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Abstract

Bridging the gap between designed and implemented model-based controllers is a ma-

jor challenge in the design cycle of industrial controllers. This gap is mainly created

due to (i) digital implementation of controller software that introduces sampling and

quantization imprecisions via analog-to-digital conversion (ADC), and (ii) uncertain-

ties in the modeled plant’s dynamics, which directly propagate through the controller

structure. The failure to identify and handle these implementation and model un-

certainties results in undesirable controller performance and costly iterative loops for

completing the controller verification and validation (V&V) process.

This PhD dissertation develops a novel theoretical framework to design controllers

that are robust to implementation imprecision and uncertainties within the models.

The proposed control framework is generic and applicable to a wide range of nonlinear

control systems. The final outcome from this study is an uncertainty/imprecisions-

adaptive, easily verifiable, and robust control theory framework that minimizes V&V

iterations in the design of complex nonlinear control systems.

The concept of sliding mode controls (SMC) is used in this study as the baseline

to construct an easily verifiable model-based controller design framework. SMC is

a robust and computationally efficient controller design technique for highly nonlin-

ear systems, in the presence of model and external uncertainties. The SMC structure

xli



allows for further modification to improve the controller robustness against implemen-

tation imprecisions, and compensate for the uncertainties within the plant model.

First, the conventional continuous-time SMC design is improved by: (i) developing a

reduced-order controller based on a novel model order reduction technique. The re-

duced order SMC shows better performance, since it uses a balanced realization form

of the plant model and reduces the destructive internal interaction among different

states of the system. (ii) developing an uncertainty-adaptive SMC with improved

robustness against implementation imprecisions. Second, the continuous-time SMC

design is converted to a discrete-time SMC (DSMC). The baseline first order DSMC

structure is improved by: (i) inclusion of the ADC imprecisions knowledge via a

generic sampling and quantization uncertainty prediction mechanism which enables

higher robustness against implementation imprecisions, (ii) deriving the adaptation

laws via a Lyapunov stability analysis to overcome uncertainties within the plant

model, and (iii) developing a second order adaptive DSMC with predicted ADC im-

precisions, which provides faster and more robust performance under modeling and

implementation imprecisions, in comparison with the first order DSMC.

The developed control theories from this PhD dissertation have been evaluated in

real-time for two automotive powertrain case studies, including highly nonlinear com-

bustion engine, and linear DC motor control problems. Moreover, the DSMC with

predicted ADC imprecisions is experimentally tested and verified on an electronic air

throttle body testbed for model-based position tracking purpose.

xlii



Chapter 1

Introduction

Verification and Validation (V&V) in a controller design cycle ensures that (i) the

implemented controller in an electronic control unit (ECU) accurately represents the

conceptual description and specifications of the designed controller; (ii) the designed

controller fulfills intended control targets. V&V for complex dynamic systems is too

costly and time consuming. For instance, the current ECUs in a Lexus LS460 vehicle

has a program size of seven million lines [10]. The traditional V&V cycle of various

ECU functions, shown in Figure 1.1, is completed with multiple software-in-the-loop

(SIL), processor-in-the-loop (PIL), and hardware-in-the-loop (HIL) iterations which

are complex and time consuming. Using the current technology, the V&V process

for typical automotive ECUs can take about two years, and it can easily cost over

several million dollars. The cost and development time of the ECU dramatically
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increase when the complexity of an automotive system increases (e.g., a hybrid electric

vehicle). Reducing cost and time of the V&V is a major challenge for all complex

control systems and this dissertation aims to develop and illustrate a model-based

controller design methodology for reducing V&V efforts.

Figure 1.1: Typical V-cycle for the design of automotive controllers.

There are two main sources of uncertainties in the design cycle of industrial model-

based controllers that cause errors in a V&V cycle. First, the imprecisions arise during

digital implementation of the controller upon analog-to-digital (ADC) conversion of

signals at the input/output (I/O) of the controller due to sampling and quantization.

Second, uncertainties exist in the modeled plant’s dynamics used in the controller

formulation. If these uncertainties could be identified and fixed during the early stages

of the controller software design, the V&V process would cost 10 times less [11, 12].

Thus, designing a robust and adaptive controller that tries to minimize the impact

of implementation and model imprecisions can reduce the V&V cost significantly.
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1.1 Background

A digital control unit acquires the feedback data from the plant through analog to

digital converter (ADC) which samples and quantizes the measured signals. Fig-

ure 1.2 shows the analog versus sampled and quantized signal after ADC. As seen in

Figure 1.2, significant imprecisions can be caused by ADC, depending on sampling

time and quantization level. Data acquisition systems quantize the sampled data from

measurements to generate digital signals with a quantization level that is supported

by the ECU. Quantization is not usually considered in the controller design and in-

troduces round-off error when controller is implemented. As discussed, sampling and

quantization imprecisions have major effects on the controller performance. If these

imprecisions are not considered during the early stages of the controller design, they

could lead to failure in the controller performance and consequently time-consuming

V&V iterations [12].

Figure 1.2: Imprecisions on measured signals due to sampling and quanti-
zation (Ts is sampling time, FSR is full scale range of the measured signal,
and n is number of ADC bits and shows the ADC quantization level).
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The major previous studies, that focused on analyzing and developing controller de-

signs to overcome implementation imprecisions, are shown in Figure 1.3. Control

design techniques with sampled data have been studied extensively, while few works

have addressed data quantization imprecisions. State feedback function selection for

favorable stability characteristics is a major challenge in the controller design pro-

cess [13]. Other investigated challenges include controller design to guarantee global

asymptotic stability at the origin under discrete-time implementation and finding the

permissible bounds of sampling period to achieve asymptotic stability [13, 14]. Veri-

fying a controller’s stability for a given bounded set against quantization imprecisions

is the other problem which has been studied in [15] and [16].

Figure 1.3: Background of previous literature on controller design against
implementation imprecisions [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54].
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Sliding Mode Controls: A sliding mode controller (SMC) is a robust controller that

can be applied to both linear and nonlinear systems, and allows for dealing with uncer-

tainties, un-modeled dynamics, and disturbances. SMC design converts a complicated

dynamic system into a first-order system through a sliding surface transformation.

Previous studies in the literature have demonstrated the capabilities of SMC in han-

dling implementation and model uncertainties. There are two main groups in which

the SMC design with robustness to implementation imprecisions can be studied: (i)

continuous-time designs, and (ii) discrete-time designs. For the first group, results in

[23] showed that the robustness of the implemented controller against ADC uncertain-

ties can be improved by incorporating the maximum ADC uncertainty bounds into

the controller equations. Converting the controller design from a single-input single-

output (SISO) to a multi-input multi-output (MIMO) formulation is another effective

approach to enhance controller robustness by minimizing the correlation between the

sliding variables via a nonlinear balanced realization method [55].

Handling the modeling uncertainty in SMC design has been the subject of few pre-

vious works in the literature. The model uncertainty/mismatch has been addressed

using non-adaptive [56], continuous-time adaptive [57], discrete-time adaptive [58, 59],

and neural network-based [60, 61] SMC designs. The adaptive DSMC formulation

from [62] presents a generic solution for removing a multiplicative type of model un-

certainty for a general class of nonlinear systems. Development of a generic adaptive
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first and second order SISO/MIMO DSMCs with incorporated sampling and quan-

tization imprecisions, and adaptation against two types of modeling uncertainties

(multiplicative and additive), is the main solution which is proposed in this disserta-

tion to construct an easily verifiable model-based controller design framework.

Model Order Reduction: One important requirement for developing a model-based

control strategy is having an accurate and computationally efficient low-order phys-

ical model for real-time control. This model should have the capability to be easily

implemented and utilized in the design of model-based controllers to evaluate sys-

tem response under real environment conditions and uncertainties. One approach for

simplifying the controller structure, reducing the calculation load, and reducing the

controller calibration effort is by utilizing methods of model order reduction shown

in Figure 1.4. Three groups are identified in Figure 1.4. The first group includes pa-

rameter space reduction methods. These methods reduce controller calibration load

through identifying and removing insensitive parameters. The second group is grey-

box modeling approach which combines physical (clear-box) models and empirical

(black-box) models and tries to develop high fidelity models [63]. The third group

includes plant order/state reduction methods. These methods attempt to evaluate

system’s dynamics and eliminate fast and low energetic states of system’s dynamics.

In order to keep the nonlinearity of the plant, nonlinear state/order reduction meth-

ods should be applied on the engine model. Plant state/order reductions methods

for linear dynamical systems are described in detail in [64, 65, 66]. One well known
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linear reduction method is the singular perturbation approximation (SPA) method.

This method divides system dynamics into fast and slow parts [65] and focuses on

the slow part as the important part of the system’s dynamics. SPA will be discussed

later in detail in Chapter 2.

Figure 1.4: Overview of model reduction techniques for control systems.

1.2 Dissertation Objectives

The main objective of this study is developing an easily verifiable control theory

framework that can be used to minimize controller software development time and

cost by minimizing V&V iterations. Specific project objectives are:

1. Developing easily verifiable control theories in continuous and discrete times,

2. Developing uncertainty prediction and propagation models for controller imple-

mentation imprecision,
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3. Developing control theory with robustness to implementation imprecisions,

4. Handling model uncertainties via an adaptive model-based controller design,

5. Design of a nontrivial processor-in-the-loop (PIL) and hardware-in-the-loop

(HIL) platforms for real-time testing of the designed controllers against im-

plementation uncertainties and modeling uncertainties,

6. Applying the theories of easily verifiable controller design for challenging auto-

motive control problems.

1.2.1 Dissertation Organization

This PhD dissertation is organized as follows:

• Chapter 2: In this chapter, an early model-based methodology is presented to

reduce the V&V time. The application of the proposed methodology is demon-

strated on a “Cold Start Emission” control problem in a mid-size passenger car.

A nonlinear reduced order model-based controller based on singular perturba-

tion approximation is designed to reduce cold start hydrocarbon emissions from

a spark ignition (SI) combustion engine. A model-based simulation platform is

created to verify the controller robustness against sampling, quantization and

fixed-point arithmetic imprecision.

• Chapter 3: A model-based uncertainty-adaptive methodology is proposed in

this chapter to enable easily verifiable controller design based on the formulation

of continuous-time sliding mode controls (SMC). The proposed adaptive SMC
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improves the controller robustness against major implementation imprecisions

including sampling and quantization. The application of the proposed technique

is demonstrated on the engine cold start emission control problem. The cold

start controller is first designed in a single-input single-output (SISO) structure

with three separate sliding surfaces, and then is redesigned based on a multi-

input multi-output (MIMO) SMC design technique using nonlinear balanced

realization. The MIMO controller prioritizes the states of the model based

on their energy and put more efforts to track trajectories with higher level of

energy. The controller behavior is improved using the MIMO structure with

fewer tunable parameters. The performance of the MIMO adaptive controller

is validated in real-time by testing the control algorithm in a processor-in-the-

loop (PIL) platform.

• Chapter 4: In this chapter, a new discrete-time control approach is developed

to mitigate the ADC imprecisions by (i) identifying the ADC imprecisions in

the early stages of a controller design cycle, (ii) developing a mechanism for

real-time prediction of uncertainties due to ADC, and (iii) incorporating the

predicted uncertainties into the controller design. To this end, a generic online

technique is developed to predict sampling and quantization uncertainties on

measured signals. Then a discrete sliding mode controller (DSMC) is designed

for incorporation of ADC uncertainties. Inclusion of predicted imprecisions

into the DSMC requires the knowledge of propagated uncertainties on control

signals. An experimental approach is proposed for a general class of nonlinear
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systems to estimate the propagated ADC uncertainties on control inputs. The

proposed control approach is illustrated on one linear and one nonlinear control

problems, including DC motor and automotive engine controls. The designed

controller is tested in real-time in the PIL setup using an actual ECU.

• Chapter 5: In this chapter, the new DSMC with predicted implementation

imprecisions from Chapter 4 is extended to handle additive and multiplicative

types of model uncertainties for linear and nonlinear systems using a discrete

Lyapunov stability analysis. The proposed adaptive DSMC with predicted im-

plementation imprecisions provides an integrated framework to improve the

robustness of a common DSMC against both model and hardware (ADC) un-

certainties. The performance of the proposed adaptive robust DSMC is evalu-

ated on DC motor and nonlinear automotive engine control problems. Finally,

the designed controllers are experimentally verified on a real ECU.

• Chapter 6: The implementation of the conventional continuous-time SMC

on digital computers is limited, due to not only the ADC imprecisions, but

also the chattering phenomena, which results in high frequency oscillations.

One effective solution to minimize the chattering, and reduce the effects of data

sampling and quantization is the use of higher order sliding modes. To this end,

in this chapter, a new adaptive second order DSMC formulation is presented

for a general class of MIMO uncertain nonlinear systems. Based on a Lyapunov

stability argument and by invoking the new Invariance Principle, not only is the
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asymptotic stability of the controller guaranteed, but also the adaptation law is

also derived to remove the uncertainties within the nonlinear plant dynamics.

Moreover, a new switching control input is introduced to improve the controller

robustness against data sampling and quantization imprecisions. The proposed

controller is designed and experimentally tested in real-time for the linear DC

motor, and the highly nonlinear automotive combustion engine case studies.

• Chapter 7: In this chapter, the generic DSMC with predicted ADC impreci-

sions from Chapter 4 is experimentally verified for an electronic throttle position

tracking problem. Electronic throttle control is an integral part of an engine

control unit that directly affects vehicle fuel economy, drivability, and engine-

out emissions by managing engine torque and air-fuel ratio through adjusting

intake charge flow to the engine. The highly nonlinear dynamics of the throttle

body call for nonlinear control techniques that can be implemented in real-time

and are also robust to controller implementation imprecision. First, a nonlinear

physical model for an electromechanical throttle body is derived. Parameters of

the model are determined using techniques of model/parameter identification.

Next, a DSMC is formulated for controlling the throttle position. The per-

formance of the DSMC is examined under different sampling and quantization

levels via the analog-to-digital converter.

Figure 1.5 summarizes the organization of chapters in this dissertation, along with

publications from this thesis.
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Figure 1.5: Organization of this dissertation.
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Chapter 2

Early Model-Based Design and

Verification of Control Systems1

2.1 Introduction

Controller software verification (CSV) is the critical process used to avoid mismatch

between a designed and implemented controller. Imprecision caused by approxima-

tions in the process of implementing a controller’s software is one of the main sources

of error in the CSV of an automotive ECU. The software implementation process

involves issues such as sampling, quantization, ECU scaling, fixed-point arithmetic,

1The contents of this chapter have been partially published in ASME Journal of Dynamic Sys-
tems, Measurement, and Control [1] (doi: 10.1115/1.4027845), and proceeding of 2014 SAE World
Congress [2] (doi:10.4271/2014-01-1547). Reprinted with permissions by SAE © 2017 SAE Interna-
tional and ASME as shown in Appendix D. Further distribution of these materials is not permitted
without prior permissions from SAE and ASME.
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saturation, and operating system adjustments; all of these can cause mismatch be-

tween the original designed controller and the final implemented controller. The

computational flow of a typical fixed-point automotive ECU is shown in Figure 2.1.

Sampling, quantization and fixed-point arithmetic are the main sources of CSV errors.

Figure 2.1: Computational flow in a typical fixed-point automotive control
system.

A large number of errors detected during independent V&V are introduced during the

initial stages of a controller development and it will cost 10 times less if those errors

are identified and fixed during the early stages of a controller software design [11].

Design and implementation of controllers involve three disciplines, including: control

engineering, software engineering, and electronic hardware engineering. A critical

gap is found when uncertainty in controller software/hardware implementation is not

considered as part of the controller design.

Common CSV practice in the automotive industry is to test a controller after its
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software is fully implemented. This CSV practice is costly and time consuming. A

number of studies have been conducted to improve CSV of complex embedded control

systems such as automotive ECUs. Some of the recent studies include: (1) developing

methods of model based software-in-the-loop [67, 68, 69, 70]; (2) automatic verifica-

tion of a controller by stability analysis through using a model of implementation

errors in a controller design [16, 71]; (3) developing techniques for verification of a

controller’s software [72]; (4) analytical methods to accurately compute a controller’s

reachable set, providing easier verification of a controller [73, 74, 75]; (5) develop-

ing tools for model-based verification of controllers [76, 77, 78]; (6) using advanced

optimization solvers to find mathematically equivalent software implementation with

smaller fixed-point arithmetic imprecision [79]; (7) model-based calibration of con-

trollers to reduce V&V required time [80, 81].

The contribution of this chapter is threefold. Firstly, an early model-based method-

ology is proposed for evaluating the controller performance under implementation

imprecisions. This section presents the benefits of the proposed methodology for

reducing V&V efforts and reducing implementation requirements. Secondly, a new

nonlinear model order reduction method is developed, based on singular perturbation

approximation (SPA), to simplify the controller design for reducing V&V. Thirdly, the

performance results are illustrated by developing a nonlinear model-based controller

to reduce cold start hydrocarbon (HC) emissions from an automotive engine.
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2.2 Proposed CSV Methodology

The proposed methodology and typical time-consuming process of V&V for automo-

tive controllers are shown in Figure 2.2. This study proposes an early model-based

design and verification before launching the process of controller implementation,

which will serve to reduce the time spent in the typical V&V process. While using a

minimum-order model-based controller will simplify the calibration and verification

stages, the early V&V can help identify and avoid the errors that will occur later in

the controller implementation process.

