks 

suggests that investors are pumping high beta stocks especially aggressively (Proposition 3).9   

To demonstrate this point visually, Figure 3 plots the mean imbalance and the average 

return for the beta-sorted decile portfolios during several windows of interest.  The panels share 

common axes to facilitate comparison.  To match the horizon of STOV in the pre-announcement 

window, the average return is calculated as the five-minute return that compounds to the “Close-

                                                 
9 Interestingly, the STOV column shows that the two ETFs, SPY in particular, are strongly bought. However, 
according to untabulated analysis, the t-statistics for the mean STOV, 5.5 for SPY and an insignificant 1.45 for QQQ, 
are appreciably lower than those for high beta or big stock STOV, which are on the order of 17 to 30, suggestive of 
high volatility in ETF trades. The time-series standard deviation of STOV for the two ETF is at least six times as large 
as that of the big growth portfolio. The STOV column in Table 3 shows that the order imbalances of the ETFs cannot 
explain their own drifts. 
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2pm drift” in Table 1 over the 54 five-minute periods constituting this window.  Panel A confirms 

the near-monotonic relation between beta and return or imbalance in the pre-announcement 

window, and the close association between the two lines is evident.   

In the post-announcement period (Panel B), high beta stocks are even more strongly bought 

than in the pre-announcement period, despite their slightly negative returns.  However, except for 

decile 1, none of these returns is significantly different from zero (these results are not tabulated).  

Since these returns are five-minute averages, the small negative cumulative return in the 1¾ hour 

post-announcement window does not offset the huge cumulative gain in the 4½ hour pre-

announcement window, as already seen in Figure 2.  Thus, betting-on-beta investors do not 

necessarily have to sell their holdings immediately after the announcement for their positions to 

be profitable.    

Panel C shows that, on the day prior to the announcement, the lowest beta stocks are sold 

(untabulated, STOV = -0.0041, t = -8.5), while high beta stocks are bought.  On the day after the 

announcement (Panel D), returns and imbalances are similar across deciles.  Thus, in contrast to 

Panel A, the remaining three panels show that the relation between average return and beta is flat 

or even negative, which is consistent with existing tests of the CAPM.  Figure 2, discussed above, 

is consistent with these observations.  

3.4. Explaining the Cross Section of Drifts 

To examine the empirical implications of Proposition 1, we regress each asset’s return on the 

value-weighted aggregate order imbalance, ASTOV, and the asset’s own order imbalance, STOV, 

along with a constant interacted with the two dummy variables, PRE and INI: 
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Rit = ai + b1iPREt + b2iINIt + b3iINIt×PREt 

         + b4iASTOVt + b5iPREt×ASTOVt + b6iINIt×ASTOVt + b7iINIt×PREt×ASTOVt 

         + b8iSTOVt + b9iPREt×STOVt + b10iINIt×STOVt + b11iINIt×PREt×STOVt + εit. 

(15)

Here, ASTOV and STOV are proxies for ' y  and yk, respectively, in the proposition. For simplicity, 

Table 2 reports only the coefficient estimates of interest.  Starting with the beta decile portfolios, 

the first column shows that the PRE×ASTOV coefficient is significant for almost every beta 

portfolio.  The coefficient roughly increases with the portfolio’s beta ranking, although the lowest 

beta decile has a slightly larger coefficient than the second decile. In the second column, the 

PRE×STOV coefficient exhibits no clear pattern and significance is much more muted, although it 

tends to be larger for the high beta portfolios. These patterns in the pre-announcement window are 

consistent with the prediction of Proposition 1.  

The slope coefficients display similar patterns for the other portfolios in Table 2: positive 

and significant for ASTOV and insignificant for STOV.  In the size-beta portfolios, we see 

confirmation of the result that the coefficient on ASTOV is larger for high beta stocks.  In the size-

BM portfolios, the ASTOV coefficient is lower for value than growth firms.  There is no clear 

pattern in the coefficient on ASTOV as firm size varies.   

The significance of ASTOV and, to a lesser extent, of STOV raises the possibility that these 

regressors are sufficient to explain the cross section of drifts. This possibility is confirmed in the 

columns for the PRE and INI×PRE coefficients, all of which are insignificant or significantly 

negative.10  As a result, the close-to-2pm drift (calculated using, in addition, the untabulated 

estimates of the intercept and the INI coefficient) is negative for all the assets. Consistent with 

                                                 
10 A negative coefficient on PRE or INI×PRE means that the drift actually is smaller than fit by the two imbalance 
measures, given the positive level of ASTOV with its positive loading and, to some degree, STOV.   
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Proposition 1, the adjusted R-squared generally increases in beta, although it becomes flat in the 

mid- to high-beta range. However, contrary to the proposition’s prediction, the adjusted R-squared 

(in the 4% – 15% range) is well below 1, suggesting that these regressions leave substantial return 

variation unexplained. 

3.5. The Aggregate Order Imbalance Explains the Drift 

The previous section shows that each asset’s drift is explained by its own order imbalance and the 

aggregate order imbalance. To see which imbalance plays a more important role, we run the 

following simple regression for each asset, 

 Rit = ai + b1iPREt + b2iINIt + b3iINIt×PREt 

          + b4iXt + b5iPREt×Xt + b6iINIt×Xt + b7iINIt×PREt×Xt + εit, 
(16)

where Xt is an order imbalance variable. According to Proposition 1, when Xt is ASTOV, its loading 

during the pre-announcement window (i.e., on PREt×Xt) should increase in beta. To save space, 

we do not tabulate this coefficient but report that this is roughly true, and that the coefficient 

estimates are similar to the PRE×ASTOV coefficients in Table 2.  Table 3 presents the drift-related 

coefficients, PRE and INI×PRE. Insignificant or negative values of these two coefficients imply 

that the pre-announcement drift is not significantly larger than during other periods.  

Panel A shows the estimated PRE coefficient for Rit listed in rows and Xt in columns.  In 

the first column, Xt is the portfolio’s own STOV.  We see that the PRE coefficient remains 

significantly positive—and thus the pre-FOMC drift excluding the initial five-minute period is 

significantly higher than other periods—for five of the ten beta portfolios, three of the six size-

beta-sorted portfolios, two of the six size-BM-sorted portfolios, and both the ETFs.  Panel B 

reports the estimated INI×PRE coefficient in the same format.  Since there are 54 five-minute 

trading periods prior to the FOMC announcement (9:30am-2:00pm) and INI takes the value of one 
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only in the initial period, the INI×PRE coefficient is estimated with one fifty-fourth as many 

observations as the PRE coefficient.11  As a result, the t-statistics in Panel B are generally lower 

than in Panel A.  Nevertheless, the coefficient on the interaction term is significantly positive for 

a few assets.  Altogether, the drift for many portfolios cannot be explained by their own order 

imbalance.   

In column 2 of Panels A and B, Xt is the aggregate order imbalance, ASTOV.  The presence 

of ASTOV makes both the PRE and INI×PRE coefficients insignificant or negative.12  Thus, the 

drift for every portfolio is explained by the market-wide imbalance alone.  The contrasting success 

of aggregate and portfolio imbalances in explaining portfolio-level drift casts doubt on a 

mechanical explanation for the drift, wherein buying for a given portfolio leads to higher prices 

for that portfolio.  Rather, it is the marketwide order imbalance that is closely associated with the 

price adjustment for disaggregated portfolios. 

3.6. Betting on Beta and Cross-pumping 

The near-linearity between order imbalance and beta, and the large buying pressure observed for 

high beta stocks, in the second to last column of Table 1 suggests that the explanatory power of 

ASTOV comes mainly from high beta stocks. To examine this point, we divide the universe of 

stocks into beta terciles. Specifically, at the end of the month immediately preceding an 

announcement, stocks are sorted into three groups (top 30%, middle 40% and bottom 30%) based 

on betas calculated from the previous six months of daily returns.  We label the value-weighted 

average of five-minute order imbalances for the stocks in the high, middle, and low beta terciles 

                                                 
11 Specifically, there are 163 announcement days in our sample period, and hence 163 observations with INI×PRE = 
1 in Panel B. In contrast, since there are 54 five-minute periods between the 9:30am open and the conservative 
announcement cutoff at 2:00pm, there are 8,802 (= 163×54) observations with PRE = 1 in Panel A. 
12 A negative coefficient implies that the drift should have been even larger given the buying pressure. 
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HSTOV, MSTOV, and LSTOV, respectively.  The last three columns of the two panels in Table 3 

present the result using each of these variables as Xt in Equation (16). 

Columns 3 and 4 show that HSTOV and MSTOV make both the PRE and INI×PRE 

coefficients insignificant or negative, while LSTOV in Column 5 cannot.  In particular, the positive 

and significant coefficients on PRE in Column 5 of Panel A, for essentially all but the low beta 

portfolios, are striking. The strong explanatory power of HSTOV for all the assets considered is 

consistent with high beta stocks held prior to announcement days (Proposition 2) being pumped 

(Proposition 1) in correlated pre-announcement markets. The fact that this is also true for MSTOV 

suggests the feasibility of cross-pumping (Proposition 3): If high beta stocks are hard to trade 

during the quiet pre-announcement period, traders can buy mid beta stocks to positively affect the 

value of their existing holdings of high-beta stocks through correlated price adjustments. This is a 

safer option than directly pumping their holdings if they are worried about detection and 

prosecution. In particular, note that the drift for beta deciles 9 and 10 as well as the size 1-beta 3 

portfolio is not explained by their own order flows (as seen in the significant coefficients on PRE 

in Column 1 of Panel A), but the drift becomes insignificant with the incorporation of MSTOV 

(Column 4).  Thus, MSTOV is able to explain the significant drift for the highest beta-tercile stocks 

whose order flows it does not include.  The availability of several trading vehicles in the mid to 

high beta range makes the betting-on-beta strategy easier to implement. 

4. Robustness and Additional Evidence 

The previous section reveals that order imbalances for high (and mid) beta stocks explain the drifts 

on all the assets we examine.  This section provides further evidence that betting on beta and cross-
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pumping drive this result.  In particular, mid-sized trades play a key role, beta is critical in 

explaining stock-level drift, and the spread in beta is substantial. 

 

4.1. What Sized-Trades Explain the Drift?  

In this section, we look for evidence that the investors driving the price-moves in the pre-FOMC 

period are traders who can strategically exert positive price pressure, as embedded in Proposition 

3.  We proceed by examining the informativeness of order imbalances stratified by trade size.  

This builds on prior research (e.g. Barber et al., 2009) suggesting that trade size can 

separate sophisticated (institutional) investors and more naïve or noise (and presumably retail) 

traders.  Small trades are likely to come from retail investors.  While it may be presumed that 

institutional trades will be large, at least two factors suggest that institutions will place only 

medium trades. The first factor is the dramatic reduction in trade sizes due to order fragmentation 

by algorithmic traders, starting in the early 2000s. The second is the illiquid market in the pre-

announcement period. Betting-on-beta institutions placing large trades run the risk that their 

pumping motive will be detected by market makers and regulators; in a quiet market, large orders 

are likely to draw attention.  The trader would need to somehow convince the market maker that 

his order is not strategic, but for example, driven by liquidity reasons. 

Based on Barber et al.’s five trade-size bins as well as Lee and Radhakrishna’s (2000, 

p.103) ultimate recommendation for a three-bin approach, we define three trade-size bins: small, 

medium, and large trades are trades below $10,000, between $10,000 and $20,000, and above 

$20,000, respectively.  The bin cutoffs are defined in 1991 dollars, and adjusted for inflation using 

the Consumer Price Index.  After compiling the five-minute trade imbalance in each trade size bin 
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by stock, we value-weight the imbalances across all high beta stocks, as defined in the previous 

section.  This gives a decomposition of HSTOV by trade-size bin. 

Table 4 provides the results using each of the small-, medium-, and large-trade HSTOV as 

Xt in Equation (16).  We see that the medium-trade HSTOV makes both the PRE and INI×PRE 

coefficients insignificant or negative, while the small- or large-trade HSTOV does not.  

Interestingly, the large-trade HSTOV has trouble in killing the PRE coefficient, while the small-

trade HSTOV does so in nullifying the INI×PRE coefficient.  This suggests that the prevalent drift 

on high beta stocks is due to medium and large trades at the open on FOMC announcement days, 

but to small and medium trades in subsequent trading.  Medium trades work throughout, allowing 

betting-on-beta investors to pool with liquidity traders at the open and retail traders subsequently. 

4.2. Beta is the only characteristic that explains the cross section of drift 

By design, the portfolio approach in the previous sections can control only for the few 

characteristics we sort on.  To rule out the possibility that some characteristics correlated with beta 

are driving the drift, we regress individual stock returns on multiple characteristics.  In addition to 

the characteristics already introduced, we construct the following attributes known to spread 

returns in the cross section (our variable names are parenthesized in uppercase): profitability (the 

earnings-to-price ratio, EPR), momentum (the lagged 12-month return skipping a month, MOM), 

illiquidity (Roll’s effective spread measure estimated over the previous 12 months, ROLL), equity 

issuance (over the [-19, -7] month window, ISSUE; Pontiff and Woodgate, 2008; McLean, Pontiff 

and Watanabe, 2013), idiosyncratic volatility (computed monthly from the daily three-factor 

model, IVOL; Ang et al., 2006), and a lottery characteristic (a dummy variable corresponding to 

the intersection of low price, high idiosyncratic volatility, and high idiosyncratic skewness, LOTT; 

Kumar, 2009).  To make the estimation feasible, we reduce the time-series dimension by averaging 
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a stock’s QRET after the initial period on each non-announcement day, with the announcement 

day averages computed separately for the pre- and post-announcement periods.  Thus, a stock has 

two return observations on each non-announcement day (corresponding to the initial period and 

the rest-of-day average), and likewise three periods on each announcement day. 

Panel A of Table 5 provides the coefficient estimates from simple panel regressions of the 

return on the intercept and a characteristic (denoted by Z) interacted with the pre-announcement 

dummy (PRE) and the initial-period dummy (INI), with t-statistics based on standard errors 

clustered by stock and period.13  The first column with no characteristic (shown with “---” for Z) 

confirms that the strong pre-FOMC announcement drift seen in portfolio returns also exists at the 

stock level. Ignoring the negligible intercept estimate (-0.01 bps), a typical stock gains 7.59 bps 

(PRE×INI, t = 2.12) in the opening five minutes on an announcement day and subsequently a 

further 0.162 bps (PRE, t = 2.08) per five minutes leading up to the announcement.  Both values 

are roughly comparable to those for the median beta decile portfolio in Panel A of Table 1. 

The second column titled “BETA” shows that market beta completely eliminates the strong 

pre-FOMC announcement drift of individual stocks, as both the PRE and PRE×INI coefficients 

are insignificant. While the base coefficient on BETA is -0.078 (t = -1.79), the coefficients on its 

interaction terms with PRE and PRE×INI are positive and significant at 0.291 (t = 3.89) and 8.20 

(t = 2.77), respectively.  Since the two interaction coefficients outweigh the base coefficient, stocks 

with higher betas tend to see larger gains prior to FOMC announcements.14 

The coefficients on several other characteristics are significant in the five-day 

announcement window.  Notably, announcement days see gains for large, liquid and non-lottery 

                                                 
13 We thank Mitchell Petersen for making available his Stata code for panel regressions with two-way clustering. 
14  The negative base BETA estimate implies that high beta stocks tend to earn lower returns outside the pre-
announcement window. This, along with the significantly positive intercept, challenges the CAPM.  
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stocks.  However, none of these characteristics can make both the PRE and PRE×INI coefficients 

insignificant.  Both remain significantly above zero, similar to the dummy-only model in the first 

column, except for the case in which IVOL makes PRE×INI insignificant.  This underscores the 

importance of beta in explaining the cross-sectional variation in the drift on individual stocks.  

Panel B of Table 5 reports the result of a panel regression with all the characteristics and 

their dummy interaction terms as independent variables.  The PRE and PRE×INI coefficients in 

the first row (corresponding to the constant) are insignificant, which is to be expected for a 

specification that includes beta.  This specification demonstrates the robustness of beta as the 

magnitude and significance of the coefficient on beta barely budge relative to the univariate 

specification in Panel A.  Besides beta, the size and lottery interaction coefficients retain their 

significance, and their signs imply that large, high beta, and non-lottery stocks gain during the pre-

FOMC period. 

4.3. Wide Dispersion in Beta 

Table 6 shows summary statistics for the market, characteristic portfolios, and ETFs in the pre-

announcement window. The statistics are computed over the number of five-minute intervals 

shown in the #Int column. Beta changes monthly and size and BM annually, in June. The column 

titled “N” shows that, on average, 5,100 NYSE, AMEX, and NASDAQ stocks are in our sample. 

These are allocated to the beta decile portfolios, the six size-beta portfolios, and the six size-BM 

portfolios. The disproportionately large number of stocks in small size portfolios follows from the 

fact that most NASDAQ stocks have size below the NYSE median.  

There is large variation in average beta, which ranges from -0.16 to 2.05 across the beta 

decile portfolios. The large spread in beta points to sizeable potential gains to betting on beta if 

pre-announcement returns are directly related to historical beta.  This is possible if market makers 
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follow similar inference processes over time, which results in persistent betas. However, as the 

“Size” column shows, high beta stocks typically are smaller than mid beta stocks: the average 

market value in beta deciles 8 to 10 lies between 2.4 and 2.9 billion dollars compared with a range 

of 3.2 to 3.9 billion dollars in beta deciles 4 to 7.  This makes cross-pumping potentially attractive, 

because buying larger and thus more liquid mid-beta stocks is easier and the resulting market move 

will pull up the value of high-beta holdings indirectly and thus stealthily.  This also is consistent 

with our evidence on the explanatory power of MSTOV, discussed in Table 3.  