Figure 2.2: Proposed early model-based V & V methodology.
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The proposed methodology in Figure 2.2 has two steps. The first step is developing

a reduced order model for a controller design. This is particularly important given

ever-increasing complexity in advanced automotive systems. Using a reduced order

model is expected to reduce controller calibration load since a simplified model-based

controller will be implemented. Reduced calibration efforts will lead to reduced V&V

time and efforts. To this end, developing model order reduction techniques is critical.

Those techniques should be able to capture the most important part of the model’s

dynamics with minimum required states/parameters. The second step includes de-

sign of a model-based controller using a reduced order model. Next, the controller’s

robustness is evaluated against main imprecisions arising during the software imple-

mentation process. The robustness is determined by how sensitive the controller’s

performance is against imprecision caused by sampling rate, quantization level, and

fixed-precision arithmetic in an ECU. The two steps in Figure 2.2 are discussed in

the remaining of this section. The application of the proposed methodology is shown

for a case study on automotive emission control.

2.2.1 Nonlinear Model Order Reduction

As proposed in Section 2.2, a plant model with a minimum order is desirable to sim-

plify the design and verify the controller. The reduced order model must capture the

most important part of the system’s dynamics and guarantee acceptable estimation
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accuracy in comparison with its full order nonlinear model counterpart. In the re-

maining of this section, with respect to balanced realization and singular perturbation

approximation techniques for linear systems, a novel nonlinear model order reduction

methodology is presented.

2.2.1.1 Balanced realization

Linear balanced realization transfers the space of the physical states of the model into

another linear space in which new non-physical states form a linear combination of

the physical states. In this new space, controllability and observability gramians are

diagonal and equal to the Hankel singular value (HSV) matrix. Since the magnitudes

of HSVs indicate the level of each state’s energy, significant differences among these

singular values can be considered as a proof of the state’s dominance [64].

For the linear systems, the HSVs of the system are defined as the square root of the

eigenvalues of PQ, where P and Q are the observability and controllability gramians

of the linearized system, respectively:

σi =
√
λi(PQ) i = 1, ..., n (2.1)

where, λi is the PQ eigenvalue. The HSVs values are then placed in descending order

into the HSV matrix (Σ). A similarity transformation matrix is then determined such

that the transformed gramians are diagonal and equal to Σ. If the linear system is

observable, there exists a positive definite square root matrix (R) for the observability
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gramian. A Hermitian eigenvalue decomposition on RPR> is then performed to find

the unitary matrix W , where R> indicates the transpose of matrix R. The similarity

transformation matrix that achieves a balanced realization can then be calculated.

Q = RR> (2.2)

RPR> = WΣ2W> (2.3)

T = R−1WΣ1/2 (2.4)

The balanced state-space realization is calculated using the transformation x = Tz.

T is defined as the coordinate transition matrix which transfers the states of the

physical model (X) to another non-physical space (Z) where the system is balanced.

It must be noted that dimensions of X and Z are still equal.

2.2.1.2 Singular Perturbation Approximation

The linear singular perturbation approximation (SPA) technique simplifies the dy-

namics of the linear system with respect to differences among HSVs of the balanced

realization form of a linear system [65]. The idea of linear balanced realization is used

to extend the linear SPA order reduction method to nonlinear systems. Consider a

general nonlinear system:

19




ẋ = f(x, u)

y = h(x, u)

(2.5)

where x ⊂ X ∈ Rn, y ⊂ Y ∈ Rm and u ⊂ U ∈ Rh are the state, the output and

the input vectors, respectively. Once linearzed realization of the nonlinear system

(Eq. (2.5)) is obtained, the coordinate transition matrix can be calculated by a similar

approach using (Eq. (2.4)). Eventually, state-space transition will be as follows:

x(n×1) = T(n×n)z(n×1), ẋ(n×1) = T(n×n)ż(n×1) (2.6)

by applying Eq. (2.6) transformation on nonlinear system Eq. (2.5), non-physical

states are calculated by: 
ż = T−1f(Tz, u)

y = h(Tz, u)

(2.7)

Principle of SPA order reduction is based on dividing the dynamics into the fast and

the slow parts. To separate the fast and the slow parts based on the HSVs, Eq. (2.6)

is rearranged as follows:

ẋ(n×1) =

ẋs
ẋf

 = T ż(n×1) = T

żs
żf

 (2.8)

where ẋs ∈ Rr and ẋf ∈ R(n−r) are the slow and the fast state-space vectors of X ∈ Rn
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space, respectively. Additionally, żs ∈ Rr and żf ∈ R(n−r) are the state-space vectors

of Z ∈ Rn space corresponding to ẋs and ẋf , respectively. Considering the lengths of

slow and the fast state-space vectors and also descending order of HSVs elements in

Σ, the coordinate transition matrix T can be partitioned as follows:

T =

 T11(r×r) T12(r×(n−r))

T21((n−r)×r) T22((n−r)×(n−r))

 (2.9)

T−1 =

 T11
−1

(r×r) T12
−1

(r×(n−r))

T21
−1

((n−r)×r) T22
−1

((n−r)×(n−r))

 (2.10)

The fast part of the dynamics diminishes and reaches its steady state conditions prior

to the slow part; thus, its derivative can be set to zero. By substituting Eq. (2.9) in

Eq. (2.8) and setting ẋf to zero, we have:

ẋ =

ẋs
0

 =

T11 T12

T21 T22


żs
żf

 (2.11)

then, Eq. (2.11) can be simplified into the following representation:

ẋs ∼= (T11 − T12T22
−1T21)żs (2.12)

We define TSPA as follows:

TSPA = T11 − T12T22
−1T21 (2.13)
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thus:

xs ∼= TSPAzs (2.14)

In addition, in a similar way it can be shown that:

żs ∼= TSPA
∗ẋs (2.15)

zs ∼= TSPA
∗xs (2.16)

where:

TSPA
∗ ∼= T11

−1 − T12
−1(T22

−1)−1T21
−1 (2.17)

Slow and energetic states (zs ∈ Rr) of the Z ∈ Rn space are calculated by applying

Eq. (2.16) transformation to the slow part of xs ∈ Rr states in X ∈ Rn space. These

zs states constitute the Zs ∈ Rr reduced non-physical sub-space (Zs ⊂ Z). The

objective of the model order reduction approach is calculating the states of Zs space

directly from X space’s states. However, TSPA ∈ Rr×r and TSPA
∗ ∈ Rr×r matrices

are square. Therefore, to transit from a higher order space (X) to a lower order space

(Zs), these matrices should be modified in dimensions. In transition from nth (r<n)

order space to lower rth order space, according to Eq. (2.14), the coordinate transition

matrix should be a (n×r) matrix. In addition, the coordinate transition matrix from

a lower space to a higher order space, Eq. (2.16), should be (r × n). Regarding the

dimension of TSPA and TSPA∗, to compensate for the dimension of these two matrices,
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two adjoint matrices are associated with them (Tc and Tc
∗):

x(n×1) ∼=



TSPA(r×r)

Tc((n−r)×r)


(n×r)

zs(r×1) (2.18)

zs(r×1)
∼=
[
TSPA

∗
(r×r) | Tc∗(r×(n−r))

]
(r×n)

x(n×1) (2.19)

The simplest choice for these adjoint matrices is the null matrix. Eq. (2.18) and (2.19)

are simplified in the following general representations:

x(n×1) ∼= T̃SPA(n×r)zs(r×1) (2.20)

zs(r×1)
∼= T̃ ∗SPA(r×n)

x(n×1) (2.21)

where, T̃SPA and T̃ ∗SPA are state transition matrices between higher order space (X)

and non-physical reduced order space (Zs):

T̃SPA =



TSPA

Tc


(2.22)

T̃ ∗SPA =
[
TSPA

∗ | Tc∗
]

(2.23)
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Once the state transition matrix will be reduced by using singular perturbation ap-

proximations (Eq. (2.22) and (2.23)), the SPA balanced reduction method can be

extended to a nonlinear system. By applying SPA to the nonlinear system Eq. (2.5),

we have a SPA nonlinear reduced order model with respect to Eq. (2.7) as follows:
żs ∼= T̃−1

SPAf(T̃SPAzs, u)

ỹ ∼= h(T̃SPAzs, u)

(2.24)

where, ỹ is the estimated output of the nonlinear SPA reduced model and T̃ ∗SPA
∼=

T̃−1
SPA. It can be concluded from Eq. (2.12)-(2.17) that the reduced order of TSPA

and TSPA
∗ matrices contain all elements of the coordinate state transition matrix

(T11, T12, T21, T22) and its inverses. Thus, no part of the original dynamics will be

ignored during the reduction. The chart in Figure 2.3 shows the roadmap for de-

veloping reduced SPA nonlinear model with respect to physical model and balanced

realization form of equations.

2.2.2 Controller Robustness Evaluation against Implementa-

tion Imprecision

As shown in Figure 2.1, there are three sources of implementation errors, including

data sampling, quantization, and fixed-point data type conversion imprecisions. In

order to evaluate the robustness of a model-based controller design, the impact of
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Figure 2.3: Process of nonlinear SPA model order reduction.

these imprecisions are investigated during the second step of the proposed early model-

based CSV approach shown in Figure 2.2. A fixed-point data is a triple (s, n,m)

characterized by a sign bit (s), word length/number of bits (n) and a fraction part

(m): 
1

2m
∑n−1
i=0 2ibi (a) Unsigned

1
2m [−2n−1bn−1 +∑n−1

i=0 2ibi] (b) Signed

(2.25)

where, b is the bit vector representing values between −2n−1 and 2n−1 − 1 for signed

fixed-point data and representing values between 0 and 2n−1 for unsigned fixed-point

data. The fixed-point data represents an approximation of a real number. The asso-

ciated imprecision from this approximation is considered as fixed-point imprecision
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(efp) which is less than 1
2m for the representation of a real number. The total efp

depends on arithmetic operations performed inside the controller. The efp directly

affects the accuracy of the controller outputs.

The ECU communicates with signals discretized in both time, through sampling, and

in value, through A-to-D converters (ADCs). The sampling rate determines the time

discretization resolution, whereas the quantization level in the ADCs determines the

resolution in value. These data resolutions will affect the performance of the ECU.

Sampling imprecision (es) is calculated by:

es ≤ |ϑ|Ts (2.26)

where, Ts is sampling time and ϑ is the maximum negative/positive slopes of signals.

Quantization rounding imprecision (eq) is determined by:

−1
2
FSR

2n < eq <
1
2
FSR

2n (2.27)

where, n is the number of bits and FSR is the full-scale range of signal. In the next

section, first the proposed nonlinear model order reduction technique in Section 2.2.1

is applied to design a reduced order controller for a combustion engine cold start

emission model. Next, in Section 2.3.4.1, the robustness of the designed controller

will be studied under implementation imprecisions.
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2.3 Case Study: Cold Start Emission Control

Cold start emissions account for over 80% of the total HC emissions in standard driv-

ing cycles [82, 83]. Poor air-fuel mixture formation and low efficiency of the exhaust

catalytic converters are two main causes of high emission levels of the passenger cars

during the cold start operation. The critical cold phase is the 2-5 minute time period

between the cold start and the moment the catalytic converter reaches its operating

temperature (i.e. 200-300◦C). Cold start engine controller design is a well recog-

nized challenge with increasing importance in moving towards green vehicles. This

challenge is mainly due to highly nonlinear behavior of the automotive engines dur-

ing cold start. In addition, during the cold start phase, reliable data from Air-Fuel

Ratio (AFR) and exhaust temperature sensors are not available.

2.3.1 Cold start emission model

A physical model from [84] is used to estimate tailpipe HC emissions during cold start.

The model is parameterized for a 2.4-liter, 4-cylinder, DOHC 16 valve Toyota 2AZ-

FE engine and a three-way catalyst exhaust aftertreatment system. The engine rated

power is 117kW @ 5600 RPM and it has a peak torque of 220 Nm @ 4000 RPM. The

experimental validation of different components of the model is found in [7, 85, 86].

The inputs to the model are ṁai, air mass flow rate into the intake manifold, ṁfc,

commanded fuel mass flow rate, and ∆, spark timing after top dead center (ATDC).

The model includes five states, indicated with the following dynamic equations:
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ẋ1 = ṁa = ṁai − ṁao(ma, ωe) = fma (2.28)

ẋ2 = ω̇e = 1
J

[TE(ma, ωe)] = fωe (2.29)

ẋ3 = m̈f = 1
τf

[ṁfc − ṁf ] = fṁf (2.30)

ẋ4 = Ṫcat = 1
mCp

[
Q̇gen + Q̇in − Q̇out

]
= f

Tcat
(2.31)

ẋ5 = Ṫexh = 1
τe

[SI(∆).AI(ma, ωe, ṁf )− Texh] = f
Texh

(2.32)

The five states are the mass of air inside the intake manifold (ma), the engine

speed (ωe), fuel mass flow rate into the cylinders (ṁf ), the catalyst temperature (Tcat),

and the exhaust gas temperature (Texh). Details of the functions and constants in

Eq. (2.28) to (2.32) are found in the Appendix A. The HC production rate from the

engine ( ˙HCeng) is calculated along with the catalytic converter efficiency (ηcat) to

give the HC emission rate out of the tailpipe ( ˙HCtp).

˙HCeng = ṁf
rc − 1
rc

exp

[
−a

[
θevo − θ0(∆)
δθ(ma, ωe, ṁf )

]n]
(2.33)

ηcat = 0.98

1− exp

−5
 AFR

AFRst
− 0.7

0.3

15

 (2.34)

.

(
1− exp

[
−0.2

(
Tcat − 30

150

)5])

˙HCtp = ˙HCeng(1− ηcat) (2.35)
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Where, AFRst is the AFR at stoichiometric condition and rc is the compression ratio.

δθ, θ0 and θevo are fuel burn rate function and parameters which are detailed in the

Appendix A. Eq. (2.28) to (2.35) altogether shape the dynamical system equations

in which the output of the model is the tailpipe HC production rate. The difference

between engine-out and tailpipe HC emission depends on the catalytic converter

performance in the exhaust system. Eventually, cumulative HC generated during the

cold phase (HCcum) is calculated by:

HCcum =
∫

˙HCtpdt (2.36)

The cold start model was validated with the experimental data from the same engine

in [7]. A comparison between measured and simulated HCcum emission is shown in

Figure 2.4. It is observed that at the end of the simulation period (200 seconds),

there is less than 2% error between measured and simulated HCcum results.

2.3.2 Reduced Order Engine Model/Controller

Due to strong nonlinearity of the engine cold start model, linear model order reduction

technique can not accurately estimate the response of the engine model. Therefore,

nonlinear model order reduction should be applied to the system’s dynamics. To

this end, the nonlinear model order reduction technique from Section 2.2.1 is used to

design a reduced order cold start emission model and controller.
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Figure 2.4: Comparison between measured and simulated cumulative
tailpipe HC emission [7].

Cold start model order reduction is done in two main steps with respect to the method-

ology shown in Figure 2.3. In the first step, a balanced realization approach is used

to reduce the order of the cold start model. Balanced realization is a transformation

of the original states of a system into new states consisting of linear combinations of

the original states such that the controllability and observability gramians are equal

and diagonal. In the second step, the results from balanced realization are used and

a nonlinear singular perturbation approximation (SPA) technique is developed. In

SPA, fast and slow states of the system dynamics are separated. Then, slow and more

energetic states will be selected as a reduced representation of the nonlinear model.

In order to calculate the balanced realization form of the engine cold start model, the

nonlinear model is first linearized around an operation point. Linearization of the
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nonlinear model is done using the first order approximation of Taylor expansion with

respect to a certain operation point before the catalyst light-off point. The linearized

engine cold start model can be expressed in a general linear state-space realization as

follows: ẋ
y

 =

A(5×5) B(5×3)

C(1×5) D(1×3)


x
u

 (2.37)

where,

x =
[
ma ωe ṁf Tcat Texh

]T
(2.38)

u =
[
ṁai ṁfc ∆

]T
(2.39)

y = ˙HCtp (2.40)

In the case of the linearized engine cold start model (Eq. (2.37)), five HSVs are

calculated using Eq. (2.1). The values are then placed in descending order into the

HSV matrix (Σ):

Σ = diag[σ1, σ2, σ3, σ4, σ5] (2.41)

where σ1 ≥ σ2 ≥ σ3 ≥ σ4 ≥ σ5.

Here, with respect to Eq. (2.24), the order of the 5-state cold start model is reduced
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using proposed nonlinear SPA technique based on the balanced realization. The

resulting HSV values from Eq. (2.41) are plotted in Figure 2.5. It is observed that

there is a significant difference between orders of HSVs for the first three states and

the orders of HSVs for the last two states. Thus, the new states in Z space are mainly

functions of fma , fωe , and fṁf . The resulting reduced cold start model has three new

non-physical states which are realizations of the slow states in Zs space:
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Figure 2.5: Hankel singular values for cold start emission model.

żs(3×1)
∼= T̃−1

SPA(3×5)
F(5×1) (2.42)

where, F is a vector including the original nonlinear state functions in X space.