The rows corresponding to the six size-beta portfolios show that size varies widely for a 

given level of beta. For example, the big high-beta portfolio (Size 2, Beta 3) has an average size 

of 10.3 billion dollars, compared to a mere 0.4 billion dollars for the small high-beta portfolio (Size 

1, Beta 3). According to the STOV column of Table 1, these two groups of stocks have average 

order imbalances of 4.23 and 1.89, respectively, so big stocks are more heavily bought. In fact, 

within a given beta tercile, or within a given BM tercile of the six size-BM portfolios, the big stock 

portfolio always has more than twice the order imbalance of its small stock counterpart. Therefore, 

in addition to beta, the size-related patterns in imbalances likely reflect the feasibility of the 

betting-on-beta strategy. 

5. Conclusion 

FOMC rate decision announcements convey systematic news with potential implications for the 

broad stock market.  In a quiet market that typically precedes these announcements, there will be 

stronger comovement in stock prices.  This factor structure gives rise to the potential profitability 

of betting on beta and cross-pumping strategies, where investors buy high beta stocks first and 

other stocks subsequently with a view to driving up the market and the value of their high beta 
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holdings even further.  We provide a model that formalizes this intuition.  We propose this 

mechanism as a potential explanation for the upward drift in stock prices before FOMC 

announcements. 

 To evaluate this explanation, we compile returns and order imbalances at the five-minute 

frequency for NYSE, AMEX and NASDAQ stocks over the period September 1994 to December 

2014.  We confirm the existence of the pre-FOMC announcement drift across a variety of assets: 

individual stocks, the aggregate market, characteristic portfolios based on beta, size, and BM, as 

well as two popular ETFs.  Portfolio sorts and panel regressions for individual stock returns show 

that, as predicted by the betting-on-beta hypothesis, assets with higher betas gain more strongly in 

the pre-FOMC announcement period.   

Consistent with the cross-pumping hypothesis, the order imbalance for the market and for 

mid- to high-beta portfolios eliminates the drift for all the assets examined.  Moreover, the order 

imbalance in the high-beta portfolio continues to explain the drift on all assets when we only 

consider mid-sized trades.  Therefore, the trades that explain the drift appear to come from 

institutional traders, also consistent with the betting-on-beta hypothesis.  Collectively, our analysis 

suggests that institutional investors’ bets on high beta stocks and subsequent cross-pumping is a 

partial explanation for the strong drift seen before FOMC announcements.    



30 
 

A. Appendix 

A.1. Proofs 

A.1.1. Proof of Lemma 1 

Substituting (5) for P1 in (12) and omitting the constant y , we get 
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Here, by the definition of Λ in (34), 
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Substituting into (17) and omitting the constant, 1/2, gives 
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where the last equality follows because δ is an eigenvector of Σv and we have canceled its 

eigenvalue in the numerator and denominator. Since δ’δ in the denominator is a scalar, this is 

proportional to δ. █ 

 

A.1.2.  Proof of Theorem 1 

The informed trader’s problem is standard. Denote his terminal wealth by 

1'( ).iW v P    (20)

With the price conjecture in (5), his expected wealth is 
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where Ei[] denotes the informed trader’s expectation and E[] the unconditional expectation. That 

is, x  is the common prior about the fund manager’s trade available to all participants. Assuming 

the symmetry of Λ, the first order condition with respect to ξ is 

0 ( ) 2 0.v P x y         (23)

The solution is 

1
0

1
( ) .

2
v P y x          (24)

Substituting this into the definition of the expected order flow gives 

1
[ ] ( ),

2
y E x u x y x        (25)

or 

.y x   (26)

Substituting this back to (24) fixes 

 1
0

1
.

2
v P      (27)

We next solve the fund manager’s problem. Let E1[] denote her expectation at time 1. 

Without knowledge about v, she holds that E1[v] = P0, E1[ξ] = 0 due to (27), and hence E1[y] = x 

+ E1[ξ] = x. Thus, her expected return given the price conjecture in (5) is 

1 1 0 1[ ] ( [ ] ) ( ).E P P E y y x y         (28)

Using this, she maximizes her expected terminal wealth in (2): 

1 0 1 1 0

0

max [ ] [ (1 ) ]' [ ]

[ (1 ) ]' ( ).
x

E W I z x E P P

I z x x y

 

 

    

     
  (29)

Again assuming the symmetry of Λ, the first order condition with respect to x is 
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0 (1 ) ( ) [ (1 ) ].x y z x            (30)

Canceling Λ and solving for x, we get 

1
.

2 1
x y z




 
   

  (31)

Taking the unconditional expectation and using (26) gives 

.
1

y x z



 


  (32)

Substituting this into (31) fixes 

1
( ).

21
x z z




 


  (33)

Effectively, ξ in (27) and x in (33) decompose a multivariate version of Equation (3) in 

Bhattacharyya and Nanda (2013) into informational and pumping demands, respectively. 

Finally, the projection theorem fixes Λ. Dropping constant x and again assuming the 

symmetry of Λ, 

1 1

1
1 1 1

( , ') ( ) ( , ') ( )

1 1
.

2 4v v u

Cov v y Var y Cov v Var u  


  

   

         

  (34)

Post-multiply the square bracket to both sides and rearrange to write 

4 .u v    (35)

Pre- and post-multiply 1/2
u  to both sides, complete the square on the left hand side, take the 

matrix square root, and solve for Λ to get the solution, 

1/2 1/2 1/2 1/2 1/21
( ) ,

2 u u v u u
         (36)
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which is indeed symmetric as assumed. Plugging Σu = σu
2I under Assumption 2 immediately gives 

Equation (10) in the theorem. Under Assumption 1, it can be further rewritten as (37) in the proof 

of Proposition 1, which shows that all elements of Λ are positive.  █ 

 

A.1.3. Proof of Proposition 1 

Define the normalized factor loading, / 'q    . By Lemma 1, the vector of betas is 

proportional to δ and hence q. Under the factor structure, Σv has the spectral decomposition, Σv = 

dvqqq’+ σε2(I – qq’), where dvq = σvM
2δ’δ + σε2 is the eigenvalue for eigenvector q, I – qq’ is the 

sum of outer products of all the other eigenvectors orthogonal to q, and σε2 is their common 

eigenvalue. The analytical solution of the price-impact coefficient matrix reduces to 

1/21 1
[ ' ( ')],

2 2v vq
u u

d qq I qq 
        (37)

whose elements all are positive because δ and hence q are a positive vectors and vqd   (factor 

the above expression by qq’ and evaluate the sign). Then, the k’th row of 1 0 ( )P P y y     is a 

linear function of only q’y, which is proportional to the aggregate order flow δ’y, and the asset’s 

own order flow yk for any k, where subscript k generally denotes the k’th element of a vector. It 

follows that a multiple regression of asset k’s drift on q’y and yk with an intercept gives slope 

coefficients ( ) / 2 0vq k ud q    on q’y and σε/2σu > 0 on yk with a perfect R-squared of 1. Here, 

the slope coefficient on q’y is positive and proportional to qk, which in turn is proportional to the 

factor loading, δk, and hence beta. Moreover, the slope coefficient on yk is identical across assets. 

To analyze a simple regression of asset k’s drift on q’y with an intercept, rewrite 

1 0 ' ,P P a b q y e       (38)
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where ' / 2 ,vq ua d qq y   / 2 ,vq ub d q   and ( ')( ) / 2 .ue I qq y y     Thus, regressing 

P1 – P0 on q’y gives the above intercept a, slope coefficient b, and residual e, which has mean E[e] 

= 0 and satisfies the orthogonality condition, Cov(e, q’y) = 0, because (rows of) I – qq’ and q are 

orthogonal to each other. Again, the regression slope b is proportional to q, and hence δ as well as 

the beta. By (34) and (35), Var(y) = Λ-1ΣvΛ-1/2 = 2σu
2I. So, the explained sum of squares of this 

multivariate regression is given by ESS = diag(Var(b∙q’y)) = (dvq/2)diag(qq’), where diag() gives 

a vector of diagonal elements of the argument matrix. The total sum of squares of the regression 

is TSS = diag(Var( ( )y y  )) = diag(Σv)/2. Denoting the k’th element of vectors by subscript k, 

the regression R-squared for the k’th asset is 

2 2 2
2

2 2 2 2

/ 2 / '
.

/ 2 /
vq kk vM

k
k vk vM k

d qESS
R

TSS




   
   


  


  (39)

which is always between 0 and 1 because δ’δ > δk
2 > 0. So, the higher the loading δk and hence 

the asset’s beta, the higher the R-squared. █ 

 

A.1.4. Proof of Proposition 2 

Substituting the manager’s optimal trade (33) into the manager’s expected wealth in (29) using the 

expected order flow in (32) gives 

 

2

1 0

1
[ ] ( ) ' ( ).

4 1
E W I z z z z




    


  (40)

It suffices to show the claim in the limit as 0z  . So, set 0z  . Since the capital constraint and 

short-selling restrictions in (6) are linear in z, they form a feasible set, Φ that is enclosed by K + 1 

hyperplanes, each being K – 1 dimensional (If K = 2, the set is a triangle enclosed by three straight 
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lines). The corner on the k’th axis of this feasible set is (hI0/P0k)ιk, 1 ≤ k ≤ K, where ιk is a vector 

with one as the k’th element and zero otherwise. Maximizing (41Error! Reference source not 

found.) is equivalent to maximizing 

21/2' ' ' 'z z z QDQ z D Q z     (42)

in the feasible set, where ║║ represents the Euclidian norm. Since D1/2Q’z is a linear 

transformation of z, it is also a set enclosed by K + 1 hyperplanes. (42) measures the squared 

distance between a point in this transformed feasible set and the origin, and is maximized at the 

corner that is farthest away from the origin.15 Thus, it suffices to take the maximum of the quadratic 

form over the K corners of the original feasible set excluding the origin, 

20 0
0 21

0 0 0

max ' max ' ( ) ,kk
k k

z k K
k k k

hI hI
z z hI

P P P
 

  

    
      

   
  (43)

where Λkk is the k’th diagonal element of Λ. Since hI0 is common across the stocks, the maximum 

obtains at the k’th corner of the transformed feasible set, i.e., by investing all new capital in the 

stock with the largest 2
0/kk kP . Since P0k = v0 is common across the stocks under Assumption 1, 

this ends up being the stock with the largest factor loading (see the expression for Λ in (37) and 

note that the coefficient on qq’, vqd  , is positive) and hence beta by Lemma 1. █ 

 

A.1.5. Proof of Proposition 3 

It suffices to show the claim in the limit as 0z  . With 0z  , setting the first line of (13) greater 

than the initial capital requires that 

                                                 
15 Specifically, first note that Q’ represents a “rotation” in the K-dimensional space because it does not change the 
length of a vector (|Q’z|2 = z’QQ’z = z’z = |z|2). Thus, (42) rotates the feasible set by some angle, multiply √dk to the 
coordinates of each corner, and measure its squared distance from the origin. This is maximized at the corner that is 
farthest away from the origin. 
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1 0 0[ ] (1 ) ' ,
1

E W I x z x I



 
       

  (44)

or 

' ' .
1

x x z x



  


  (45)

Suppose z does not hold at least the k’th asset. Let ιk be a column vector containing 1 in the kth 

position and 0 elsewhere. Set x = cιk, where c is some positive constant. Substituting into (45) and 

solving for c, we see that the inequality is satisfied by taking 

'
,

1
k

kk

z
c


 





  (46)

where z’Λιk > 0 (because z ≥ 0 by assumption and all elements of Λ in (37) are positive) is the 

inner product of z and the kth column of Λ, and λkk > 0 is the kth diagonal element of Λ. Moreover, 

since the right hand side of (46) is strictly positive for any 0 < γ < 1, there is a continuum of such 

c, i.e., there exist infinitely many profitable cross-pumping strategies. This proves the first half of 

the proposition. 

To show the second half, denote the wealth of strategy x by W(x). Then, calculating the 

difference in the expected wealth between two strategies xa and xb by (44) gives 

 

1 1[ ( )] [ ( )]

(1 ) ' ' ' ( )
1

( ' ' ) ( )( ' ' ' ' )
1

,
2 '( ) ( ) ' '( )

1

a b

b b a a a b

b b a a vq b b a a

u a b vq a b

E W x E W x

x x x x z x x

x x x x d x qq x x qq x

z x x d z qq x x

 

 




 


  




 
         

    
  

        

  

(47)

where the last equality follows from the expression for Λ in (37). Here, since xa and xb have an 

equal sum of squared shares traded, we have xb’xb – xa’xa = 0. Moreover, it follows from the 
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orthogonality of both xa and xb to z that z’(xa – xb) = 0. Therefore, the above expression simplifies 

to 

1 1

2 2

[ ( )] [ ( )]

(1 ) ( ' ) ( ' ) ' '( )
2 1

(1 ) ( ' ' ) ' '( ) .
2 1

a b

vq

b a b b
u

vq

a b a b
u

E W x E W x

d
q x q x z qq x x

d
q x q x q z q x x





 
 

 
 



  
      

  
      

  
(48)

Since q’z > 0 and q’(xa + xb) > 0, the square bracket is positive for γ close enough to 1. For such γ, 

E1[W(xa)] > E1[W(xb)] if q’xa – q’xb > 0, i.e., if strategy xa has a higher beta than strategy xb by 

Lemma 1. In words, under strong enough short termism, cross-pumping high beta stocks earns a 

larger expected profit than cross-pumping low beta stocks. █ 

 
A.2. Data Construction  

From the TAQ database, we use only quotes and trades that meet no-arbitrage and eligibility 

conditions. Specifically, a quote must have an offer price greater than the bid price, which must be 

positive, and a mode flag 1, 2, 6, 10, 12, or 23. A trade must have a correction indicator of 0 (no 

correction) with a condition flag other than O, Z, B, T, L, G, W, J, or K. 

 For each domestic ordinary common stock on the NYSE, AMEX and NASDAQ (CRSP 

Exchange Code 1, 2, or 3 and Share Code 10 or 11) and the SPY and QQQ ETFs, we calculate the 

five-minute mid-quote return, volume and order imbalance.  TAQ and CRSP are matched by the 

ticker symbol if it is unique on a given day or the first 8 characters of CUSIP, whichever matches. 

CUSIP matching is necessary because CRSP can have multiple share classes of a single stock with 

the same ticker symbol.  QQQ temporarily changes its ticker symbol to QQQQ (and also CRSP 

PERMNO) during our sample period. We examined the price, volume, and number of shares 
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outstanding and determined that they are identical securities for investment purposes.  Our analysis 

adds in the period in which QQQ is traded as QQQQ. 

The excess return is given by the difference between the raw return and the risk-free rate 

from the daily Fama-French factor file, prorated over five minutes.  It is calculated as the five-

minute raw return less the daily risk-free rate divided by 78, the number of five-minute intervals 

in the 6½ hour trading day.  Using a divisor of 288, which is the number of five-minute intervals 

in a 24-hour day, does not change our conclusions.  Using raw returns instead of excess returns 

increases the magnitude of the drift slightly but has no material effect on our conclusions. 

Trades are signed using the Lee-Ready (1991) algorithm, as a buy if the transaction price 

is closer to the ask than to the bid and a sell if it is closer to the bid than the ask.  Midquote trades 

are classified by the tick test, i.e., as a buy (sell) if the transaction-price change is positive 

(negative).  We note the sign of each trade and also assign the trade to one of five size bins based 

on the dollar volume of the trade.  For this, we follow Barber et al. (2009), who define inflation-

adjusted cutoffs for the dollar value of each trade (DVOL) of: (1) DVOL ≤ $5000; (2) $5000 < 

DVOL ≤ $10000; (3) $10000 < DVOL ≤ $20000; (4) $20000 < DVOL ≤ $50000; (5) $50000 < 

DVOL.  DVOL is defined in 1991 dollars, and we adjust the cutoffs over time using the inflation 

rate to keep the economic size of the bins comparable.16 The volume and order imbalance data 

(total and in the trade size bins) are aggregated for five-minute windows and then within portfolios 

of interest.  