F =
[
fma fωe fṁf f

Tcat
f
Texh

]T
(2.43)
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Figure 2.6: Comparison of tailpipe HC flow rates predictions by full state
and reduced models.

Performance of the nonlinear SPA order reduction method is evaluated by testing the

technique on the original cold start nonlinear model. Open loop control signals are

needed to simulate the reduced order nonlinear model. Two sets of real data, which

are taken from cold start operation of the Toyota engine, are used to validate the

reduced model. In each set, three input signals, ṁai, ṁfc, and ∆, are used to run the

simulation on the original nonlinear model and the reduced order model. Figure 2.6

shows the comparison between HC tailpipe flow rates from the full and reduced order

nonlinear models for the two sets of real data.

The results show that the reduced nonlinear SPA model captures the main dynamics

of the tailpipe HC during the first 40 seconds. In a modern vehicle the catalyst light-

off typically occurs before 40 seconds; thus, the cold start control strategy is critical

during the very early seconds of the engine operation where the reduced SPA model

is shown to be accurate. In the next section, the reduced-order nonlinear SPA model
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is used to design a SMC for reducing the cold start tailpipe HC emissions.

2.3.3 Controller Design

The main control objective is to minimize HCcum. This objective requires not only

reducing raw ˙HCeng but also quickly heating up catalyst to shorten the catalyst light-

off period. AFR and ωe influence both ˙HCeng and Tcat, while Texh directly influences

Tcat. Thus three control trajectories (AFRd, ωe,d, and Texh,d) are defined to minimize

HCcum, as shown in Figure 2.7. AFRd and ωe,d control trajectories are taken from

the engine control unit of the Toyota 2AZ-FE engine. The exhaust temperature of

650◦C is chosen for Texh,d using available experimental data for the engine [86].

The controller adjusts the inputs to the engine plant to control the engine tailpipe

HC emission. As shown in Figure 2.7, there are three sub-controllers to track each

of desired trajectories. The first sub-controller adjusts fuel injection rate through

tracking the desired AFR trajectory. The second sub-controller is the idle speed

controller which impacts the exhaust gas flow rate for heating the catalyst through

tracking a desired idle speed trajectory. The third sub-controller adjusts spark timing

which impacts the exhaust gas temperature through tracking the desired exhaust gas

temperature. Spark timing is often delayed for the cold start phase since a delayed

ignition leads to higher exhaust gas temperature. However, delayed spark timing can

lead to high engine-out HC emission.
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Figure 2.7: Structure of the designed cold start controller.

A proper choice for tracking the three desired trajectories is a SMC which ensures

obtaining the desired AFRd, Texh,d, and ωe,d trajectories. The desired trajectories

in the reduced space are mixed functions of the reduced states. Thus, they cannot

be controlled just by one of the control inputs. In other words, SMC based on the

reduced model is a Multi-Input Multi-Output (MIMO) controller.

Before addressing the design of the MIMO SMC, it must be mentioned that, as can

be seen from model equations (Eq. (2.28)-(2.32)), idle speed has no direct input.

Therefore a fourth input, ma,d, is defined synthetically and represents the desired

mass of air in the intake manifold. Four sliding surfaces in physical space are used
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to track the engine states using these four inputs. We define Ψ as the vector of the

control inputs:

Ψ =



ma

ωe

ṁf

Texh


(2.44)

Comparing Eq. (2.44) with model states shows that the vector of control inputs

consists of all states except for Tcat. Therefore, we define a state transition matrix,

T̃p, which is part of T in which column associated with Tcat is taken away. The reduced

order SPA engine cold start model is used to design a MIMO SMC. The control law

of the MIMO SMC is derived based on an affine transformed model:

Ψ̇ = fp(x) + gu (2.45)

where, the coefficient matrix g is a non-singular square matrix and fp(x) is the part of

f(x, u) which does not depend on the inputs. fp(x) and g are found using Eq. (2.28)

to (2.32) from the physical model. The sliding surfaces to obtain the control law in

the reduced space (Zs) are defined as:

S = zs − (zs)d (2.46)

Ṡ = −λS (2.47)

żs = −λ(zs − (zs)d) + (żs)d (2.48)
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where, zs is calculated with respect to SPA nonlinear model order reduction technique,

Eq. (2.42), and (zs)d is the desired reduced order state and is calculated using the

desired AFRd, Texh,d, and ωe,d trajectories. Using Eq. (2.42), the relation between

the control law and the state equations in the affine description is:

−λ(zs − (zs)d) + (żs)d = T̃−1
p f(x) + T̃−1

p gu (2.49)

The final control law is given by:

u = g−1T̃p
[
−λ(zs − (zs)d) + (żs)d − T̃−1

p f(x)
]

(2.50)

2.3.4 HC Emission Control Results

The reduced SPA SMC is implemented in MATLAB SIMULINK and it is tested

against the nonlinear original SMC. The value of the sliding surface gradient is de-

termined such that the desired trajectories will be guaranteed (λ = 10). Desired

AFR and engine speed trajectories are taken from the test results using the ECU of

Toyota engine. The exhaust temperature of 650◦C is chosen for Texh using available

experimental data for the engine [12].

In order to illustrate the advantages of SPA-based technique in tracking desired tra-

jectories, results from reduced-order SPA SMC are compared with those from a full

order SMC (Figure 2.8). As it can be seen, all the three control trajectories are tracked
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with good accuracy; however, desired exhaust gas temperature is tracked faster by the

full order SMC compared to the reduced order SMC (Figure 2.8-b). This is because

the reduced SPA technique determined that the exhaust gas temperature dynamics

have less impact on the tailpipe HC emission compared to the HC emission dynamics

affected by AFR and idle speed controls in the beginning of the cold start phase.

Thus AFR and idle speed controls in the reduced-order SMC are faster than those

from the full order SMC (Figure 2.8-a and c). As will be shown later, this will lead

to better overall performance of the reduced-order SMC compared to the full order

SMC for reducing cumulative tailpipe HC emission.
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Figure 2.8: Comparison of tracking performance of the designed SMCs: (a)
air fuel ratio, (b) exhaust gas temperature, (c) engine speed.
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The main difference among the control inputs from full and reduced order SMCs is

spark timing at the very early stage of cold start phase [2]. SPA reduction method

puts more emphasis on the parts of system dynamics which have stronger effects on

model output. Subsequently, reduced-order SPA SMC tries to adjust control input

signals in such a way that tracks the important desired trajectories accurately and

reduces the tailpipe HC emission.

Since SPA puts less emphasis on spark timing control at the very early stage of

cold start phase, the reduced-order SMC gives its full authority to AFR and engine

speed controls instead. Thus spark timing is not delayed aggressively to meet desired

exhaust gas temperature at the very early stage of cold start phase. Delayed ignition

causes high engine-out HC emission during cold start. A better adjustment of control

inputs in SPA-based SMC leads to a significant reduction in the tailpipe HC emission

as will be discussed by the following figures.

Temperature and conversion efficiency of the catalytic converter are shown in Fig-

ure 2.9-a and b. Performances of the both controllers are very similar to each other

and no significant advantage is observed by comparing the SMCs. The catalytic con-

verter reaches the light-off in less than 30 seconds. As shown in Figure 2.9-a, the

catalytic converter reaches the efficiency of 90.7% in 40 seconds without using any

external source of heating.
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Figure 2.9: Comparison of cold start emission control the full order SMC
and the nonlinear reduced-order SPA SMC: (a) catalyst temperature, (b)
catalytic converter efficiency, (c) cumulative HC emission.

Finally, the total amount of tailpipe HC produced during the cold start phase (HC cu-

mulative) from reduced and full order SMCs are shown in Figure 2.9-c. The reduced-

order SMC outperforms the full order SMC and produces 12% less cumulative HC

compared to the full order SMC. The final cumulative HC after first 40 seconds in

the cold start phase is 1.75 grams which can meet the minimum required HC emis-

sion level in the current North America standard for Ultra Law Emission Vehicles

(ULEV) [2].
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2.3.4.1 Robustness to Implementation Imprecision

To evaluate the robustness of the cold start emissions controller, the controller is

tested against variations in processor data type sizes, sampling rates and quantiza-

tion levels. A fixed-point processor is used in this study as it is commonly used for

engine control to reduce ECU memory demand. The Toyota Technical Center in

North America provided baseline implementation levels for the controller software

implementation. Table 2.1 shows the baseline condition characterizing sample speci-

fications for the modeled controller.

Table 2.1
Baseline Condition Used in the Robustness Analysis.

Condition Value
ECU update rate 8 ms

Sampling rate 8 ms
Quantization level 12 bit ADC

Data type Fixed point - signed 32 bit
Processor type Embedded micro

A compromise between precision and computation load can be decided by evaluating

the amount of HCcum. The HCcum results from the model and controller are shown

in Figure 2.10-a as a function of data type in a fixed-point controller. It is found

that the fixed-point controller requires at least data with 32-bit precision to meet the

required HC emission limit. The 64-bit fixed point controller produced barely any

HCcum emissions performance benefit over the 32-bit controller; in this case the 32-

bit controller should be chosen as it provides the best trade-off between computation
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load and precision.

The cold start fixed-point controller is modified to simulate the sampling and quan-

tization imprecision, with each input to the controller sampled then quantized. The

results for different sampling rates and signal quantization levels are shown in Fig-

ure 2.10-b,c. A dramatic change is observed in HCcum when the sampling frequency

and quantization level are lower than 125Hz (8 ms) and 12bit, respectively. This can

be due to signal aliasing and distorted input data to the controller. High sampling

frequency and quantization levels, however, increase the controller’s computation load

and memory storage requirement. Similar to the fixed point case, performance differ-

ences between 4ms and 8ms sampling times are not very significant, nor are differences

in 16-bit versus 12-bit quantization levels. In each case, the best trade-off occurs in

the baseline case.

Results from Section 2.3.4.1 determine the minimum requirements for the controller

implementation. If the cold start controller targets on passing the predefined HC

emission limit, specifications of 32-bit fixed point controller with 12-bit quantization

level and 125Hz sampling frequency are recommended for the ECU implementation

process.
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Figure 2.10: Effect of data types, quantization levels and sampling rates
on the performance of the cold start controller.

2.4 Summary and Conclusion

In this chapter, an early model-based design and verification methodology was devel-

oped to identify controller software implementation errors early in the design stage,

to reduce the debugging efforts in a controller’s V&V cycle and also to improve a con-

troller’s robustness against implementation imprecision. In the first step, a technique
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of model order reduction was developed to simplify the model for controller design,

thus decreasing the controller’s calibration efforts and decreasing required V&V time.

In particular, a novel nonlinear technique based on balanced realization and singular

perturbation approximation was developed to reduce the order of a nonlinear model.

The second step included design of a reduced order model-based controller using the

reduced order plant model. The results of the reduced order SMC were compared

with those from a full order SMC. The simulation results showed that the designed re-

duced order SMC outperforms the full order SMC in terms of engine-out and tailpipe

HC emission with about 12% reduction in HC tailpipe emission. In the third step,

an early MIL platform was developed to test the controller robustness to three main

implementation imprecisions, including fixed-precision arithmetic, quantization level,

and sampling rate. The proposed methodology was demonstrated on a reduced order

MIMO SMC automotive controller which was designed to decrease the cold start HC

emissions in a passenger car. The methodology was evaluated on an experimentally

validated cold start model.
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Chapter 3

Easily Verifiable Continuous-Time
Controller Design1

3.1 Introduction

A model-based uncertainty-adaptive methodology is presented in this chapter to en-

able easily verifiable controller design based on the formulation of a continuous-time

sliding mode controller (SMC). The proposed adaptive SMC improves the controller

robustness against sampling and quantization imprecisions. An effective approach to

overcome imprecisions during controller implementation is early model-based design

and verification of the controller, in which, the controller structure is investigated and

modified to improve the robustness against arising implementation imprecisions [1].

Three early verification approaches have been proposed in the literature, each of

which can significantly improve the controller robustness against implementation im-

precisions. The first approach is to investigate the controller structure and find the
1This chapter has been published in the proceeding of 2016 SAE World Congress [3]
(doi:10.4271/2016-01-0629). Reprinted with permission by SAE © 2017 SAE International as shown
in Appendix D. Further distribution of this material is not permitted without prior permission from
SAE.
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sources of numerical noise propagation and remove them [1]. The second approach is

to detect the imprecisions during the early stages of the controller design, predicting

the maximum uncertainty bounds on measured signals due to ADC and re-design

the controller to implement the propagated uncertainty bounds on the state equa-

tions into the controller architecture to improve the robustness [23]. Finally, the

third approach is to develop discrete control theory to transfer the conventional con-

troller from continuous time to discrete space and modify the control commands by

inclusion of uncertainty bounds on control signals [24]. The second approach will be

investigated in this chapter, while the third approach will be studied in Chapter 4.

Incorporation of the implementation imprecisions knowledge into a SMC design

leads to improvement in the robustness characteristics of the implemented con-

troller [23, 24]. In this approach, the controller is re-designed to incorporate the

maximum propagated uncertainty (sampling and quantization) bounds on state equa-

tions [23] and control signals [24]. Although the results in [23] and [24] showed that

the modified controllers are able to improve the controller performance under imple-

mentation imprecisions, incorporation of the maximum uncertainty bounds, based on

worst case scenarios, makes the controller too conservative and leads to large control

actions. Besides, calculating overall uncertainty bounds requires an ideal symbolic

model of the controller, which means it cannot provide an online framework to cal-

culate uncertainty bounds, since it is too time consuming.
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The main contribution of this chapter is to develop a generic theoretical framework to

design easily verifiable controller, based on SMC formulation, that is robust to ADC

implementation imprecisions, in which, not only the controller is updated online, but

also the conservative controller design will be avoided. SMC is selected as the baseline

control framework in this study, because it is one of the few controller designs that can

treat systems with very nonlinear dynamics with a great deal of uncertainty [1, 57].

The proposed SMC in this chapter has a variable structure in which the control

actions are updated according to an embedded adaptation algorithm to reduce the

tracking errors under implementation imprecisions.

3.2 Uncertainty Adaptive SMC Robust to Imple-
mentation Imprecisions

Any nonlinear dynamic system can be expressed in the following general form:

ẋ = f(x, u) (3.1)

where x ⊂ X ∈ Rn, and u ⊂ U ∈ Rh are the state, and the input vectors, respectively.

It can be assumed that each state of the system in Eq. (3.1) can be controlled by one

physical or synthetic control input (n = h). In practice, since the measured signals

from a plant are sampled and quantized and also control commands are updated with

a rate equal to the sampling rate, implementation imprecisions should be included

in the state equations. If the uncertainties due to implementation are assumed to be
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bounded and also considered as the dominant source of uncertainties, the nonlinear

system under implementation imprecisions can be re-written as follows [87]:

ẋ = f(x, u) + ∆f(x, u), ||∆f(x, u)|| ≤ β (3.2)

where ∆f(x, u) represents the uncertainty term and is caused by implementation

imprecisions. The uncertainty is assumed to be bounded (||∆f(x, u)|| ≤ β). The

sliding surface (s) and reaching law are defined as follows to converge the states of

the system towards the sliding surface (x → xd ⇒ s → 0), and also compensate for

the introduced implementation imprecisions [57]:

s = x− xd ⇒ ṡ = ẋ− ẋd = −λs−K × sat
(
s

φ

)
(3.3)

where φ is a tunable design parameter that represents the boundary layer thickness

of the sliding surface and λ is a gradient of the sliding function. K is assumed to be

able to compensate for implementation imprecisions. K can be either a fixed gain or

a variable parameter calculated using an adaptation algorithm, as will be discussed

in the following.

The objective of this study is to develop an online technique to overcome implemen-

tation imprecisions and avoid conservative controller design which is caused if a fixed

gain based on maximum uncertainty bounds [23] is applied. Here, an adaptive ap-

proach is proposed to calculate K for minimizing the tracking error to account for

implementation uncertainties.
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K in Eq. (3.3) is calculated by solving the following adaptation law:

K̇ = −γ|s| × sat
(
s

φ

)
(3.4)

where γ is a positive constant adaptation gain. Lyapunov’s direct method [57] is

employed to guarantee the SMC stability with the adaptation law in Eq. (3.4). It can

be observed from Eq. (3.4) that the solution of this first order differential equation is

always bounded, if the sliding surface (s) converges to zero. Since the sliding surface

convergence and adaptation mechanism occur simultaneously, the Lyapanuv function

should reflect the zero-convergence of both s and K. To this end, the following

candidate Lyapunov function (V ) is chosen:

V = 1
2s

2 + 1
2K

2 (3.5)

where the following conditions for the Lyapunov function should be met:
V (s, t) > 0 if s 6= 0

V (0, t) = 0 + 1
2K

2 = 0 if s = 0

(3.6)

The first condition is always satisfied, while the second condition dictates that

K(0, t) = 0. This condition is used to confirm that V in Eq. (3.5) is always positive

definite, if the adaptation law in Eq. (3.4) is solved with respect to K(0, t) = 0 as

the boundary layer condition. Derivative of V is calculated as follows using Eq. (3.3)
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and (3.4):

V̇ = sṡ+KK̇ (3.7)

= s{−λs−K × sat( s
φ

)}+KK̇

= −{λs2 +K(s× sat( s
φ

))}+KK̇
K̇ = −γ|s| × sat( s

φ
)

−−−−−−−−−−−→

= −
{
λs2 +K

(
1 + γ

|s|
s

)
s× sat( s

φ
)
}

V̇ depends on the sign of the sliding function, therefore it can be divided into the

following equation:

V̇ =


−λs2 −K (1 + γ) s× sat( s

φ
) if s > 0

−λs2 −K (1− γ) s× sat( s
φ
) if s < 0

(3.8)

where s× sat( s
φ
) > 0 and K > 0. Since γ is assumed to be a positive constant, V̇ is

negative definite if, and only if 1 > γ > 0. In other words:

if 1 > γ > 0−−−−−−→


V̇ (s 6= 0, t) < 0

V̇ (s = 0, t) = 0

(3.9)

Since the Lyapunov function V is positive definite and its derivative V̇ is negative

definite, the controller is asymptotically stable [57]. Figure 3.1 shows the schematic

of the closed-loop system with the proposed adaptive SMC. Implementation impre-

cisions are introduced by an ADC unit which does the sampling and quantization

on measured signals. The adaptation mechanism in Figure 3.1 updates the gain K

at each sampling period online according to the measured (X) and desired values
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(Xd) for each state of the plant. In the next section, application of the uncertainty

adaptive SMC is shown for a highly nonlinear engine control problem.