                                                 
16 Specifically, using the monthly series CPIAUCNS from St. Louis FED’s FRED database, we compute the cutoffs 
for any month by multiplying the raw cutoffs by the ratio of CPIAUCNS for that month to its average over the three-
month period, November 1990 through January 1991.  The three-month period is used by Lee and Radhakrishna 
(2000), whose trade size definition is adapted by Barber, Odean and Zhu (2009). 
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Table 1: Pre-FOMC Announcement Drift for Characteristic Portfolios and ETFs. This table shows the coefficient estimates from 
a regression of the excess intraday quote-midpoint portfolio return (QRET) on a pre-FOMC dummy (PRE) and an initial period dummy 
(INI) with an intercept. QRET is based on the national best bid-and-offer quote midpoints at five-minute intervals from the TAQ dataset. 
The results are presented for beta decile portfolios, six size-beta portfolios, six size-book-to-market (BM) portfolios, and two exchange-
traded funds (ETFs), the S&P 500 (SPY) and the NASDAQ 100 (QQQ). The beta decile portfolios are formed at each month end using 
market betas estimated from the previous six months of daily returns. The six size-BM portfolios are formed by sorting stocks annually 
at the end of June by market capitalization (size) and the book-to-market ratio (BM) using the median size and tercile BM breakpoints 
for NYSE stocks, as defined in Fama and French (1993). The six size-beta portfolios are formed at each month end using beta and size. 
PRE is 1 if the five-minute period is before 2:00pm on an FOMC announcement day, and 0 otherwise. INI is 1 for the initial five-minute 
period on each day, and 0 otherwise. STOV is the value-weighted average, over the portfolio’s member stocks, of five-minute signed 
volume normalized by the number of shares outstanding (in units of thousands) from the CRSP dataset, where each trade is signed using 
the Lee-Ready algorithm. TOV is its unsigned version. “Adj R^2” is the adjusted R-squared. Unless otherwise noted, the sample period 
is 9:30am-4:00pm during five-day windows centered on FOMC announcement days between September 27, 1994 and December 19, 
2014 (shown as “full” in the Period column). t-statistics are shown in parentheses and are based on standard errors using the Newey-
West correction with 16 lags. *, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively. “#obs” is the number 
of observations. “Close-2pm drift” is the cumulative drift from the market close on the previous day of announcement to 2pm on the 
announcement day. 
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Asset Adj R^2 Period #obs
Close-2pm 
drift (%) STOV TOV

Market, LM 0.477 *** (5.16) 3.87 (1.40) 3.43 (0.58) 0.020 (0.41) 0.003 -3/17/11 51737 0.342 3.49 76.4
Market 0.391 *** (4.69) 2.87 (1.05) 7.31 (1.38) 0.021 (0.48) 0.003 full 63407 0.325 2.86 79.0
Beta 1 -0.064 (-0.90) 4.41 ** (2.04) -0.93 (-0.19) 0.025 (0.84) 0.003 full 63407 0.014 1.67 75.0
Beta 2 0.052 (0.78) 0.95 (0.57) -0.33 (-0.11) 0.015 (0.55) 0.000 full 63407 0.042 0.56 55.5
Beta 3 0.136 * (1.95) 1.73 (1.00) 1.04 (0.23) -0.007 (-0.19) 0.001 full 63407 0.097 1.15 56.1
Beta 4 0.190 *** (2.76) -0.06 (-0.03) 3.75 (0.88) 0.053 (1.63) 0.001 full 63407 0.168 1.69 56.4
Beta 5 0.179 ** (2.35) 0.79 (0.33) 4.08 (0.85) 0.042 (1.18) 0.001 full 63407 0.168 2.00 63.7
Beta 6 0.215 ** (2.50) -0.78 (-0.29) 11.54 ** (2.17) 0.038 (0.92) 0.003 full 63407 0.244 2.54 68.4
Beta 7 0.333 *** (3.59) 1.28 (0.43) 10.07 * (1.82) 0.037 (0.81) 0.003 full 63407 0.314 2.69 76.9
Beta 8 0.383 *** (3.56) 1.23 (0.35) 11.59 * (1.75) 0.028 (0.54) 0.003 full 63407 0.351 3.17 88.2
Beta 9 0.581 *** (4.32) 4.14 (1.00) 14.98 * (1.82) -0.030 (-0.46) 0.004 full 63407 0.490 3.16 108.3
Beta 10 0.911 *** (4.91) 6.36 (1.05) 21.10 * (1.95) -0.106 (-1.26) 0.006 full 63407 0.711 5.96 172.9
Size 1, Beta 1 0.023 (0.48) 3.44 ** (2.53) 2.72 (1.00) 0.041 * (1.93) 0.008 full 63407 0.096 -1.13 57.8
Size 1, Beta 2 0.227 *** (2.80) 0.77 (0.33) 6.95 (1.54) 0.080 ** (2.09) 0.002 full 63407 0.244 0.67 79.9
Size 1, Beta 3 0.494 *** (3.64) 5.42 (1.49) 13.38 * (1.94) -0.019 (-0.30) 0.007 full 63407 0.445 1.89 137.7
Size 2, Beta 1 0.136 * (1.86) 1.04 (0.62) 0.04 (0.01) -0.015 (-0.39) 0.000 full 63407 0.076 1.63 56.4
Size 2, Beta 2 0.254 *** (3.41) 0.12 (0.05) 7.09 (1.48) 0.038 (1.01) 0.002 full 63407 0.230 2.46 63.5
Size 2, Beta 3 0.631 *** (4.71) 4.04 (0.89) 14.40 * (1.72) -0.032 (-0.49) 0.004 full 63407 0.509 4.23 116.3
Size 1, BM 1 0.328 *** (3.01) 5.18 * (1.73) 9.04 (1.61) 0.008 (0.16) 0.006 full 63407 0.324 1.34 125.0
Size 1, BM 2 0.293 *** (3.15) 1.09 (0.41) 9.54 * (1.87) 0.066 (1.51) 0.003 full 63407 0.300 0.59 86.1
Size 1, BM 3 0.283 *** (3.17) 0.82 (0.33) 9.20 * (1.82) 0.061 (1.44) 0.003 full 63407 0.286 1.03 81.2
Size 2, BM 1 0.389 *** (4.53) 3.90 (1.47) 5.61 (1.11) 0.016 (0.36) 0.003 full 63407 0.314 2.75 77.4
Size 2, BM 2 0.398 *** (4.58) 0.32 (0.12) 8.26 (1.48) 0.029 (0.67) 0.002 full 63407 0.317 3.27 71.5
Size 2, BM 3 0.295 *** (3.00) 0.43 (0.13) 12.24 * (1.87) 0.016 (0.33) 0.003 full 63407 0.295 3.77 80.7
SPY 0.462 *** (4.92) 3.35 (1.09) 2.93 (0.51) 0.010 (0.20) 0.001 full 63407 0.318 106.70 1707.5
QQQ 0.608 *** (3.53) 6.11 (1.23) 12.60 (1.49) 0.020 (0.23) 0.003 3/26/99- 49403 0.528 17.12 1793.4

PRE  (bp) INI  (bp) INI ×PRE  (bp) Const (bp)
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Table 2: Multiple regression of return on aggregate and the asset’s own order flows. This table shows selected coefficient estimates 
from the multiple regression of an asset’s five-minute return on the aggregate order flow (ASTOV) and the asset’s own order flow (STOV) 
with an intercept interacted with the pre-FOMC dummy (PRE) and the initial period dummy (INI) in Equation (15). “Adj R^2” is the 
adjusted R-squared. t-statistics are shown in parentheses and are based on standard errors using the Newey-West correction with 16 lags. 
*, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively. “Close-2pm drift” is the cumulative drift from the 
market close on the previous day of announcement to 2pm on the announcement day using relevant coefficient estimates. 
 



44 
 

   

Asset Adj R^2
Close-2pm 
drift (%)

Beta 1 3.87 ** (2.51) -0.69 *** (-2.86) -0.235 *** (-3.21) -5.40 (-0.98) 0.040 -0.179
Beta 2 1.70 (1.02) 0.44 (0.69) -0.064 (-0.82) -2.48 (-0.56) 0.038 -0.124
Beta 3 4.08 * (1.88) 0.66 (0.45) -0.065 (-0.71) -7.22 (-0.99) 0.062 -0.218
Beta 4 5.65 *** (2.75) 2.47 * (1.68) -0.125 (-1.47) -1.65 (-0.30) 0.096 -0.207
Beta 5 8.25 *** (2.89) 0.72 (0.48) -0.213 ** (-2.08) -1.51 (-0.24) 0.101 -0.274
Beta 6 8.13 *** (2.60) 2.65 * (1.78) -0.258 ** (-2.25) 6.51 (0.96) 0.102 -0.263
Beta 7 12.71 *** (3.86) 3.14 ** (2.19) -0.305 ** (-2.40) 5.70 (0.82) 0.105 -0.300
Beta 8 15.82 *** (4.30) 1.99 (1.49) -0.345 ** (-2.38) 5.21 (0.62) 0.105 -0.359
Beta 9 18.70 *** (3.88) 3.36 ** (2.42) -0.320 * (-1.83) 8.09 (0.74) 0.100 -0.371
Beta 10 32.76 *** (5.18) -0.63 (-0.40) -0.351 (-1.52) 9.76 (0.69) 0.104 -0.454
Size 1, Beta 1 5.21 *** (3.62) -1.13 ** (-2.14) -0.181 *** (-3.37) 2.10 (0.67) 0.112 -0.082
Size 1, Beta 2 12.87 *** (5.07) -1.91 * (-1.65) -0.253 ** (-2.57) 4.70 (0.96) 0.130 -0.141
Size 1, Beta 3 20.25 *** (5.43) -0.49 (-0.33) -0.345 ** (-2.29) 6.69 (0.88) 0.145 -0.217
Size 2, Beta 1 2.86 (1.10) 0.41 (0.28) -0.029 (-0.28) -7.19 (-0.93) 0.056 -0.213
Size 2, Beta 2 8.79 *** (2.66) 2.74 (1.00) -0.228 ** (-2.15) 1.94 (0.30) 0.114 -0.279
Size 2, Beta 3 21.28 *** (3.78) 1.68 (0.80) -0.310 * (-1.75) 5.19 (0.42) 0.102 -0.408
Size 1, BM 1 17.60 *** (5.80) -1.76 * (-1.76) -0.368 *** (-2.98) 5.81 (0.96) 0.143 -0.193
Size 1, BM 2 13.74 *** (5.24) -0.99 (-0.74) -0.218 ** (-2.04) 7.50 (1.34) 0.127 -0.110
Size 1, BM 3 12.85 *** (4.66) -0.10 (-0.07) -0.219 ** (-2.08) 1.80 (0.31) 0.130 -0.200
Size 2, BM 1 18.45 *** (3.49) -2.36 (-0.61) -0.251 ** (-1.96) -1.73 (-0.24) 0.129 -0.342
Size 2, BM 2 12.02 *** (3.20) 2.03 (0.68) -0.201 (-1.63) 3.43 (0.44) 0.119 -0.275
Size 2, BM 3 10.01 *** (3.30) 2.02 (1.62) -0.265 ** (-2.06) 6.68 (0.67) 0.098 -0.302
SPY 15.46 *** (4.49) 0.01 (0.54) -0.224 * (-1.66) -1.79 (-0.23) 0.094 -0.358
QQQ 28.09 *** (5.34) 0.09 * (1.90) -0.488 ** (-2.19) 6.16 (0.65) 0.116 -0.405

PRE×ASTOV 
(×1000)

PRE×STOV 
(×1000) PRE  (bp) INI ×PRE  (bp)
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Table 3: Simple regression of return on order flow. This table shows selected coefficient estimates from the simple regression of an 
asset’s five-minute return on an order flow measure with an intercept interacted with the pre-FOMC dummy (PRE) and the initial period 
dummy (INI) in Equation (16). The order flow measure is either an asset’s own order flow (STOV), the aggregate order flow (ASTOV), 
high- (HSTOV), mid- (MSTOV), or low-beta (LSTOV) stock order flow. Panels A shows the coefficient on the PRE dummy and Panel 
B the coefficient on the interaction term of the INI and PRE dummies. t-statistics are shown in parentheses and are based on standard 
errors using the Newey-West correction with 16 lags. *, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively. 
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Panel A: PRE coefficient 
 

   

Asset
Market -0.251 ** (-2.05) -0.251 ** (-2.05) 0.021 (0.21) 0.061 (0.60) 0.473 *** (5.61)
Beta 1 -0.079 (-1.11) -0.222 *** (-3.02) -0.162 ** (-2.25) -0.161 ** (-2.19) -0.036 (-0.51)
Beta 2 0.059 (0.90) -0.077 (-0.97) 0.000 (0.00) -0.024 (-0.32) 0.080 (1.18)
Beta 3 0.190 *** (2.68) -0.085 (-0.92) 0.029 (0.37) 0.023 (0.28) 0.170 ** (2.45)
Beta 4 0.139 ** (1.97) -0.129 (-1.50) 0.029 (0.39) -0.012 (-0.16) 0.255 *** (3.73)
Beta 5 0.152 * (1.91) -0.222 ** (-2.16) -0.043 (-0.50) -0.050 (-0.54) 0.243 *** (3.17)
Beta 6 0.113 (1.19) -0.260 ** (-2.26) -0.038 (-0.40) -0.078 (-0.74) 0.299 *** (3.46)
Beta 7 0.080 (0.86) -0.303 ** (-2.38) -0.023 (-0.22) -0.044 (-0.40) 0.418 *** (4.43)
Beta 8 0.163 (1.40) -0.350 ** (-2.41) -0.076 (-0.61) -0.004 (-0.03) 0.472 *** (4.33)
Beta 9 0.325 ** (2.38) -0.341 * (-1.95) -0.014 (-0.09) 0.122 (0.82) 0.681 *** (5.07)
Beta 10 0.374 * (1.92) -0.312 (-1.35) 0.109 (0.53) 0.323 (1.62) 1.031 *** (5.53)
Size 1, Beta 1 0.022 (0.48) -0.177 *** (-3.09) -0.095 * (-1.94) -0.104 * (-1.95) 0.050 (1.05)
Size 1, Beta 2 0.151 ** (2.15) -0.197 * (-1.94) -0.037 (-0.43) -0.022 (-0.24) 0.287 *** (3.59)
Size 1, Beta 3 0.203 * (1.67) -0.247 (-1.56) 0.005 (0.04) 0.071 (0.48) 0.576 *** (4.22)
Size 2, Beta 1 0.179 ** (2.36) -0.051 (-0.49) 0.050 (0.60) 0.047 (0.51) 0.164 ** (2.22)
Size 2, Beta 2 -0.018 (-0.19) -0.231 ** (-2.18) -0.005 (-0.06) -0.035 (-0.38) 0.331 *** (4.38)
Size 2, Beta 3 0.114 (0.75) -0.317 * (-1.78) 0.023 (0.15) 0.173 (1.15) 0.736 *** (5.47)
Size 1, BM 1 0.139 (1.47) -0.262 ** (-2.02) -0.045 (-0.40) -0.012 (-0.10) 0.391 *** (3.58)
Size 1, BM 2 0.221 *** (2.67) -0.183 (-1.63) -0.013 (-0.14) 0.016 (0.15) 0.361 *** (3.88)
Size 1, BM 3 0.223 *** (2.82) -0.207 * (-1.90) -0.042 (-0.45) -0.009 (-0.09) 0.347 *** (3.93)
Size 2, BM 1 -0.061 (-0.53) -0.292 ** (-2.25) 0.003 (0.03) 0.045 (0.43) 0.472 *** (5.43)
Size 2, BM 2 0.068 (0.60) -0.191 (-1.58) 0.063 (0.62) 0.094 (0.91) 0.475 *** (5.43)
Size 2, BM 3 0.111 (1.09) -0.242 * (-1.90) -0.018 (-0.16) -0.009 (-0.08) 0.383 *** (3.85)
SPY 0.427 *** (4.54) -0.212 (-1.57) 0.065 (0.58) 0.132 (1.17) 0.573 *** (5.98)
QQQ 0.570 *** (3.36) -0.459 ** (-1.99) -0.019 (-0.10) 0.074 (0.39) 0.778 *** (4.40)

(1) STOV (2) ASTOV (3) HSTOV (4) MSTOV (5) LSTOV
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Panel B: INI×PRE coefficient 
 

 

Asset
Market 1.083 (0.16) 1.083 (0.16) 0.787 (0.10) 3.578 (0.60) 6.953 (1.30)
Beta 1 0.867 (0.20) -6.979 (-1.11) -7.654 (-1.11) -5.468 (-1.01) -0.827 (-0.17)
Beta 2 -0.426 (-0.14) -2.503 (-0.58) -3.111 (-0.63) -2.095 (-0.58) -0.334 (-0.10)
Beta 3 1.422 (0.32) -5.368 (-0.87) -4.587 (-0.73) -2.511 (-0.49) 0.998 (0.22)
Beta 4 1.766 (0.41) -1.459 (-0.26) -1.805 (-0.29) 0.398 (0.09) 3.936 (0.91)
Beta 5 4.587 (1.02) -1.522 (-0.23) -2.418 (-0.34) 0.723 (0.13) 4.066 (0.84)
Beta 6 10.347 * (1.81) 6.194 (0.89) 6.400 (0.80) 8.230 (1.39) 11.331 ** (2.11)
Beta 7 8.502 (1.42) 5.337 (0.76) 4.738 (0.60) 7.219 (1.17) 9.898 * (1.77)
Beta 8 7.906 (1.02) 5.111 (0.57) 4.525 (0.45) 7.759 (1.03) 11.298 * (1.69)
Beta 9 12.742 (1.21) 8.017 (0.78) 7.835 (0.70) 10.721 (1.20) 14.001 * (1.69)
Beta 10 13.832 (1.04) 10.877 (0.80) 10.685 (0.73) 15.275 (1.29) 19.715 * (1.80)
Size 1, Beta 1 3.752 (1.59) -0.671 (-0.18) -0.665 (-0.16) 0.608 (0.20) 2.592 (0.95)
Size 1, Beta 2 7.050 * (1.72) 1.181 (0.21) 1.200 (0.19) 3.553 (0.74) 6.659 (1.47)
Size 1, Beta 3 8.057 (1.22) 5.320 (0.63) 5.152 (0.56) 8.529 (1.16) 12.805 * (1.85)
Size 2, Beta 1 -0.157 (-0.03) -6.261 (-0.87) -5.618 (-0.77) -3.572 (-0.58) 0.018 (0.00)
Size 2, Beta 2 4.192 (0.79) 1.823 (0.29) 1.359 (0.19) 3.789 (0.71) 7.042 (1.46)
Size 2, Beta 3 7.588 (0.60) 6.507 (0.60) 6.025 (0.50) 9.760 (1.04) 13.531 (1.60)
Size 1, BM 1 7.600 (1.46) 2.028 (0.29) 1.787 (0.23) 4.931 (0.82) 8.709 (1.54)
Size 1, BM 2 10.134 ** (2.20) 3.251 (0.52) 3.635 (0.52) 5.678 (1.05) 9.121 * (1.80)
Size 1, BM 3 3.991 (0.81) 2.963 (0.47) 2.595 (0.37) 5.494 (0.99) 8.768 * (1.73)
Size 2, BM 1 2.639 (0.46) -0.337 (-0.05) -0.747 (-0.11) 2.147 (0.38) 5.206 (1.02)
Size 2, BM 2 6.811 (0.90) 1.761 (0.23) 1.704 (0.20) 4.182 (0.66) 7.979 (1.42)
Size 2, BM 3 10.191 (1.09) 5.979 (0.66) 5.374 (0.54) 8.908 (1.16) 11.643 * (1.77)
SPY 3.923 (0.66) -2.798 (-0.37) -3.311 (-0.40) -0.237 (-0.04) 1.930 (0.33)
QQQ 12.368 (1.51) 6.594 (0.66) 5.333 (0.54) 9.588 (1.06) 11.830 (1.39)