Figure 3.1: Proposed adaptive SISO SMC to account for implementation
imprecisions.

3.3 Case Study: Cold Start Emission Control

The SI engine cold start emission model in Chapter 2 with Eq. (2.28) to (2.32) is

used in this section to apply the proposed adaptive SMC under ADC imprecisions

of sampling time=10 ms and quantization level=10 bit. The goal is to keep exhaust

temperature, engine speed, and air to fuel ratio (AFR) at desired values. For better

controller evaluation, desired trajectories which should be tracked by the implemented

SMC are defined in their worst and non-smooth shapes.
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3.3.1 Baseline SISO Sliding Controller Design & Impact of
Implementation Imprecisions

The engine cold start model with Eq. (2.28)-(2.32) is used to study the impacts of

implementation imprecisions (sampling time=10 ms and quantization level=10 bit)

on the baseline SMC performance. The reason for studying the controller performance

under 10 ms of sampling time and quantization level of 10 bit is that these values were

recommended as the “minimally implemented” controller in [1, 12]. The main control

target, similar to Chapter 2, is reducing HCcum, which can be achieved by keeping

exhaust temperature, engine speed, and AFR at desired values. For better controller

evaluation, desired trajectories which should be tracked by the implemented SMC are

first defined in their worst and non-smooth shapes. After validation of the proposed

adaptive controller with non-smooth trajectories, the final SMC will be tested against

the desired trajectories of a real ECU to demonstrate the benefit of using the new

controller in reducing HCcum.

Higher exhaust gas temperature is required for fast catalytic converter light-off. Ex-

haust temperature is controlled by spark timing and higher exhaust temperature

is achieved by delayed spark timing. However, delayed spark timing leads to high

engine-out HC emission. Thus, there is a trade-off between fast catalytic converter

light-off and low engine-out HC emission. The first sliding surface of the controller is

defined to be the error in tracking the desired exhaust temperature trajectory. Since

AFR is a function of air and fuel mass flow rates and air mass flow controls the
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engine speed, AFR cannot be a good choice as a sliding surface. Thus, the second

sliding surface is defined to be the error in tracking the desired fuel mass flow which

is estimated with respect to the desired AFR trajectory.

Engine speed is considered as the third sliding surface. The rate of engine speed

impacts the exhaust gas flow rate for heating the catalytic converter. There is no

explicit control input for tracking the desired engine speed, therefore, desired air mass

is considered as the synthetic control input for the engine speed tracking problem.

Introducing the desired air mass requires defining another sliding surface to track the

desired air mass that is calculated from desired AFR trajectory. Overall, four sliding

surfaces are defined as follows:

s1 = Texh − Texh,d, s2 = ṁf − ṁf,d (3.10)

s3 = ωe − ωe,d, s4 = ma −ma,d

Texh, AFR (ṁf ), ma, and ωe can be measured on an engine; thus the ADC affects

these four measured states and corresponding sliding surfaces. A baseline SISO SMC

with four control inputs can be designed to drive the states of the system (x) towards

the desired values (xd) using the following sliding surface and reaching law [57]:

s = x− xd ⇒ ṡ = ẋ− ẋd = −λs (3.11)
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Control inputs for the baseline SISO SMC are calculated according to Eq. (2.28)-

(2.32), Eq. (3.10), and (3.11):

∆ = 1
7.5

(
τe
AFI

[
Texh
τe

+ Ṫexh,d − λ1s1

]
− 600

)
(3.12)

ṁfc = ṁf + τf

[
d

dt
ṁf,d − λ2s2

]
(3.13)

ṁai = −λ3s3 + ṁao + ṁa,d (3.14)

ma,d = 1
30000 [J(−λ4s4 + ωe,d) + 0.4ωe + 100] (3.15)

where, λ1,3,4 = 10 and λ2 = 100. Results of desired trajectories tracking from the

baseline SISO SMC under ADC imprecisions are compared in Figure 3.2 with those

from an ideal SMC. The ideal SMC has the same structure of the baseline SMC, but

no ADC imprecisions have been introduced on the controller input/output (I/O).

As it can be seen, the tracking performance of the controller degrades upon the

introduction of ADC imprecisions on feedback signals from the plant and also control

inputs.

AFR tracking in Figure 3.2-a is affected the most by ADC imprecisions, to the point

that the tracking behavior of AFR controller is not acceptable (AFR tracking error

increases over 10 times compared to the ideal controller). Engine speed controller

is not able to track the desired profile under implementation impressions when a

sharp change occurs in the desired engine speed. When the desired Texh changes

rapidly, exhaust temperature controller fails to respond fast under ADC imprecisions.
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Figure 3.2: Effects of ADC imprecisions (sampling time =
10 ms,ECU update period = 10 ms, and quantization level = 10 bit)
on baseline SMC for tracking (a) AFR, (b) exhaust gas temperature (Texh),
and (c) engine speed (ωe).

Overall, if the cold start controller aims to meet the target HC emission limit, the

implementation of a baseline SMC in a real ECU, with ADC imprecisions, cannot

guarantee the desirable performance of the engine. The next section investigates the

performance of the proposed uncertainty adaptive SMC to improve the robustness of

the baseline controller against implementation imprecisions.
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3.3.2 Uncertainty-Adaptive SISO Sliding Controller Design

The baseline SMC in the previous section is modified by incorporating the adaptation

mechanisms for each of the sliding surfaces in Eq. (3.10). Control inputs for the

adaptive SISO SMC are calculated according to Eq. (3.3), (2.28)-(2.32), and (3.10):

∆ = 1
7.5

(
τe
AFI

[
Texh
τe

+ Ṫexh,d − λ1s1

−K1sat

(
s1

φ1

)]
− 600

) (3.16)

ṁfc = ṁf + τf

[
d

dt
ṁf,d − λ2s2 −K2sat

(
s2

φ2

)]
(3.17)

ṁai = −λ3s3 −K3sat

(
s3

φ3

)
+ ṁao + ṁa,d (3.18)

ma,d = 1
30000

[
J(−λ4s4 −K4sat

(
s4

φ4

)
+ ωe,d) + 0.4ωe + 100

]
(3.19)

where K1,2,3,4 are updated according to Eq. (3.4) for each sliding surface. Values

of K1,2,3,4 are plotted in Figure 3.3, where the maximum uncertainty bounds on

state equations of the engine model are adopted from [23]. The tuning parame-

ters (λ, φ, and γ) of the SMCs are reported in the Appendix A. Table 3.1 shows the

performance of three adaptive SMCs under ADC implementation imprecisions for

tracking the same desired trajectories shown in Figure 3.2. The calculated gains of

the adaptive SMC not only lie between upper and lower uncertainty bounds for all

state equations, but also the values are calculated online at each time step, so they

are adaptive to the engine varying conditions.
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Table 3.1
Mean value of the tracking errors (

∫
|e|dt
∆t ) from the baseline and adaptive

SISO SMCs.

Controller Baseline SMC Adaptive SMC
Reference SISO

AFR [−] 0.146 0.143
(-2.05% ↓)†

Texh [o C] 10 5.5
(-45.0% ↓)

Engine 8.5 7.1
Speed, ωe [RPM ] (-16.5% ↓)

Fuel 28.010 28.005
Consumption [g] (-0.02% ↓)

† values inside the parentheses show the improvements by reduction in tracking errors using the
adaptive SMC compared to the baseline SMC.
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Ṫ
ex
h
[o
C
/s
]

(b)

10 20 30 40
−8
−6
−4
−2

0
2
4

x 10
−4

K
m̈

f
[k
g/
s2
]

(a)

10 20 30 40
−4

−2

0

2

4
x 10

−4

Time [s]

K
ṁ
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Figure 3.3: Verification results of the uncertainty gains from the SISO
adaptive SMC for (a) fuel flow, (b) exhaust temperature, (c) intake air flow,
and (d) engine speed state equations.

57



The exhaust temperature tracking is improved by 45% using the adaptive SMC com-

pared to the baseline SMC (Table 3.1). The same pattern is found for the engine

speed tracking, showing that the performance of the adaptive SMC (16.5% improve-

ment) is better than the baseline SMC. Finally, there is also 2% improvement in the

desired AFR tracking using the adaptive SMC. In addition, Table 3.1 shows that

despite the better performance from the adaptive SMC, there is no significant change

in the total fuel consumption during the first 40 sec of the engine operation compared

to the baseline SMC.

Unlike exhaust gas temperature which is dominantly affected by spark timing signif-

icantly, the relationships among other three state equations (air mass, fuel flow rate,

and engine speed) are more complex that make it hard to decouple sliding surfaces

from each other, and tune/control each SISO SMC independently. AFR and engine

speed are both functions of the air mass. Putting more efforts to track one of them

more precisely leads to failure in tracking the other desired trajectory.

Although the SISO SMC design is simple and straightforward, because of the inter-

action among the sliding surfaces due to nonlinear engine dynamics, the optimum

trade-off for tuning different SMCs is hard to achieve. Figure 3.4 explains that when

engine speed changes rapidly, due to the strong correlation among sliding surfaces,

errors in AFR tracking increase considerably. In the next section, a MIMO adaptive
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SMC is formulated to improve the controller robustness against implementation im-

precisions using the proposed adaptive framework. The MIMO controller prioritizes

the states of the engine model based on their energy and put more efforts to track

trajectories with higher level of energy. In addition, the MIMO controller can be

tuned using fewer parameters, compared to the SISO controller.
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Figure 3.4: Impact of AFR and engine speed control on each other from
SISO SMC.

3.3.3 MIMO Uncertainty-Adaptive SMC Design

Tuning of the cold start SISO controller in the previous section is a cumbersome pro-

cess due to the involved coupling in the plant dynamics. One effective approach to

reduce the destructive interaction among sliding surfaces on the adaptive controller
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performance is to design the controller in a MIMO structure using a balanced realiza-

tion form of the engine cold start model [2]. The state-space after balanced realization

is a non-physical space (Z) in which the controllability and observability gramians

are diagonal and equal to the Hankel singular value (HSV) matrix [64].

The transformation from the physical state space (X) into the non-physical state

space (Z) is conducted using the nonlinear balanced realization [1, 55], which was

discussed in details in Chapter 2. When the SMC is designed with respect to states

in Z space, the problem of finding optimum trade-off among control inputs will be

addressed inherently. This is because the states in Z space are prioritized based on

their energy levels. The designed SMC in Z space, as will be shown later, needs

fewer tuning parameters, while puts an optimized weight among the three control

actuations, since it evaluates the importance of affecting dynamics through nonlinear

balanced realization.

The balanced state-space realization is calculated using the x = T×z transformation.

T is defined as the coordinate transition matrix which transfers the space of the phys-

ical model (X) to the non-physical space (Z) where the system is balanced. Similar

to Chapter 2, we define a state transition matrix, Tp, which is part of T in which the

column associated with Tcat is taken away. The control law of the MIMO SMC is de-

rived based on an affine transformed model and recalling Eq. (2.44) and (2.45). The
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vector of sliding surfaces (S) to obtain the control law in Z space are defined as:

S = z − zd (3.20)

Ṡ = −λS − κ×Υ
(
S

φ

)
(3.21)

ż = −λ(z − zd) + żd − κ×Υ
(
S

φ

)
(3.22)

where, z = Tp
−1Ψ , and zd is the desired state vector in Z space. Υ(S

φ
) and κ are as

follows:

Υ
(
S

φ

)
=
[
sat

(
s1

φ

)
, ..., sat

(
s4

φ

)]>
(3.23)

κ = diag[K1, K2, K3, K4] (3.24)

where K1,..,4 are updated according to Eq. (3.4). Sliding surface boundary layer (φ)

and adaptation gain (γ) are the same for all sliding surfaces, since all physical states

are normalized prior to be transferred to Z space. The relation between the control

law and the state equations in the affine description is:

−λ(z − zd) + żd − κ×Υ
(
S

φ

)
= Tp

−1f(Ψ) + Tp
−1gu (3.25)

The final control law is given by:

u = Tpg
−1
[
−λ(z − zd) + żd − κ×Υ

(
S

φ

)
− Tp−1f(Ψ)

]
(3.26)

Figure 3.5 shows the structure of the proposed MIMO adaptive SMC for the SI engine

during cold start phase under ADC imprecisions.
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Figure 3.5: Schematic of the adaptive MIMO SMC under implementa-
tion imprecisions. The MIMO SMC incorporates a plant model derived by
applying nonlinear balanced realization.

3.3.4 Real-Time Controller Verification

A processor-in-the-loop (PIL) platform is designed to verify the performance of the

designed controllers for real-time operation. This PIL setup will be used in the next

chapters for real-time controller verification purpose. Figure 3.6 shows the designed

PIL platform in which, dSPACE MicroAutoboxII (MABX) is employed as a con-

troller and National Instrument (NI) PXI processor (NI PXIe-8135) is employed to

represent the engine plant in virtual (i.e., model) environment. Engine performance

and tracking of desired trajectories are monitored real-time using the MABX and

the PXI under embedded ADC imprecisions on the plant feedback signals from NI

PXI processor. MABX is a rapid control prototype (RCP) system and operates like

a real ECU. dSPACE Control Desk® software on the desktop computer is used for
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Figure 3.6: Schematic of the processor-in-the-loop (PIL) setup for real-time
controller verification.

controlling the hardware real-time. NI PXI provides a flexible platform for measure-

ment and control. Real-time test configuration for NI PXI is conducted using NI

VeriStand® software on the interface desktop computer. Access to NI PXI possessor

input/output (I/O) and interfaces (NI PXI-8135/2) is granted by VeriStand.

The proposed adaptive MIMO SMC and engine model are divided into two

MATLAB/Simulink® files (.mdl). The MIMO adaptive SMC .mdl file is first up-

dated with dSPACE RTI block sets on I/Os. Then, the file is converted to C-code

using DS1401 compiler. The generated C-code of the controller (.sdf) is implemented

into the MABX using Control Desk. Similarly, the engine model is compiled using
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NI VeriStand compiler and generated C-code file (.dll) is built into the PXI. Sam-

pler and quantizer blocks are embedded on engine model I/Os to virtually emulate

the ADC effects on the controller performance. The implemented adaptive MIMO

SMC in the MABX communicates with the embedded engine model inside the PXI

processor through NI PXI-8513/2 interface.

Table 3.2 shows the performance of the applied MIMO adaptive SMC on the engine

model under 10 ms of sampling and 10 bit of quantization level. The comparison

between the tracking errors in Table 3.2 illustrates the superb performance of the

MIMO controller in tracking the desired trajectories. The MIMO adaptive SMC

outperforms the SISO adaptive SMC in tracking desired AFR and engine speed under

sampling and quantization imprecisions; however, the exhaust temperature tracking

error increases using the MIMO adaptive controller compared to SISO adaptive SMC.

The reason of weaker performance of the MIMO SMC in tracking the desired exhaust

temperature is that the magnitude of the HSV for Texh in Z space is too small in

comparison with those of AFR and engine speed. Thus, Texh is considered as the less

important state, compared to other states. The MIMO SMC puts more efforts on

tracking AFR and engine speed, which are recognized as more important states to

track [2]. Overall, the adaptive MIMO SMC has better performance in controlling

the engine than those of the SISO adaptive and baseline SMCs.
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Table 3.2
Comparison between the baseline and MIMO adaptive SMCs in terms of

mean error (
∫
|e|dt
∆t ) in tracking the desired engine trajectories.

Controller Adaptive SMC
MIMO

AFR [−] 0.113
(-22.60% ↓)†

Texh [o C] 6.9
(-31.0% ↓)

Engine Speed, ωe [RPM ] 5
(-41.2% ↓)

Fuel 27.964
Consumption [g] (-0.16% ↓)

† The values inside the parentheses show the comparison between the MIMO adaptive SMC and
the baseline SISO SMC tabulated in Table 3.1.