(1) STOV (2) ASTOV (3) HSTOV (4) MSTOV (5) LSTOV



48 
 

Table 4: Simple regression of return on high-beta stock order flow by trade size. This table 
shows selected coefficient estimates from the simple regression of an asset’s five-minute return on 
the small-, mid-, or large-size order flow of high beta stocks with an intercept interacted with the 
pre-FOMC dummy (PRE) and the initial period dummy (INI) in Equation (16). Panels A shows 
the coefficient on the PRE dummy and Panel B the coefficient on the interaction term of the INI 
and PRE dummies. t-statistics are shown in parentheses and are based on standard errors using the 
Newey-West correction with 16 lags. *, **, and *** represent significance at the 10%, 5%, and 
1% levels, respectively. 
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Panel A: PRE coefficient (bp) 
 

 
  

Asset
Market 0.147 * (1.75) 0.094 (0.91) 0.298 *** (2.88)
Beta 1 -0.155 ** (-2.19) -0.147 ** (-2.09) -0.046 (-0.67)
Beta 2 -0.006 (-0.09) -0.003 (-0.05) 0.075 (1.10)
Beta 3 0.033 (0.47) 0.057 (0.74) 0.147 * (1.90)
Beta 4 0.047 (0.69) 0.058 (0.77) 0.192 *** (2.64)
Beta 5 -0.006 (-0.07) 0.003 (0.04) 0.156 * (1.84)
Beta 6 -0.001 (-0.01) 0.027 (0.29) 0.200 ** (2.09)
Beta 7 0.064 (0.69) 0.054 (0.50) 0.260 ** (2.45)
Beta 8 0.064 (0.61) 0.023 (0.18) 0.263 ** (2.06)
Beta 9 0.179 (1.35) 0.081 (0.51) 0.419 *** (2.68)
Beta 10 0.380 ** (2.13) 0.199 (0.92) 0.712 *** (3.24)
Size 1, Beta 1 -0.091 * (-1.91) -0.068 (-1.42) 0.026 (0.55)
Size 1, Beta 2 -0.025 (-0.31) 0.023 (0.27) 0.221 *** (2.68)
Size 1, Beta 3 0.078 (0.59) 0.085 (0.59) 0.454 *** (3.31)
Size 2, Beta 1 0.049 (0.65) 0.072 (0.88) 0.160 * (1.94)
Size 2, Beta 2 0.057 (0.75) 0.057 (0.65) 0.213 ** (2.44)
Size 2, Beta 3 0.233 * (1.79) 0.116 (0.72) 0.466 *** (2.85)
Size 1, BM 1 0.013 (0.12) 0.013 (0.12) 0.299 *** (2.73)
Size 1, BM 2 0.006 (0.06) 0.046 (0.48) 0.285 *** (3.05)
Size 1, BM 3 -0.027 (-0.30) 0.029 (0.31) 0.267 *** (2.92)
Size 2, BM 1 0.163 * (1.86) 0.081 (0.75) 0.269 ** (2.42)
Size 2, BM 2 0.160 * (1.82) 0.145 (1.45) 0.317 *** (3.04)
Size 2, BM 3 0.021 (0.22) 0.056 (0.51) 0.273 ** (2.46)
SPY 0.199 ** (2.09) 0.152 (1.33) 0.361 *** (3.14)
QQQ 0.162 (0.93) 0.012 (0.05) 0.461 ** (2.25)

Small Mid Large
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Panel B: INI×PRE coefficient (bp) 
 

 
  

Asset
Market 7.342 (1.32) 5.958 (0.84) 2.173 (0.30)
Beta 1 -0.052 (-0.01) -2.676 (-0.39) -7.251 (-1.14)
Beta 2 0.482 (0.15) 0.763 (0.18) -3.013 (-0.64)
Beta 3 0.350 (0.07) -1.799 (-0.28) -3.270 (-0.56)
Beta 4 4.040 (0.85) 2.583 (0.42) -0.948 (-0.17)
Beta 5 4.284 (0.81) 2.316 (0.33) -1.267 (-0.19)
Beta 6 11.564 ** (2.00) 10.425 (1.47) 7.682 (1.03)
Beta 7 10.009 * (1.67) 10.422 (1.38) 6.096 (0.82)
Beta 8 12.139 * (1.76) 11.330 (1.29) 5.936 (0.62)
Beta 9 14.744 * (1.66) 13.462 (1.25) 9.944 (0.94)
Beta 10 21.046 * (1.88) 20.167 (1.46) 13.450 (0.96)
Size 1, Beta 1 2.832 (0.95) 2.466 (0.62) -0.097 (-0.02)
Size 1, Beta 2 6.593 (1.35) 6.247 (1.01) 2.512 (0.43)
Size 1, Beta 3 12.424 * (1.75) 12.227 (1.41) 7.430 (0.85)
Size 2, Beta 1 -0.589 (-0.10) -2.617 (-0.37) -4.396 (-0.65)
Size 2, Beta 2 7.219 (1.38) 6.007 (0.89) 2.517 (0.38)
Size 2, Beta 3 14.884 * (1.71) 13.619 (1.26) 7.948 (0.70)
Size 1, BM 1 7.970 (1.36) 7.387 (1.01) 3.815 (0.53)
Size 1, BM 2 9.117 * (1.69) 9.008 (1.33) 5.098 (0.76)
Size 1, BM 3 8.821 * (1.67) 8.154 (1.22) 4.068 (0.61)
Size 2, BM 1 5.349 (1.02) 3.768 (0.57) 0.747 (0.11)
Size 2, BM 2 8.807 (1.50) 7.569 (1.00) 2.788 (0.35)
Size 2, BM 3 13.467 * (1.90) 12.063 (1.35) 6.302 (0.68)
SPY 2.521 (0.42) 0.697 (0.09) -1.749 (-0.22)
QQQ 9.569 (1.12) 7.524 (0.73) 7.964 (0.83)

Small Mid Large
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Table 5: Determinants of Individual Stock Returns. This table reports coefficient estimates from panel regressions of the quote 
midpoint return (QRET). Panel A shows the result of simple regressions, in each of which the independent variables include a constant 
and a stock characteristic shown as Z in the first row as well as their interaction terms with the pre-FOMC dummy (PRE) and the initial 
period dummy (INI). Panel B shows a multiple regression including all the characteristics comprising a total of 40 independent variables. 
The characteristics are market beta (BETA), market capitalization (SIZE), the book-to-market ratio (BM), the earnings-to-price ratio 
(EPR), prior 12-month return (MOM), Roll’s effective spread measure (ROLL), equity issuance (ISSUE), idiosyncratic volatility from 
the Fama-French 3-factor model (IVOL) and a lottery dummy (LOTT). The sample consists of NYSE, AMEX, and NASDAQ common 
stocks. The sample period before averaging is 9:30am-4:00pm during five-day windows centered on FOMC announcement days 
between September 27, 1994 and December 19, 2014. t-statistics are shown in parentheses and are based on standard errors clustered 
by stock and period. *, **, and *** represent significance at the 10%, 5%, and 1% levels, respectively. 
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Panel A: Simple regressions 
 

  
 
 
Panel A: Continued 
 

 
  