Figure 3.7 shows the MIMO SMC performance in tracking desired AFR, exhaust

temperature, and engine speed trajectories. When it turns to the AFR tracking, the

MIMO adaptive controller illustrates a significantly better tracking behavior than the

SISO adaptive SMC. This shows that the MIMO adaptive controller is able to track

both desired air mass and fuel flow rates trajectories effectively and simultaneously

with minimum errors (Figure 3.7-a). AFR and ωe have less effects on Texh track-

ing when the MIMO adaptive controller is used compared to the SISO controller.

Thus, the spikes in Texh profile from the SISO SMC are removed in the MIMO con-

troller (Figure 3.7-b). Unlike SISO SMC for engine speed regulation, the tracking

performance is improved significantly using the MIMO SMC, whereas no overshoot

is observed in the results from the MIMO controller (41.2% improvement in tracking

as shown in Figure 3.7-c). Moreover, Table 3.2 shows that the better performance
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of the MIMO adaptive SMC is achieved at no extra fuel cost compared to the SISO

baseline and adaptive SMCs.
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Figure 3.7: Real-time verification of the designed adaptive MIMO con-
troller for tracking (a) AFR, (b) exhaust temperature, and (c) engine speed
under ADC imprecisions (sampling time = 10 ms,ECU update period =
10 ms, and quantization level = 10 bit).

The MIMO SMC is also verified for a set of desired trajectories that aim to reduce

HC tailpipe emission during the cold start phase of the SI engine. Desired AFR

and engine speed trajectories are taken from the test results using the ECU of the

Toyota engine. The exhaust temperature of 650 oC is chosen for the desired Texh

using available experimental data for the engine [12]. Figure 3.8 shows the results
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Figure 3.8: Real-time results of tracking the desired trajectories from ideal,
baseline, and adaptive MIMO SMCs to control HC emission. (a) AFR, (b)
exhaust gas temperature, and (c) engine speed. 10 ms sampling time and
10 bit quantization level. The data from the ideal SMC shows the baseline
SMC performance with no ADC imprecisions.

of real-time testing the SMCs under ADC implementation imprecisions. Since the

desired trajectories are smooth, the effects of ADC imprecisions on the controllers

performance is mostly evident from AFR tracking results, while these imprecisions

have less effects on the engine speed and Texh tracking results. The baseline SMC will

degrade from the ideal SMC results once sampling time increases and quantization

level drops.

Figure 3.8-a shows that using the proposed adaptation approach, the MIMO SMC is

able to reduce AFR tracking error under ADC imprecisions. Given the large effect of

AFR tracking on the engine-out HC emission, it can be observed from Figure 3.9 that
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the total amount of tailpipe HC produced during the cold start phase is significantlly

reduced by using the adaptive MIMO SMC, compared to the baseline SMC.

As can be seen from Figure 3.9, the cumulative HC emission from the ideal SMC

(i.e., the baseline SMC under no ADC imprecisions) is 2.43 g, which can meet the

minimum required HC emission level. However, once the same ideal controller is

implemented on the real ECU under ADC imprecisions, the controller can no longer

meet the target emission limit, as seen in the baseline SMC results in Figure 3.9

(HCcum = 8.24 g). By incorporating the adaptation mechanism into the controller

design and also converting the SISO structure to a MIMO structure based on nonlinear

balanced realization, the new adaptive MIMO SMC is able to meet the target limit

for HC emission by compensating the introduced ADC imprecisions and removing

their adverse effects on the controller overall performance.

Overall, by utilizing the early model-based controller software verification and vali-

dation (Chapter 2), and easily verifiable controller design (this chapter) techniques,

the actual iterations number in a traditional V&V cycle can be decreased, which

consequently helps to reduce the time and cost of the V&V process. The proposed

uncertainty-adaptive model-based controller design in this chapter aims to make com-

pletion of the V&V process easier with less iterations. This is done through a robust

controller design framework, which guarantees the satisfactory controller performance

during the worst case scenarios, under different sampling and quantization levels. In
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the future chapters (4, 5, and 6), the uncertainty-adaptive easily verifiable controller

design will be developed and investigated in discrete time, under ADC and modeling

uncertainties.

3.4 Summary and Conclusion

An uncertainty-adaptive SMC design methodology was developed to improve the con-

ventional SMC performance under two major implementation imprecisions including

sampling and quantization. The Lyapunov’s direct method was employed to prove

the asymptotic stability of the proposed SMC which is updated at each time step

by solving an adaptation law online. The uncertainty-adaptive SMC tries to adapt
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the controller by minimizing the tracking errors and overcome the ADC imprecisions.

The proposed SISO uncertainty-adaptive SMC framework was examined on the en-

gine control problem in SISO and MIMO structures. The goal was to track desired

trajectories under implementation imprecisions. The uncertainty-adaptive SISO SMC

showed better performance in exhaust temperature control by up to 50% reduction in

the tracking error. However, due to the complexity of the engine plant, the developed

adaptive SISO SMC could only provide small improvement (up to 16% and 2%) in

tracking the engine speed and AFR. On the other side, the MIMO SMC, which is

designed based on a nonlinear balanced realization technique, is able to improve the

tracking errors for engine speed and AFR up to 41% and 22%, respectively. The real-

time testing of the MIMO SMC on the PIL platform showed that the new adaptive

controller is able to meet the control targets under ADC imprecisions.
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Chapter 4

Discrete SMC with Robustness to
Implementation Imprecisions1

4.1 Introduction

It was shown in the literature [24, 88, 89] that a discrete sliding mode controller

(DSMC), which explicitly includes the sampling time, shows better performance un-

der sampling imprecisions compared to a continuous-time SMC that is digitally im-

plemented. Quasi and baseline discrete sliding mode controllers were introduced and

studied under implementation imprecisions in [88] and [89], respectively. The ro-

bustness of the DSMC design was enhanced by incorporating the maximum ADC

uncertainty bounds on control inputs in [24]. An offline methodology for modeling

and propagating the sampling and quantization uncertainties is proposed in [24]. In

1A major portion of the materials in this chapter has been published in the proceeding of 2016
American Control Conference [4] (doi:10.1109/ACC.2016.7526699) with the permission from IEEE
as shown in Appendix D.
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this work, the overall uncertainty bounds on control signals are calculated using a

linear noise propagation method. The predicted maximum uncertainty bounds are

then incorporated into the formulation of the DSMC. The results showed that the

proposed DSMC with maximum ADC uncertainty bounds can lead to better track-

ing performance in comparison with the baseline SMC/DSMC. As it was explained in

Chapter 3, the incorporation of maximum ADC uncertainty bounds requires an ideal

symbolic model of the controller which prevents the online uncertainty bounds cal-

culation. Moreover, the results in [23] and [24] showed that the calculated maximum

ADC uncertainty bounds, which are based on a worst case scenario, lead to conser-

vative controller design and large control actions, which are not desired. To this end,

in this chapter, an online technique is presented to predict and propagate sampling

and quantization imprecisions on control signals. The new DSMC with predicted

implementation imprecisions not only avoids the conservative controller design by us-

ing the new ADC uncertainty prediction technique, but also improves the robustness

characteristics significantly compared to a baseline DSMC with no knowledge about

the implementation uncertainties.

The contribution of this chapter is twofold. First, an online technique is developed

and verified to predict and propagate uncertainties on measured signals by ADC in

real-time. Second, a new discrete sliding mode controller (DSMC) design is con-

structed that incorporates the predicted uncertainties on measured signals. A generic
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algorithm is developed for both linear and nonlinear discrete systems for online esti-

mation of the propagated uncertainties on control signals. The designed DSMCs are

verified on a real ECU.

4.2 DSMC with Predicted Uncertainties

4.2.1 Uncertainty Prediction on Measured Signal Due to
ADC

Figure 4.1 illustrates the imprecisions caused by sampling on a measured analog

signal. As shown in Figure 4.1, actual uncertainty (µxs(i)) on a measured signal at

each time step (i) can be calculated with respect to the signal slope (Θ) as follows:

µxs(i) = Θ(i)× T (4.1)

where T is sampling time and Θ(i) is calculated with respect to the value of the

sampled signal at the current and next time steps:

Θ(i) = xs(i+ 1)− xs(i)
T

(4.2)

In Eq. (4.2), the value of xs(i + 1) is unknown at ith time step, thus its value is

predicted (x̂s(i+ 1)) to obtain the uncertainty due to sampling. Here, the slope from

the previous time instant (i− 1) is calculated and it is assumed that the slope at ith

time step (Θ(i)) is equal to the previous time instant (Θ(i− 1)):

Θ(i− 1) = xs(i)− xs(i− 1)
T

Θ(i) = Θ(i− 1)−−−−−−−−→ x̂s(i+ 1) = T ×Θ(i) + xs(i) (4.3)
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Figure 4.1: Uncertainty on a measured signal due to sampling.

which leads to:

x̂s(i+ 1) = 2xs(i)− xs(i− 1) (4.4)

Moreover, the uncertainty introduced by quantization
(
µxq(i)

)
can be calculated at

each time step by considering round-off error [1]:

µxq(i) = 1
2
FSR

2n (4.5)

Where FSR is the full scale range of the measured signal and n is the ADC’s number

of bits and represents the ADC resolution. Overall, the uncertainty on measured

signals because of sampling and quantization at each time step can be expressed as

follows using Eq. (4.1), (4.4), and (4.5):

µx(i) = µ̂xs(i) + µxq(i) = xs(i)− xs(i− 1) + 1
2
FSR

2n (4.6)

where µ̂xs is the predicted uncertainty due to sampling with respect to the value of

the predicted sampled signal at i+ 1th time step (x̂i+1). The accuracy of Eq. (4.6) is
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sensitive to the magnitude of the changes in the signal’s slope. Moreover, the accuracy

of the uncertainty estimation depends on the ADC quantization level. Lower ADC

resolution leads to poor uncertainty estimation. During the time interval between

two time steps, output of a controller is constant, therefore the predicted value for

ADC imprecisions at each time step can be assumed to be constant over the next

time interval. In other words, Eq. (4.6) determines ADC uncertainty prediction at

each time step till the next time step.

4.2.2 DSMC Design and Uncertainty Propagation

Sliding mode controller design converts a complicated dynamical system into a first-

order system through a sliding surface transformation. A discrete sliding mode control

design approach is adapted from [89] in this study. Sliding surface vector (S) is defined

as the difference between desired (Xd) and measured signal (X) vectors at each time

step (i) as follows: 
S(i) = X(i)−Xd(i)

S(i+ 1) = X(i+ 1)−Xd(i+ 1)

(4.7)

The control input U(i) is obtained according to the following sliding surface reaching

law:

|S(i+ 1)| ≤ ρ|S(i)| (4.8)
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where ρ is the diagonal matrix of tunable DSMC parameters. In the following, the

DSMC is first formulated for linear systems to estimate the propagated uncertainties

on control signals analytically. Next, the DSMC will be extended to a general class of

affine nonlinear systems, and the uncertainty propagation for nonlinear systems will

be discussed.

Linear Systems: Any linear system with the following state equations can be dis-

cretized using a first order Euler approach [89]:

Ẋ = AX(t) +BU(t)
ẋ = x(i+1)−x(i)

T−−−−−−−−−→ X(i+ 1) = (TA+ I)X(i) + (TB)U(i) (4.9)

where x ⊂ X ∈ Rr, u ⊂ U ∈ Rh, and I ∈ Rr×r are the state vector, the control input

vector, and identity matrix, respectively. Predicted uncertainty on measured signals

from Eq. (4.6) is assumed to be the difference between measured signals before and

after ADC (µx = x̄ − x), where x̄ is the actual measured signal before ADC. The

diagonal matrix of tunable DSMC parameters for the sliding surfaces’ convergence is

ρ = diag[ρ1, ..., ρr], where 0 < ρ1,...,r < 1 constraint should be met to satisfy stability

conditions of the controller [89]. In the worst case, where |S(i+1)| = ρ|S(i)|, Eq. (4.8)

can be expanded with respect to Eq. (4.9):

(TA+ I)X(i) + (TB)U(i)−Xd(i+ 1) = ρ(X(i)−Xd(i)) (4.10)

Assuming a common class of single-input single-output (SISO) linear systems in which

r = h, and B is diagonal, Eq. (4.10) can be solved for extracting control input vector

U as follows:
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U(i) = B−1
( 1
T

[(ρ− I)X(i)− ρXd(i) +Xd(i+ 1)]− AX(i)
)

(4.11)

Eq. (4.11) calculates the control input vector at each time step for a set of SISO

DSMCs, in which for each state variable, a sliding surface is defined and it is assumed

that a unique control input, either physical or synthetic, exists for every single sliding

surface that drives the corresponding state to the desired value in a finite time. For

the ideal controller where there is no ADC imprecisions on the measured signals (X),

the baseline DSMC can be established as follows:

Ū(i) = B−1
( 1
T

[(ρ− I)X̄(i)− ρXd(i) +Xd(i+ 1)]− AX̄(i)
)

(4.12)

where X̄ and Ū are the state and control input vectors of an ideal DSMC which aims

to control the same linear system in Eq. (4.9) with respect to the same desired trajec-

tories (Xd) in Eq. (4.7). Since the only discrepancy between ideal DSMC (Eq. (4.12))

and DSMC under test (Eq. (4.11)) is the introduced imprecisions from ADC, the

difference in the control input vectors from Eq. (4.11) and (4.12) is assumed to be

the propagated uncertainty vector on control input (µ
U

) due to ADC imprecisions:

µ
U

= diag[ū1 − u1, ..., ūr − ur] (4.13)

Since it was defined that X̄ = µ
X

+X, and µ
X

= {µx1 , µx2 , ..., µxr} could be predicted

at each time step according to Eq. (4.6), the following relationship can be utilized to

predict propagated ADC uncertainties on control input of the DSMC under test by

expanding Eq. (4.13):
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µ
U

(i) = B−1
( 1
T

[(ρ− I)µ
X

(i)]− Aµ
X

(i)
)

(4.14)

Nonlinear Systems: Similar to linear systems, the first order Euler approximation is

used to discretize the following general class of affine nonlinear systems:

Ẋ = f(X(t)) + gU(t)
ẋ = x(i+1)−x(i)

T−−−−−−−−−→ X(i+ 1) = X(i) + fT + gU(i)T (4.15)

where X, f , U ∈ Rr, and I, g ∈ Rr×r. The coefficient matrix g is a non-singular

square matrix and f represents part of system dynamics which does not depend on

the inputs. The baseline DSMC can be formulated for this general class of nonlinear

systems with the sliding surface function and reaching law described in Eq. (4.7)

and (4.8) as follows:
U(i) = g−1

T
[(ρ− I)X(i)− ρXd(i)− fT +Xd(i+ 1)] (4.16)

where ρ ∈ Rr×r. Unlike linear systems in which the predicted uncertainties on mea-

sured signals can be propagated on control signals using Eq. (4.14), in nonlinear

systems it is not possible to conduct the noise propagation analytically. Figure 4.2

shows our proposed approach to estimate propagated uncertainties on control signals

for the nonlinear system described in Eq. (4.15). The uncertainty prediction mecha-

nism contains two auxiliary baseline DSMCs, including a virtual ideal DSMC and the

DSMC under test. Desired trajectories for both auxiliary DSMCs are the same. The

feedback signals to the DSMC under test are measured signals after ADC (X), while

the inputs to the virtual ideal DSMC are the estimated measured signals before ADC

( ˆ̄X). ˆ̄X is estimated according to the real values of measured signals after ADC and
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Figure 4.2: Schematic of the DSMC with online estimations of uncertain-
ties on measured and control signals.

predicted ADC uncertainties on measured signals:
ˆ̄X = µ

X
+X (4.17)

Since the only difference between the DSMC under test and the virtual ideal DSMC

is the ADC uncertainties on measured signals, the propagated uncertainty vector on

control signals is the difference between control signals of these two controllers as

follows:
µ
U

= diag[ˆ̄u1 − u1, ..., ˆ̄u1 − ur] (4.18)

where ˆ̄u1,...,r are the estimated control inputs from the ideal DSMC (ū) according to

the predicted ADC uncertainties on measured signals.
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4.2.3 Inclusion of Propagated Uncertainties into the DSMC

Structure of the baseline DSMC (Eq. (4.11) and (4.16)) is modified by inclusion of

estimated uncertainties on control signals into the DSMC formulation:

Umod(i) = U(i) + δ(i) (4.19)

where Umod is the modified controller input and U is calculated with respect to

Eq. (4.11) and (4.16) for linear and nonlinear systems, respectively. δ(i) is included

to compensate for hardware imprecisions. δ(i) is obtained according to the predicted

uncertainties on control signals as follows:

δ(i) = µ
U

(i)S(i) (4.20)

By inclusion of propagated ADC uncertainties on control signals (µ
U

), the baseline

DSMC for a linear (l) system is modified as follows:

Umod,l(i) = B−1( 1
T
{(ρ− I)X(i)− ρXd(i) +Xd(i+ 1)} − AX(i))− µ

U
(i)S(i)

(4.21)

In addition, the baseline DSMC for the affine nonlinear (nl) system in Eq. (4.15) is

modified to:

Umod,nl(i) = g−1

T
[(ρ− I)X(i)− ρXd(i)− fT +Xd(i+ 1)]− µ

U
(i)S(i) (4.22)
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4.3 Case Studies

Here, application of the proposed method in Section 4.2.2 is demonstrated for one

linear and one nonlinear case studies.

4.3.1 Linear Case Study: DC Motor Speed Control

DC motor is a common actuator for control applications that require rotary and

transitional motions. The electric equivalent circuit of the armature and the free-body

diagram of the rotor are shown in Figure 4.3. For speed regulation of a DC motor, the

control input is voltage (V ) to the motor’s armature and the output is rotation speed

(θ) of the shaft. Assuming a constant magnetic field and linear relationship between

motor torque and armature current (I), by choosing the rotor speed and current as

the state variables, the following linear time-invariant state-space representation can

be used to describe the dynamics of the DC motor [90]:

θ(i+ 1) = T

(
km
J
I(i)− kf

J
θ(i) + 1

J
Γ
)

+ θ(i) (4.23a)

I(i+ 1) = T

(
−kb
L
θ(i)− R

L
I(i) + 1

L
V (i)

)
+ I(i) (4.23b)

where J is the rotor’s moment of inertia, R is the electrical resistance, L is the

electric inductance, Γ is the torque on the rotor, kf is the mechanical damping, km is

the motor torque constant, and kb is the electromotive force constant. The DC motor

model constants are listed in the Appendix A.

81



Figure 4.3: Schematic of the modeled DC motor.

Performance of the proposed uncertainty prediction technique is investigated for the

DC motor, under 50 ms of sampling time and 10 bit of quantization level. θ and i

are feedback signals that go through ADC before going to the DC motor controller.

Simulations are done in MATLAB/Simulink® that allows to test the controller in

an MIL platform against sampling and quantization imprecisions. Figure 4.4 shows

the ADC uncertainty prediction results on the shaft speed and the current of the

armature circuit. In this figure, the term “measured” denotes the signal after ADC

in the MIL setup in MATLAB. The accuracy of the uncertainty prediction technique

is shown in Table 4.1 in terms of mean error and standard deviation. The small error

values in Table 4.1 confirm the capability of the proposed method to estimate ADC

uncertainty on measured signals for the DC motor case study.

Table 4.1
Mean (ē) and Standard Deviation (σe) of ADC Uncertainty Prediction

Errors for the DC Motor Model.

ē σe
Motor Speed, θ [rad/sec] 0.002 0.003
Current, i [A] 0.045 0.053
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Figure 4.4: Comparison of actual and predicted uncertainties due to sam-
pling and quantization. (a) measured signals (i.e., signal after ADC), (b)
actual and predicted uncertainties on measured speed signal, and (c) actual
and predicted uncertainties on current signal. (200 ms sampling time and
10-bit quantization level).

A DSMC is designed to regulate the DC motor rotational speed with respect to

desired speed profile (θd) under implementation imprecisions. The first sliding surface

is defined as the error in tracking desired speed profile (s1 = θ − θd). Since there is

no direct control input on DC motor rotational speed, Id is defined as the synthetic

control input for controlling the shaft speed. Id is used to define the second sliding

surface (s2 = I − Id) in which the control input is voltage.

Eq. (4.21) is used to derive control input equations for the modified DSMC with incor-

porated predicted uncertainties. To this end, the DC motor model is first discretized
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according to Eq. (4.9). Next, the modified DSMC with predicted implementation

uncertainties on control signals for the DC motor speed control problem is calculated

as follows:
Id(i) = J

km

( 1
T

[ρ1(θ(i)− θd(i)) + θd(i+ 1)

−θ(i)] + kf
J
θ(i)− 1

J
Γ
)
− µId(i) [θ(i)− θd(i)]

(4.24)

V (i) = L
( 1
Ts

[ρ2(I(i)− Id(i)) + Id(i+ 1)− I(i)]

+kb
L
θ(i) + R

L
i(i)

)
− µ

V
(i) [I(i)− Id(i)]

(4.25)

where µId and µ
V

denote the estimations of propagated ADC uncertainties on control

signals and are calculated according to Eq. (4.14) as follows:

µId(i) = J

Tkm
((ρ1 − 1)µθ(i)) + kf

km
µθ(i) (4.26)

µ
V

(i) = L

T
((ρ2 − 1)µI(i)) + kbµθ(i) +RµI(i) (4.27)

µθ and µI are predicted uncertainties on measured signals that are calculated us-

ing Eq. (4.6) and were previously shown in Figure 4.4. Performance of the baseline

continuous-time SMC and proposed DSMC with incorporated implementation uncer-

tainties are shown in Figure 4.5 for tracking the desired speed profile. As it can be

observed, the DSMC with predicted uncertainties is able to significantly improve the

tracking performance compared to the baseline SMC (the tracking error is reduced

by 71.2%).
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Figure 4.5: DC motor speed control using the baseline SMC and the mod-
ified DSMC (sampling time: 50 ms, quantization level: 10 bit).

4.3.2 Nonlinear Case Study: Automotive Engine Control

In this section, the proposed DSMC with predicted ADC imprecisions is designed and

evaluated for the highly nonlinear SI engine model during cold start from Section 2.3

in Chapter 2. Discrete state equations of the engine model are shown below:

Texh(i+ 1) = Texh(i) + T

τe
[(7.5∆(i) + 600)AFI(i)− Texh(i)] (4.28)

ṁf (i+ 1) = ṁf (i) + T

τf
[ṁfc(i)− ṁf (i)] (4.29)

ωe(i+ 1) = ωe(i) + T

J
TE(i) (4.30)

ma(i+ 1) = ma(i) + [ṁai(i)− ṁao(i)]T (4.31)
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Similar to continuous-time SMC from Chapter 3, four sliding surfaces for the engine

controller are defined as follows:

s1 = Texh − Texh,d, s2 = ṁf − ṁf,d (4.32)

s3 = ωe − ωe,d, s4 = ma −ma,d

Eq. (4.22) is employed in the next step to derive control input equations for the DSMC

with predicted implementation uncertainties. The resulting DSMC with incorporated

uncertainties on control signals is expressed in the following equations:

∆(i) = τe
7.5AFI . T [T

τe
(−600AFI + Texh(i)) (4.33)

+(ρ1 − 1)s1(i) + Texh,d(i+ 1)− Texh,d(i)]− µ∆(i)s1(i)

ṁfc(i) = τf
T

[ T
τf
ṁf (i) + (ρ2 − 1)s2(i) (4.34)

+ṁf,d(i+ 1)− ṁf,d(i)]− µṁfc(i)s2(i)

ma,d(i) = J

30, 000T [T
J

(100 + 0.4ωe(i)) + (ρ3 − 1)s3(i) (4.35)

+ωe,d(i+ 1)− ωe,d(i)]− µma,d(i)s3(i)

ṁai(i) = 1
T

[ṁao(i)T + (ρ4 − 1)s4(i) +ma,d(i+ 1) (4.36)

−ma,d(i)]− µṁai(i)s4(i)
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where µ∆, µṁfc , µma,d , and µṁai are the estimations of propagated ADC uncertain-

ties on control signals which are computed according to the approach explained in

Figure 4.2. Estimation of propagated ADC uncertainties on control signals requires

the knowledge of ADC uncertainty on measured signals (µTexh , µṁf , µωe , and µma)

which are predicted using Eq. (4.6). Table 4.2 summarizes the results of online ADC

uncertainty prediction on the states of the engine model in terms of mean and stan-

dard deviation errors. It can be observed that the proposed uncertainty prediction

approach, described in Eq. (4.6), is able to estimate the introduced uncertainties

accurately.

Figure 4.6 shows the performance of the designed controllers in tracking desired tra-

jectories for AFR, exhaust gas temperature, and engine speed (N [RPM ]) under

ADC imprecisions (10 ms sampling time and 10 bit of quantization), respectively.

Baseline DSMC has the same equations as Eq. (4.33-4.36) excluding the propagated

implementation uncertainties (µ∆ = µṁfc = µma,d = µṁai = 0).

Table 4.2
Mean (ē) and Standard Deviation (σe) errors for Predicting the ADC

Uncertainty for the Engine Model’s Measured Signals.

ē σe
ma [kg] 2.060×10−5 2.321×10−5

ṁf [kg/sec] 2.337×10−6 2.732×10−6

ωe [rad/sec] 0.124 0.145
Texh [oC] 0.5 0.5

The mean and standard deviations of the tracking errors are given in Table 4.3. The
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Figure 4.6: Results of engine control under ADC imprecisions: (a) AFR,
(b) exhaust gas temperature, and (c) engine speed. (10 ms sampling time
and 10 bit quantization level)

mean tracking errors were reduced compared to the baseline SMC by 42% to 93%

using DSMC with predicted uncertainties, while these improvements are 18% to 88%

by using the baseline DSMC. The standard deviations of the tracking errors from the

baseline and modified DSMCs for both AFR and engine speed were also reduced by

more than 90%. σe for Texh tracking is reduced by 50% by using the proposed DSMC,

compared to the baseline SMC.
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(ē
)

an
d

St
an

da
rd

D
ev

ia
tio

n
(σ
e
)

of
Tr

ac
ki

ng
Er

ro
rs

.
Va

lu
es

In
sid

e
th

e
Pa

re
nt

he
se

s
Sh

ow
th

e
R

es
ul

tin
g

Im
pr

ov
em

en
t

C
om

pa
re

d
to

T
he

Ba
se

lin
e

SM
C

.

ē
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Figure 4.6-a shows that the baseline SMC cannot track the desired AFR properly.

The baseline DSMC improves the AFR tracking by 73% compared to the baseline

SMC. Although the baseline DSMC shows significant improvement compared to the

baseline SMC, it still cannot track the desired AFR profile accurately. Once the

predicted uncertainty is incorporated into the DSMC, the AFR tracking error is

reduced by 20% compared to the baseline DSMC. This results in accurate tracking

of desired AFR trajectory against ADC imprecisions.

Figure 4.6-b and Table 4.3 show that by incorporating the predicted implementation

uncertainties, the Texh tracking error can be reduced by 42% compared to the baseline

SMC. Controlling the engine speed using the baseline SMC causes overshoots when

the desired speed profile drops or rises sharply. It can be observed from Figure 4.6-c

that the baseline DSMC is able to remove the overshoots and reduces the mean track-

ing error by 88%; however, steady state error still exists. The steady state tracking

error of the engine speed is overcome by incorporating the predicted uncertainties

on ṁai and ma,d into the DSMC. As can be seen from Figure 4.6-c and Table 4.3,

the modified DSMC is able to remove the steady state error in tracking the desired

speed trajectory and reduces the mean tracking error by about 93%, compared to the

baseline SMC.
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4.4 DSMC Real-Time Verification

The designed DSMCs are tested in the processor-in-the-loop (PIL) setup previously

shown in Figure 3.6 in Chapter 3. Figure 4.7 and 4.8 show the results of real-time PIL

testing of the proposed DSMCs with incorporated uncertainties on control signals for

the DC motor and the engine case studies, respectively. The results verify that (i) the

designed DSMCs are able to track all the desired trajectories under implementation

imprecisions, and (ii) the DSMCs are computationally efficient for real-time operation.
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Figure 4.7: Results of DSMC real-time verification for the DC motor speed
control (50 ms sampling time and 10 bit quantization level).

4.5 Summary and Conclusion

An online methodology was proposed and verified for predicting the introduced ADC

implementation imprecisions on measured signals. A generic DSMC was formulated
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Figure 4.8: Real-time verification for the engine control using the proposed
DMSC (10 ms sampling time and 10 bit quantization level).

for linear and nonlinear systems to track desired trajectories. The predicted impre-

cisions on measured signals were first propagated on control signals and they were

then incorporated into the DSMC. A PIL testing was employed to verify the real-time

performance of the proposed DSMC for two case studies (DC motor speed regulation

and automotive engine control problem). Real-time testing results showed that the

new DSMC design is able to improve the tracking performance under sampling and

quantization imprecisions by 40-90%, compared to a conventional SMC design.
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Chapter 5

First Order SISO Adaptive
Discrete Sliding Mode Control1

5.1 Introduction

The capabilities of SMC and DSMC in handling implementation imprecisions were

studied in Chapters 3 and 4. In addition to implementation imprecisions, SMC allows

for dealing with uncertainties, un-modeled dynamics, and disturbances. Handling the

modeling uncertainty in SMC design has been the subject of previous works in the

literature [56, 57, 58, 60, 61, 62]. The adaptive DSMC formulation from [62] presents a

generic solution for removing a multiplicative type of model uncertainty for a general

class of nonlinear systems. However, the proposed adaptive DSMC in [62] was not

investigated under sampling and quantization imprecisions. Besides, regardless of the

state equations of the physical model, it was assumed that an unknown multiplicative

1The material of this chapter has been published in the Journal of Control Engineering Prac-
tice [6] (doi:10.1016/j.conengprac.2016.10.017), and proceeding of the ASME 2016 Dynamic Sys-
tems and Control Conference [5] (doi:10.1115/DSCC2016-9732) with the permissions from Elsevier
and ASME as shown in Appendix D.
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term can represent the existing uncertainty in the model. In this chapter, in addition

to the unknown multiplicative uncertainty term, a generic unknown additive term is

considered in the model’s equation to extend the adaptive DSMC formulation to a

broader range of dynamical systems.

The contribution of this chapter is to extend the new DSMC with predicted imple-

mentation imprecisions from Chapter 4 to handle additive and multiplicative types

of model uncertainties for linear and nonlinear systems using a discrete Lyapunov

stability analysis. The proposed adaptive DSMC with predicted implementation im-

precisions provides an integrated framework to improve the robustness of a common

DSMC against both model and hardware (ADC) uncertainties. The performance of

the proposed adaptive robust DSMC is evaluated on one linear (DC motor) and one

nonlinear (automotive engine) models. Finally, the designed controllers are experi-

mentally verified on a real ECU in real-time.

5.2 Adaptation Against Model Uncertainties

A general class of discrete SISO affine nonlinear systems can be described using the

following state space representation:

x(i+ 1) = x(i) + T
(
f(x(t)) + g(x(t))u(t)

)
(5.1a)

y(i) = h(x(i)) (5.1b)
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where x∈ Rr is the state vector and u∈ R and h∈ R denote the system input and

output, respectively. The uncertainties in the modeled dynamics (f) can be expressed

using unknown multiplicative (β) and additive (α) terms in the presence of hardware

(ADC) imprecisions (δ(i)) using the nominal discrete nonlinear model in Eq. (5.1):

x(i+ 1) = x(i) + T (βf + α) + Tg
(
umod(i) + δ(i)

)
(5.2)

where umod(i) is calculated according to the proposed approach in Chapter 4 from

Eq. (4.19). Here, an adaptive DSMC theory is developed for handling the multiplica-

tive and additive types of model uncertainties using Lyapunov stability theory. By

applying the sliding reaching law (s(i+ 1) < ρs(i)) for the discrete nonlinear system

in Eq. (5.2) with uncertainty terms (α and β), the following relationship is concluded:

s(i+ 1) = x(i) + T (βf + α) + Tg
(
umod(i) + δ(i)

)
− xd(i+ 1) (5.3)

where α and β are unknown and constant. Modified control input (umod) is calculated

according to Eq. (4.22) in the presence of the uncertainty terms:

umod(i) = 1
gT

[(ρ− 1)x(i)− ρxd(i)−
(
β̂(i)f + α̂(i)

)
T + xd(i+ 1)]− µu(i)s(i) (5.4)

where β̂(i) and α̂(i) are estimations of the unknown multiplicative and additive pa-

rameters, respectively. We assume that by incorporating the predicted ADC function

(µu(i)s(i)) into the DSMC structure, the ADC imprecisions on control signal (δ(i)) are

compensated. By substituting Eq. (5.4) into Eq. (5.3), the sliding surface dynamics
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can be simplified as follows:

s(i+ 1) = ρs(i) + T
(
(β − β̂(i))f + (α− α̂(i))

)
(5.5)

Two new terms (α̃ and β̃) are defined to represent the difference between the unknown

and estimated uncertainty terms, α̃(i) = α − α̂(i) and β̃(i) = β − β̂(i). The sliding

surface dynamics, in terms of the DSMC gain (ρ) and the errors in estimating the

unknown parameters, can be obtained after substituting α̃ and β̃ into Eq. (5.5):

s(i+ 1) = ρs(i) + T (β̃(i)f + α̃(i)) (5.6)

A Lyapunov-based analysis is employed to (i) determine the stability of the closed-

loop system, and (ii) derive the adaptation laws. The following Lyapunov function

candidate is proposed:

V (i) = 1
2s

2(i) + 1
2ρββ̃

2(i) + 1
2ραα̃

2(i) (5.7)

where ρβ > 0 and ρα > 0 are tunable adaptation gains that are chosen for the nu-

merical sensitivity of the unknown multiplicative and additive parameter estimations,

respectively. The proposed Lyapunov function is positive definite and quadratic with

respect to the sliding variable (s), β̃, and α̃. Similar to continuous-time systems, in

which the negative definite condition is required for the derivative of the Lyapunov

function to guarantee the asymptotic stability, in the discrete time domain, investiga-

tion of a Lyapunov difference function is required for the Lyapunov stability analysis.