Variable (Z)
Const (bp) -0.01 (-0.17) 0.05 ** (2.09) -0.01 (-0.20) -0.01 (-0.18) -0.01 (-0.26)
INI (bp) 5.24 *** (3.68) 5.22 *** (7.88) 5.36 *** (3.83) 5.27 *** (3.68) 5.41 *** (3.77)
PRE (bp) 0.162 ** (2.08) -0.073 (-1.60) 0.155 ** (1.99) 0.162 ** (2.08) 0.160 ** (2.04)
PRE×INI (bp) 7.59 ** (2.12) 0.96 (0.55) 7.55 ** (2.14) 7.57 ** (2.11) 7.67 ** (2.12)
Z -0.078 * (-1.79) 0.040 (0.85) 0.038 (0.29) 0.039 *** (4.97)
Z×INI 0.02 (0.02) -4.31 *** (-2.86) -3.63 (-0.89) -1.66 *** (-6.48)
Z×PRE 0.291 *** (3.89) 0.277 *** (3.25) -0.032 (-0.10) 0.023 (1.40)
Z×PRE×INI 8.20 *** (2.77) 1.34 (0.41) 2.32 (0.18) -0.57 (-0.74)
#Obs
Adj. R^2

--- BETA (×10^4) SIZE (×10^9) BM (×10^6) EPR (×10^4)

8402586
0.0016

8402602
0.0013

8402602
0.0013

8402817
0.0013

8375807
0.0014

Variable (Z)
Const (bp) -0.01 (-0.10) 0.02 (0.51) -0.01 (-0.25) 0.11 ** (2.11) 0.03 (0.56)
INI (bp) 5.42 *** (3.84) 4.27 *** (3.04) 5.50 *** (3.68) -0.83 (-0.53) 3.12 ** (2.14)
PRE (bp) 0.157 ** (1.99) 0.167 ** (2.15) 0.170 ** (2.09) 0.209 *** (2.61) 0.224 *** (2.87)
PRE×INI (bp) 7.65 ** (2.11) 7.66 ** (2.13) 7.95 ** (2.12) 5.11 (1.38) 7.10 ** (2.00)
Z -0.023 (-0.72) -0.040 *** (-8.02) 0.028 * (1.81) -0.037 *** (-4.91) -0.134 *** (-6.28)
Z×INI -1.21 (-1.33) 1.37 *** (9.63) -1.74 *** (-3.70) 1.96 *** (8.94) 7.76 *** (12.67)
Z×PRE 0.038 (0.62) -0.007 (-0.72) -0.053 ** (-1.97) -0.015 (-0.92) -0.227 *** (-4.10)
Z×PRE×INI -0.43 (-0.15) 0.06 (0.20) -2.44 ** (-2.07) 0.80 (1.54) 1.79 (1.31)
#Obs
Adj. R^2

MOM (×10^4) ISSUE (×10^3) ROLL (×10^5) IVOL (×10^2)

8025805
0.0015

8402515
0.0014

8402133
0.0028

LOTT (×10^4)

8402602
0.0018

8402473
0.0014
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Panel B: Multiple regression 
 

 
 

Variable (Z)
Const (×10^4) 0.183 *** (5.55) -1.18 (-1.29) -0.018 (-0.35) -2.08 (-1.00)
BETA (×10^4) -0.066 (-1.59) 0.05 (0.04) 0.283 *** (3.72) 8.85 *** (2.93)
SIZE (×10^9) -0.048 (-1.22) 0.98 (0.87) 0.124 * (1.95) 0.96 (0.38)
BM (×10^6) -0.091 (-0.74) -0.42 (-0.11) 0.002 (0.01) 5.24 (0.40)
EPR (×10^4) 0.020 *** (2.71) -0.74 *** (-3.20) 0.016 (1.04) -0.18 (-0.26)
MOM (×10^4) -0.034 (-1.06) -0.39 (-0.42) -0.005 (-0.08) -0.94 (-0.35)
ISSUE (×10^3) -0.032 *** (-6.82) 0.91 *** (7.06) -0.005 (-0.51) -0.34 (-1.17)
ROLL (×10^5) -0.007 (-0.88) -0.77 *** (-3.22) -0.001 (-0.05) -0.24 (-0.41)
IVOL (×10^2) -0.030 *** (-3.54) 1.69 *** (7.05) 0.003 (0.19) 0.98 (1.61)
LOTT (×10^4) -0.045 (-1.54) 2.72 *** (3.69) -0.212 *** (-4.11) -0.16 (-0.09)
#Obs
Adj. R^2

Z×PRE×INIZ×PREZ×INIZ

8,003,694                                                
0.0033                                                    
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Table 6: Summary statistics. This table shows summary statistics of the market portfolio, 
characteristic portfolios, and the ETFs. #Int is the number of five-minute intervals in the sample 
period. N is the average number of stocks. Beta is the average value-weighted beta with respect to 
the CRSP value-weighted market return. Size is the average equally weighted market capitalization. 
BM is the average equally weighted book-to-market ratio. QRET is the average value-weighted 
five-minute quote midpoint return. t-statistics are shown in parentheses. *, **, and *** represent 
significance at the 10%, 5%, and 1% levels, respectively. 
 

 
  

Asset #Int N Beta Size BM
Market 8,802 5,100 0.600 *** (5.38)
Beta 1 8,802 479    -0.16 0.3 0.93 0.026 (0.26)
Beta 2 8,802 483    0.19 1.5 0.92 0.078 (0.98)
Beta 3 8,802 490    0.39 2.9 0.79 0.180 * (1.83)
Beta 4 8,802 497    0.56 3.9 0.71 0.311 *** (3.32)
Beta 5 8,802 502    0.71 3.9 0.70 0.311 *** (3.05)
Beta 6 8,802 505    0.87 3.5 0.65 0.452 *** (3.90)
Beta 7 8,802 508    1.03 3.2 0.63 0.581 *** (4.79)
Beta 8 8,802 509    1.22 2.9 0.62 0.648 *** (4.69)
Beta 9 8,802 510    1.50 2.9 0.58 0.905 *** (5.21)
Beta 10 8,802 509    2.05 2.4 0.59 1.313 *** (5.85)
Size 1, Beta 1 8,802 1,240 0.21 0.1 0.93 0.178 *** (3.10)
Size 1, Beta 2 8,802 1,399 0.81 0.4 0.73 0.450 *** (4.69)
Size 1, Beta 3 8,802 1,080 1.62 0.4 0.64 0.823 *** (5.57)
Size 2, Beta 1 8,802 109    0.32 12.8 0.56 0.141 (1.24)
Size 2, Beta 2 8,802 512    0.80 11.6 0.51 0.425 *** (4.18)
Size 2, Beta 3 8,802 363    1.53 10.3 0.47 0.940 *** (5.44)
Size 1, BM 1 8,802 1,054 1.13 0.4 0.23 0.599 *** (5.00)
Size 1, BM 2 8,802 1,277 0.95 0.3 0.60 0.555 *** (5.11)
Size 1, BM 3 8,802 1,246 0.90 0.2 1.60 0.529 *** (4.90)
Size 2, BM 1 8,802 466    1.02 14.3 0.24 0.581 *** (5.25)
Size 2, BM 2 8,802 344    0.96 9.8 0.57 0.586 *** (4.98)
Size 2, BM 3 8,802 153    0.97 7.8 1.21 0.545 *** (4.00)
SPY 8,802 1       0.588 *** (4.51)
QQQ 6,858 1       0.975 *** (4.68)

QRET (bp)
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Figure 1: Cumulative Market Return and Signed Share Turnover. 
The figure shows the cumulative return (top panel) and cumulative signed share turnover (lower panel) for 
the five days centered on each FOMC announcement day. Days are labeled -2 through +2 (the 
announcement day is day 0), and appear first on the time axis, followed by the time of the day.  The return 
and signed turnover are value and equally weighted averages computed across all NYSE, AMEX and 
NASDAQ stocks with valid quotes and trades. Cumulation starts at the open on day -2.  In the turnover 
panel, the left (right) vertical axis refers to value- (equally-) weighted turnover. 
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Figure 2: Cumulative Returns of Beta-sorted Portfolios around FOMC Announcements.  
The figure shows the cumulative intraday return for selected portfolios formed on beta in the three days 
centered on FOMC announcement. Days are labeled -1 through +1 (the announcement day is day 0), and 
appear first on the time axis, followed by the time of the day.  The return is the value-weighted average in 
each portfolio, and computed across all NYSE, AMEX and NASDAQ stocks with valid quotes and trades. 
Cumulation starts at the open on day -1. 
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Figure 3: Returns and Trades of Beta-sorted Portfolios.  
The figure shows the average quote midpoint returns (QRET, left axis) and signed share turnover (STOV, 
right axis) of beta-sorted decile portfolios during the pre- and post-FOMC announcement periods on 
announcement days (panels A and B, respectively) as well as the day before (Day -1, panel C) and the day 
following (Day 1, panel D) FOMC announcements. 
 
 

 