The Lyapunov difference function is calculated using an implicit approach in which
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the value of the Lyapunov function at the subsequent time step is obtained using a

three-variable Taylor series expansion:

V (i+ 1) = V (i) + ∂V (i)
∂s(i) ∆s(i) + ∂V (i)

∂β̃(i)
∆β̃(i) + ∂V (i)

∂α̃(i) ∆α̃(i)

+1
2
∂2V (i)
∂s2(i) ∆s2(i) + 1

2
∂2V (i)
∂β̃2(i)

∆β̃2(i) + 1
2
∂2V (i)
∂α̃2(i) ∆α̃2(i)

+ ∂2V (i)
∂s(i)∂β̃(i)

∆s(i)×∆β̃(i) + ∂2V (i)
∂s(i)∂α̃(i)∆s(i)×∆α̃(i)

+ ∂2V (i)
∂β̃(i)∂α̃(i)

∆β̃(i)×∆α̃(i) + ...

where:

∆s(i) ≡ s(i+ 1)− s(i) (5.8a)

∆β̃(i) ≡ β̃(i+ 1)− β̃(i) (5.8b)

∆α̃(i) ≡ α̃(i+ 1)− α̃(i) (5.8c)

and the partial derivatives are as follows:

∂V (i)
∂s(i) = s(i), ∂V (i)

∂β̃(i)
= ρββ̃(i), ∂V (i)

∂α̃(i) = ραα̃(i) (5.9)

∂2V (i)
∂s2(i) = 1, ∂2V (i)

∂β̃2(i)
= ρβ,

∂2V (i)
∂α̃2(i) = ρα,

∂2V (i)
∂s(i)∂β̃(i)

= 0, ∂2V (i)
∂s(i)∂α̃(i) = 0, ∂2V (i)

∂β̃(i)∂α̃(i)
= 0

Next, the Lyapunov difference function (∆V (i) = V (i + 1) − V (i)) is calculated by

substituting Eq. (5.9) into Eq. (5.2):

∆V (i) = s(i)∆s(i) + ρββ̃(i)∆β̃(i) + ραα̃(i)∆α̃(i) (5.10)

+1
2∆s2(i) + 1

2ρβ∆β̃2(i) + 1
2ρα∆α̃2(i) + ...
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As can be observed from Eq. (5.9), all higher order (> 2) derivatives are zero. After

substitution of Eq. (5.8) and (5.9) into Eq. (5.10), the Lyapunov difference function

is simplified as follows:

∆V (i) = s(i)(s(i+ 1)− s(i)) (5.11)

+ρββ̃(i)(β̃(i+ 1)− β̃(i)) + ραα̃(i)(α̃(i+ 1)− α̃(i))

+1
2∆s2(i) + 1

2ρβ∆β̃2(i) + 1
2ρα∆α̃2(i) + ...

which yields:

∆V (i) = (ρ− 1)s2(i) + T β̃(i)fs(i) + T α̃(i)s(i)+ (5.12)

+ρββ̃(i)(β̃(i+ 1)− β̃(i)) + ραα̃(i)(α̃(i+ 1)− α̃(i))

+1
2∆s2(i) + 1

2ρβ∆β̃2(i) + 1
2ρα∆α̃2(i) + ...

and finally:

∆V (i) = −(1− ρ)s2(i) (5.13)

+ραα̃(i)
(
α̃(i+ 1)− α̃(i) + Ts(i)

ρα

)

+ρββ̃(i)
(
β̃(i+ 1)− β̃(i) + Tfs(i)

ρβ

)

+O
(
∆s2(i),∆β̃2(i),∆α̃2(i)

)

The following adaptation laws are chosen to update the errors in estimating the
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unknown multiplicative (β̃) and additive (α̃) parameters:

β̃(i+ 1) = β̃(i)− Tfs(i)
ρβ

(5.14a)

α̃(i+ 1) = α̃(i)− Ts(i)
ρα

(5.14b)

Upon incorporating the adaptation laws from Eq. (5.14) in the Lyapunov difference

function, we have:

∆V (i) ≈ −(1− ρ)s2(i) (5.15)

+1
2
(
∆s2(i) + ρβ∆β̃2(i) + ρα∆α̃2(i)

)

Next the second order terms in Eq. (5.15) are expanded and ∆β̃ and ∆α̃ are replaced

by the adaptation equations from Eq. (5.14):

∆V (i) ≈ −(1− ρ)s2(i) (5.16)

+1
2

(
(s(i+ 1)− s(i))2 + ρβ(−Tfs(i)

ρβ
)2 + ρα(−Ts(i)

ρα
)2
)

For small enough T , all the terms in Eq. (5.16) with T 2 can be neglected. Additionally,

s(i+ 1) is replaced by ρs(i):

∆V (i) ≈
(

(ρ− 1) + 1
2(ρ− 1)2

)
s2(i) (5.17)

which yields:

∆V (i) ≈ 1
2(ρ2 − 1)s2(i) (5.18)

Since 1 > ρ > 0, Eq. (5.18) concludes that there exists a region around s = 0, β̃ = 0
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and α̃ = 0 where the Lyapunov difference function is negative semi-definite. This

means that the sliding variable (the tracking error, s) converges to zero, and the

errors in estimating the unknown parameters (β̃, α̃) are at least bounded.

Eq. (5.19) expresses the overall control input for the adaptive robust DSMC in which

the ADC imprecisions are handled by incorporating the predicted uncertainties, and

the multiplicative and additive unknown terms are updated according to the adapta-

tion laws in Eq. (5.14):

umod, nladaptive(i) = (5.19)

1
gT

[(ρ− 1)x(i)− ρxd(i)− (β̂f + α̂)T + xd(i+ 1)]− µu(i)s(i)

Figure 5.1 shows the schematic of the proposed adaptive robust DSMC for nonlin-

ear systems. In the next section, the new adaptive robust DSMC (Eq. (5.19)) is

re-formulated for linear systems, in which an analytic approach will be used for prop-

agating the ADC imprecisions on control signals.

5.3 Nonlinear Case Study: Engine Control

The engine control system shown in Figure 5.2 is used to implement the adaptive

DSMCs. As can be observed from Figure 5.2, Texh, AFR (ṁf ), ma, and ωe can

be measured on an engine; thus the ADC affects these four measured states and

corresponding sliding surfaces. For analysis purposes, first a baseline adaptive SISO
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Figure 5.1: Schematic of the adaptive DSMC with online estimations of
uncertainties on measured and control signals. Xd is the desired trajectories
(reference), X is the measured signals from the plnat after ADC, Umodadaptive

is the control input, µX is the predicted ADC uncertainties on measured
signals, µU is the propagated ADC uncertainties on control signals, and α̂, β̂
are the estimated unknown parameters of the model.

DSMC (Eq. (5.4) and (5.14)) is designed to drive the states of the system towards

the desired values. Next, the predicted ADC uncertainties are incorporated into the

adaptive DSMC formulation (Eq. (5.19)).

• Exhaust Gas Temperature Controller: According to Eq. (4.28), the function
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Figure 5.2: Block diagram of the engine cold start control system.

fTexh to capture dynamics of the exhaust gas temperature with additive (αTexh) and

multiplicative (βTexh) uncertainty terms is:

fTexh = βTexh ×
1
τe

(600AFI − Texh) + αTexh (5.20)

Although in the empirical model of the exhaust gas temperature αTexh has no physical

meaning, it can present the error in the empirical model. The exhaust temperature

dynamics depends heavily on the exhaust gas time constant (τe). Thus, any error
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in estimating the time constant (τe) results in significant deviation from the nom-

inal model. To this end, the multiplicative uncertainty term (βTexh) is assumed to

compensate for any error in estimating τe. The errors in the modeled exhaust gas

temperature dynamics are compensated according to the following adaptation laws

with respect to Eq. (5.14):

β̂Texh(i+ 1) = β̂Texh(i) + T (s1(i))
τeρβ1

(600AFI − Texh(i)) (5.21a)

α̂Texh(i+ 1) = α̂Texh(i) + T (Texh(i)− Texh,d(i))
ρα1

(5.21b)

By incorporating the solutions of Eq. (5.21) and the predicted implementation impre-

cisions (µ∆) into Eq. (5.19), the modified adaptive DSMC for exhaust temperature

becomes:

∆(i) = τe
7.5AFI . T [−β̂Texh

T

τe
(600AFI − Texh(i)) + α̂Texh(i) (5.22)

+(ρ1 − 1)s1(i) + Texh,d(i+ 1)− Texh,d(i)]− µ∆(i)s1(i)

if µ∆ = 0 the controller is an adaptive baseline DSMC, while when µ∆ is calculated

according to the mechanism in Figure 5.1, the controller is an integrated adaptive

DSMC with predicted ADC uncertainties.

• Fuel Flow Rate Controller: As can be observed from Eq. (4.29), the fuel flow
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dynamics (fṁf ) with additive (αṁf ) and multiplicative (βṁf ) uncertainty terms be-

comes:

fṁf = −βṁf ×
1
τf

(ṁf (i)) + αṁf (5.23)

In practice, ṁf is not measured directly and it is calculated according to the AFR

sensor measurement and estimated air mass inside the cylinder (ṁao). αṁf represents

the error in estimating fuel flow rate due to AFR measurement uncertainty and error

in predicting the air mass. Similar to exhaust gas temperature dynamics, the fuel

evaporation time constant τf dictates the dynamics of the fuel flow into the cylinder.

Thus, any error in estimating the time constant (τf ) results in significant deviation

from the nominal model. To this end, the multiplicative uncertainty is introduced to

the fuel flow dynamics to represent the uncertainty in estimating τf . The adaptation

laws for βṁf and αṁf are:

β̂ṁf (i+ 1) = β̂ṁf (i)−
T (s2(i))
τfρβ2

ṁf (i) (5.24a)

α̂ṁf (i+ 1) = α̂ṁf (i) + T (ṁf (i)− ṁf,d(i))
ρα2

(5.24b)

where ṁf,d is calculated according to the desired AFR. The adaptive control law for

fuel flow rate into the cylinder with multiplicative and additive unknown terms and

the predicted ADC imprecisions (µṁfc) is:

ṁfc(i) = τf
T

[β̂ṁf
T

τf
(ṁf (i)) + α̂ṁf (i) + (ρ2 − 1)s2(i) (5.25)

+ṁf,d(i+ 1)− ṁf,d(i)]− µṁfc(i)s2(i)
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• Engine Speed Controller: fωe for the engine (Eq. (4.30)) with multiplicative

(βωe) and additive (αωe) unknown parameters is:

fωe = −βωe ×
1
J

(Tloss) + αωe (5.26)

where Tloss = 0.4ωe + 100. Tloss represents the torque losses (e.g., due to friction) on

the crankshaft. Thus, the additive uncertainty αωe represents the error in reading the

torque map. Since reading the values from the torque map between break points in

the look-up table uses a linear relationship, the additive uncertainty term can express

the potential error in the modeled dynamics accordingly. Also βωe represents the

uncertainty in estimating the effective engine inertia (J). βωe and αωe are driven to

zero using the following adaptation laws:

β̂ωe(i+ 1) = β̂ωe(i)−
T (s3(i))
J ρβ3

(0.4ωe(i) + 100) (5.27a)

α̂ωe(i+ 1) = α̂ωe(i) + T (ωe(i)− ωe,d(i))
ρα3

(5.27b)

Finally, the control input (ma,d) for engine speed regulation after incorporating the

propagated ADC uncertainties (µma,d) yields:

ma,d(i) = J

30, 000T [β̂ωe
T

J
(100 + 0.4ωe(i)) + α̂ωe(i) (5.28)

+(ρ3 − 1)s3(i) + ωe,d(i+ 1)− ωe,d(i)]− µma,d(i)s3(i)

• Air Mass Flow Controller: The intake air manifold dynamics are linked to the

rotational dynamics through the calculated ma,d (Eq. (4.31)). The calculated ma,d
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from Eq. (5.28) is used as the desired trajectory to obtain ṁai as the control input

of the intake air flow rate controller. The intake manifold air mass dynamics with

additive model uncertainty (αma) and the multiplicative unknown parameter (βma)

is:
fma = −βma(ṁao(i)) + αma (5.29)

where [84]:

ṁao = k1ηvolmaωe (5.30)

ηvol = m2
a(k2ω

2
e + k3ωe + k4) +ma(k5ω

2
e + k6ωe + k7) (5.31)

+k8ω
2
e + k9ωe + k10

k1,2,...,10 are the empirical parameters of the volumetric efficiency (ηvol) curve fit. As

shown in Eq. (5.29)-(5.31), the uncertainty terms in the intake air manifold dynamics

(αma and βma) compensate for the uncertainties in ṁao which is read through the ηvol

curve fit. βma and αma are updated using the following adaptation laws:

β̂ma(i+ 1) = β̂ma(i)−
T (s4(i))
ρβ4

ṁao (5.32a)

α̂ma(i+ 1) = α̂ma(i) + T (ma(i)−ma,d(i))
ρα4

(5.32b)

After incorporating the predicted ADC imprecisions (µṁai) into the air mass con-

troller, the adaptive robust controller input is:

ṁai(i) = 1
T

[T β̂ma(ṁao(i)) + α̂ma(i) + (ρ4 − 1)s4(i) (5.33)

+ma,d(i+ 1)−ma,d(i)]− µṁai(i)s4(i)
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In Eq. (5.22), (5.25), (5.28), and (5.33), µ∆, µṁfc , µma,d , and µṁai are the estimations

of propagated ADC uncertainties on control signals which are computed according

to the approach explained in Chapter 4 and Figure 5.1. Estimation of propagated

ADC uncertainties on control signals requires the knowledge of ADC uncertainty on

measured signals (µTexh , µṁf , µωe , and µma) that are predicted using Eq. (4.6). The

verification results of the estimated ADC uncertainties of the engine plant are sum-

marized in Figure 5.3 and Table 5.1 for a set of measured Texh, ṁf , ωe, and ma signals

under 10 ms of sampling time and quantization level of 10-bit. For better evaluation

of the uncertainty prediction mechanism, the measured engine signals are defined in

their worst and nonsmooth shapes. The high accuracy of the ADC uncertainty pre-

diction mechanism can be observed for the engine case study from Figure 5.3 and

Table 5.1.

Table 5.1
Mean (ē) and standard deviation (σe) of ADC uncertainty prediction errors

for the SI engine model.

ē σe
Texh [oC] 0.5 0.5
ṁf [kg/sec] 2.337×10−6 2.732×10−6

ωe [rad/sec] 0.124 0.145
ma [kg] 2.060×10−5 2.321×10−5

The impact of unknown additive and multiplicative terms on part of the baseline

engine DSMC that is associated with the plant’s dynamics (f) is shown in Figure 5.4.

The multiplicative terms (β) for the engine case study were assumed to be ±0.75,
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Figure 5.3: Comparison of actual and predicted uncertainties due to sam-
pling and quantization on measured variables of the SI engine: (a) Texh (b)
ṁf , (c) ωe, and (d) ma (10 ms sampling time and 10-bit quantization level).

which means up to 25% error on each of the states dynamics. The equivalent addi-

tive unknown terms (α), for which the dynamics show a similar deviation from the

nominal model due to corresponding multiplicative unknown terms, were found for

every single dynamic. In the absence of the adaptation, the selected values for the

additive unknown terms result in the same errors in the dynamics which were already

observed from the multiplicative terms.
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Figure 5.4: The impacts of unknown uncertainty terms on the engine
dynamics inside the DSMC and how the adaptation mechanisms drive the
model with error to its nominal value: (a) Texh, (b) ṁf , (c) ωe, and (d)
ma (10 ms sampling time and 10-bit quantization level).

The uncertainties on the model parameters cause a permanent error in the estimated

dynamics compared to the nominal model (model with no uncertainty). These errors

significantly demolish the DSMC tracking performance and consequently, the out-

come of the non-adaptive DSMC will not be acceptable anymore. Upon activation

of the adaptation mechanisms (Eq. (5.14)), it can be seen from Figure 5.4 that the

model with error converges to the nominal model and the model uncertainties are

compensated. Figure 5.5 shows the results of unknown multiplicative and additive
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Figure 5.5: Convergence results of unknown engine model multiplicative
and additive terms (10 ms sampling time and 10-bit quantization level).

uncertainty terms estimation against the actual (nominal) values. Despite the short

time period (40 sec) during which the engine cold start controller should operate,

the adaptation mechanism removes the errors in the modeled dynamics in the DSMC

in less than 2 sec by driving the unknown multiplicative and additive parameters to

their nominal values, “1” and “0”, respectively.

Figure 5.6 shows the impact of errors in the engine’s model on the DSMC tracking

performance. As it is expected, the non-adaptive DMSC fails to track the desired

trajectories, which explains the importance of handling the model uncertainties in the
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body of the proposed DSMC. On the other hand, once the adaptation algorithms are

activated and the convergence period of the unknown parameters is over, the baseline

adaptive DSMC tracks all the desired trajectories smoothly with the minimum error

under 10 ms of sampling time and quantization level of 10-bit.
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Figure 5.6: Comparison between baseline adaptive and non-adaptive en-
gine DSMCs under ADC imprecisions and model uncertainties: (a) air-fuel
ratio, (b) exhaust gas temperature, and (c) engine speed (10 ms sampling
time and 10-bit quantization level).

Table 5.2 summarizes the effect of unknown parameter variations (25% error from

each type of model uncertainties) on the tracking error (Table 5.2-a), and dynamic

responses (Table 5.2-b) for baseline non-adaptive and adaptive DSMCs. By com-

paring the errors in trajectory tracking and dynamic estimation of the non-adaptive

DSMC with those from the adaptive DSMC, one can conclude the effectiveness of
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the proposed adaptation mechanism in handling the model uncertainties for all cases.

It can be observed that the adaptive DSMC enhances the trajectory tracking errors

by more than 95% compared to the non-adaptive DSMC. The better tracking perfor-

mance of the adaptive controller is a direct result of the accurate and fast estimation

of the unknown parameters by the adaptation technique. The adaptation mechanism

removes the errors in the engine dynamics by up to 98%.

Table 5.2
Mean (ē) value of the errors in (a) trajectory tracking (Figure 5.6), and (b)

estimating the engine dynamics (Figure 5.4), from the non-adaptive and
adaptive DSMCs under 25% uncertainty in each of the multiplicative (β)

and additive (α) unknown terms in the engine dynamics (Values inside the
parentheses show the resulting improvement from the robust DSMC

compared to the baseline DSMC, T = 10 ms, quantization level=10-bit).
(a)

ē (Tracking Error)
Non-adaptive Adaptive

DSMC DSMC
Reference

AFR 9.566 0.103
[-] (-98.92%)
Texh 292.2 3.6
[oC] (-98.8%)
N 1202.9 17.6
[RPM ] (-98.5%)

(b)
ē (Model Error)

Non-adaptive Adaptive
DSMC DSMC

fṁf 0.0042 0.000086
[kg/sec2] (-97.95%)
fTexh 87.1 1.8
[oC/sec] (-97.8%)
fωe 547.0 7.6
[rad/sec2] (-98.6%)
fma 0.0055 0.000082
[rad/sec] (-98.50%)

In the next stage, the predicted implementation imprecisions are incorporated in

the adaptive DSMC to compare the performance of the baseline adaptive controller

versus the adaptive DSMC with predicted ADC uncertainties. Figure 5.7 shows the

overall DSMC performance in tracking the desired AFR, exhaust gas temperature,

and engine speed trajectories in the presence of unknown uncertainty terms and under
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Figure 5.7: Results of engine control under ADC imprecisions and model
uncertainties: (a) air-fuel ratio, (b) exhaust gas temperature, and (c) engine
speed (10 ms sampling time and 10-bit quantization level).

10 ms of sampling time and quantization level of 10-bit. It can be observed from

Figure 5.7 that after the adaptation mechanisms removed the model uncertainties

within t=2 sec, the DSMC tracks all the desired trajectories desirably. Figure 5.7

shows that ADC with sampling time of 10 ms and quantization level of 10-bit does not

affect the baseline DSMC performance significantly. However, as can be observed from

Figure 5.8, once the sampling time increases, or when the quantization level becomes

smaller, the tracking errors from the baseline adaptive DSMC increase dramatically.

On the other side, the proposed adaptive DSMC with incorporated ADC imprecisions

is more robust to the sampling time increase and also the quantization level decrease.
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Figure 5.8: Effect of sampling time and quantization level on the tracking
performance of the engine controller with and without the predicted ADC
uncertainties.

AFR is the most important trajectory due to its effects on engine performance in

meeting the desired emission and fuel consumption targets [3]. It can be seen from

Figure 5.8 that when the signals at the controller I/O are sampled at a higher rate

than 10 ms, the baseline adaptive DSMC shows weak performance in tracking the

desired AFR trajectory. The desired AFR tracking error rises by more than 6 times

when the sampling time increases from 10 ms to 35 ms. Meanwhile, the adaptive

DSMC with predicted ADC uncertainties keeps the tracking error less than 0.1, de-

spite the increase in the sampling time. This means an overall 50% decrease in AFR
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tracking error compared to the baseline adaptive DSMC. Similar improvement trends

can be concluded from Texh and ωe adaptive DSMCs in which the tracking errors

of the baseline controllers at higher sampling times are decreased by 50-60% upon

incorporating the predicted ADC uncertainties.

Figure 5.9 provides an overall comparison among the baseline non-adaptive DSMC,

baseline adaptive DSMC, and robust adaptive DSMC with predicted ADC uncer-

tainties. When there is no uncertainty in the model, it can be observed that by

incorporating the predicted ADC uncertainties, comparing to the baseline controller,

the controller becomes more robust against sampling and quantization (sampling time

of 10ms and quantization level of 10-bit) imprecisions by more than 50% on average in

terms of the mean tracking errors (Figure 5.9-a1, b1, c1). By introducing uncertainties

to the engine model, both adaptive and robust adaptive DSMCs show significantly

better performances, compared to the baseline DSMC (Figure 5.9-a2, b2, c2). More-

over, in the presence of model and ADC uncertainties, the robust adaptive DSMC

shows lower errors by 50-60%, compared to the baseline adaptive DSMC for all cases

(Figure 5.9-a3, b3, c3).

The required computational time for the engine adaptive DSMC was also studied for

various controller configurations using the MATLAB/Simulink MIL platform. The

MIL testing was carried out on a desktop computer with an Intel CoreTM i5 @ 3.20

GHz processor. It was observed that the average computational time of the baseline
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Figure 5.9: Effects of incorporating the predicted ADC uncertainties and
the adaptation laws on the DSMC robustness characteristics under 25%
uncertainty in each of the multiplicative (β) and additive (α) unknown terms,
and 10 ms sampling time and 10-bit quantization level.

DSMC for controlling the engine during the first 40 sec of its operation is 3.012 sec.

These computational times for the adaptive DSMCs when (i) both of the adaptation

laws are active, (ii) only the multiplicative adaptation law is active, and (iii) only the

additive adaptation law is active, are 3.062 sec, 3.036 sec, and 3.041 sec, respectively.

The computational time of the adaptive DSMCs are slightly higher than the baseline

DSMC (<2%) and this shows the effectiveness of the proposed adaptation algorithm

that allows for real-time implementation.

In the engine model, the time constants in the fuel mass flow (τf ) and exhaust gas
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temperature (τe) dynamics take into account empirical time delays within the physical

engine dynamics. However, the time delay in the hardware and associated uncertainty

are shown in the literature that can be addressed through SMC design [91, 92, 93].

Since most of the recent works in the literature are limited to linear or continuous

time systems, extending the proposed adaptive robust DSMC design to nonlinear

time delayed systems needs to be investigated in future studies.

5.4 First Order Adaptive DSMC for Linear Un-
certain Systems

In this section, the proposed DSMC with predicted ADC imprecisions for linear sys-

tems from Section 4.2.2 in Chapter 4 is extended to linear uncertain systems under

modeling uncertainties. In the absence of model uncertainties and implementation

imprecisions, the state-space equation of a rth-order linear system, discretized by

using a first order Euler approximation [88], is represented by:

Xr×1(i+ 1) = (TAr×r + Ir×r) Xr×1(i) + TBr×hUh×1 (5.34)

where x ⊂ X ∈ Rr, u ⊂ U ∈ Rh, and I ∈ Rr×r are the state vector, the control in-

put vector, and identity matrix, respectively. Matrix A represents the linear system

dynamics, and its elements, apq, p, q = 1, ..., r are obtained based on the system’s

physical equations and the interaction among different states. In practice, the identi-

fied matrix A is subjected to several sources of uncertainties, e.g. the plant parameter

variations over time.
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The linear system in Eq. (5.34), in the presence of additive (α) and multiplicative (β)

types of modeling uncertainties, and ADC imprecisions, can be presented as follows:

Xr×1(i+ 1) =
T



β11a11 + α11 β12a12 + α12 · · · β1ra1r + α1r

β21a21 + α21 β22a22 + α22 · · · β2ra2r + α2r

... ... . . . ...

βr1ar1 + αr1 βr2ar2 + αr2 · · · βrrarr + αrr



+



1 0 · · · 0

0 1 · · · 0
... ... . . . ...

0 0 · · · 1


r×r





x1(i)

x2(i)
...

xr(i)


+ TBr×r (Ur×1 + δr×1(i))

(5.35)

where apq represents nominal values of the ideal linear system’s dynamics (A), and

δr×1 is the vector of propagated ADC uncertainties on the control signal (U). As can

be seen, for each element of A, one additive (α) and one multiplicative (β) unknown

terms are considered to present any errors or variation in the values of the model

parameters. For the uncertain linear system in Eq. (5.35) under implementation

imprecisions, the tracking control problem is defined to drive the states of the system

(x) to their desired values (xd ⊂ Xd ∈ Rr). To this end, SISO/MIMO first order

DSMC, under modelling and implementation uncertainties, are formulated in the

following sections.

For the linear system in Eq. (5.34), it was shown in Section 4.2.2 of Chapter 4 that
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the first order DSMC input U(i) is obtained according to the following first order

sliding reaching law [4, 89]:

|S(i+ 1)| ≤ P|S(i)| (5.36)

where, the vector (S) of the first order sliding surface variables (s) is defined as the

difference between the desired (xd) and the measured signal (x) as follows:

S(i) = X(i)−Xd(i) (5.37)

and, P is the matrix of tunable DSMC gains. For a SISO DSMC, P is diagonal: P =

diag[ρ1, ..., ρr], where 0 < ρ1,...,r < 1 [89]. On the other hand, for a MIMO DSMC

structure, the off-diagonal elements of P can be non-zero; however, the eigenvalues of

P should lie within the unit circle to guarantee the closed-loop system stability [62].

If r = h, B is a square matrix, and the control input vector U can be calculated as

follows for the linear system according to the sliding reaching law from Eq. (5.36):

U(i) = B−1
( 1
T

[(P − I)X(i)− PXd(i) + Xd(i+ 1)]−AX(i)
)

(5.38)

For the linear systems, as discussed in Chapter 4, the propagated ADC imprecision on

the control signals is the difference between U and Ū, where U is calculated according

to Eq. (5.38). Ū is the control input of an ideal first order DSMC where there is

neither model uncertainties nor ADC imprecisions. Ū(i) −U(i) can be analytically

found with respect to Eq. (4.14):
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Ū(i)−U(i) = B−1
( 1
T

[(P − I)µ
X

(i)]−Aµ
X

(i)
)

(5.39)

A new diagonal matrix (µU) is defined with respect to the estimated propagated ADC

uncertainties on the control signals:

µU = diag[ū1 − u1, ..., ūr − ur] (5.40)

where u ⊂ U and ū ⊂ Ū. The diagonal elements of µU are calculated with respect

to Eq. (5.39). The propagated ADC imprecisions on the control signals are shown

in Eq. (5.35) by δ. Here, similar to the proposed approach for nonlinear systems,

the approach to overcome the ADC uncertainties is inclusion of the propagated ADC

uncertainties on control signals (µU) into the DSMC structure. For the linear (l)

system (Eq. (5.38)), in the absence of model uncertainties, the control input (U) of

the conventional first order DSMC is modified against data sampling and quantization

imprecisions as follows:

Umod,l(i) = B−1

 1
T
{(P − I)X(i)− PXd(i) + Xd(i+ 1)} −AX(i)

 (5.41)

−|µU(i)| × (S(i))

where µU is calculated according to Eq. (5.40).

In the next step, the uncertainties in the model are included in the first order DSMC

formulation. It can be easily shown that the first order sliding vector (S) for the

linear system with unknown additive and multiplicative parameters becomes:
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Sr×1(i+ 1) = Pr×rSr×1(i) +

T



β̃11a11 + α̃11 β̃12a12 + α̃12 · · · β̃1ra1r + α̃1r

β̃21a21 + α̃21 β̃22a22 + α̃22 · · · β̃2ra2r + α̃2r

... ... . . . ...

β̃r1ar1 + α̃r1 β̃r2ar2 + α̃r2 · · · β̃rrarr + α̃rr


Xr×1(i)

(5.42)

where β̃pq = βpq − β̂pq and α̃pq = αpq − α̂pq are the errors in estimating the unknown

multiplicative and additive parameters, respectively.

� Theorem: The adaptation laws for converging the unknown parameters of the

uncertain linear system (Eq. (5.35)) to their nominal values (β̂ → β, α̂ → α), based

on the DSMC formulation, are as follows:

β̂pq(i+ 1) = β̂pq(i) + Tsp(i)apqxq(i)
ρβpq

(5.43a)

α̂pq(i+ 1) = α̂pq(i) + Tsp(i)xq(i)
ραpq

(5.43b)

where, p, q = 1...r, and ρβ and ρα are tunable positive multiplicative and additive

adaptation gains chosen for the numerical sensitivity in the estimations of the un-

known parameters.

Proof : A Lyapunov stability analysis is performed to derive the adaptation laws and

guarantee the stability of the closed-loop system. To this end, the analysis begins

with a first-order linear uncertain system (r = 1). The following positive definite

scalar Lyapunov function (V) for a first order linear system is proposed:
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V (i) = 1
2s

2(i) + 1
2ρββ̃

2(i) + 1
2ραα̃

2(i) (5.44)

As can be seen, V is a quadratic function of the tracking error (S), and unknown

parameters estimations. In the next step, the first order Lyapunov difference func-

tion (∆V ) is calculated. ∆V is obtained by applying a Taylor series expansion on

Eq. (5.44):

∆V (i) = ∂V (i)
∂s(i) ∆s(i) + ∂V (i)

∂β̃(i)
∆β̃(i) + ∂V (i)

∂α̃(i) ∆α̃(i)+ (5.45)

1
2
∂2V (i)
∂s2(i) ∆s2(i) + 1

2
∂2V (i)
∂β̃2(i)

∆β̃2(i) + 1
2
∂2V (i)
∂α̃2(i) ∆α̃2(i) + ...

where, ∆s(i) ≡ s(i + 1) − s(i), ∆β̃(i) ≡ β̃(i + 1) − β̃(i), ∆α̃(i) ≡ α̃(i + 1) − α̃(i).

Upon substitution of partial derivatives into Eq. (5.45), we have:

∆V (i) = s(i)∆s(i) + ρββ̃(i)∆β̃(i) + ραα̃(i)∆α̃(i)+ (5.46)

1
2∆s2(i) + 1

2ρβ∆β̃2(i) + 1
2ρα∆α̃2(i) + ...

It is assumed that for small enough sampling periods, ∆s2(i), ∆β̃2(i), ∆α̃2(i) ≈ 0 [1].

The same assumption is valid for higher order terms also (> 2). By using Eq. (5.42)

for the first order system, Eq. (5.46) can be simplified as follows:

∆V (i) = s(i)
(

(ρ− 1)s(i) + T (β̃(i)a+ α̃(i))x(i)
)

+ (5.47)

ρββ̃(i)∆β̃(i) + ραα̃(i)∆α̃(i)

Eq. (5.47) can be re-arranged as follows:
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∆V (i) = (ρ− 1)s2(i) + ρββ̃(i)
(
T.s(i).a.x(i)

ρβ
+ ∆β̃(i)

)
(5.48)

+ραα̃(i)
(
T.s(i).x(i)

ρα
+ ∆α̃(i)

)

If β̂ and α̂ are updated according to the following rules:

β̂(i+ 1) = β̂(i) + T.s(i).a.x(i)
ρβ

(5.49a)

α̂(i+ 1) = α̂(i) + T.s(i).x(i)
ρα

(5.49b)

then, Eq. (5.48) becomes:

∆V (i) = −(1− ρ)s2(i) (5.50)

As can be seen, since 0 < ρ < 1, Eq. (5.50) is negative semi-definite. This means

that the positive definite Lyapunov function V has a negative semi-definite difference

function (∆V ). Thus, according to the Lyapunov stability theorem and the new

Invariance Principle for discontinuous systems [1, 57, 59, 94], the asymptotic stability

of the closed loop controller with the adaptation laws in Eq. (5.49) is guaranteed.

This ensures the finite time convergences of the first order sliding function (s) and

the unknown parameter estimation errors (β̃, α̃) to zero.

The performed Lyapunov stability can be extended to higher order systems. For a

second order system (r = 2), two scalar positive definite Lyapunov functions (V1, V2)

can be defined for each of the system’s states. If one can show that both Lyapunov

functions have negative semi-definite difference functions, the overall stability of the

second order linear system can be concluded. For a SISO first order DSMC, the sliding
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function of the first state (s1) can be obtained as follows according to Eq. (5.42):

s1(i+ 1) = ρ1s1(i)+ (5.51)

T
(

(β̃11a11 + α̃11)x1(i) + (β̃12a12 + α̃12)x2(i)
)

For s1, the following positive definite Lyapunov function is introduced:

V1(i) = 1
2s

2
1(i) + 1

2ρβ11 β̃
2
11(i) + 1

2ρβ12 β̃
2
12(i)+ (5.52)

1
2ρα11α̃

2
11(i) + 1

2ρα12α̃
2
12(i)

Similar to the first order linear system stability analysis, it can be easily shown

that the Lyapunov difference function (∆V1) becomes:

∆V1(i) = (ρ1 − 1)s2
1(i)+ (5.53)

ρβ11 β̃11(i)
(
T.s1(i).a11.x1(i)

ρβ11

+ ∆β̃11(i)
)

+

ρα11α̃11(i)
(
T.s1(i).x1(i)

ρα11

+ ∆α̃11(i)
)

+

ρβ12 β̃12(i)
(
T.s1(i).a12.x2(i)

ρβ12

+ ∆β̃12(i)
)

+

ρα12α̃12(i)
(
T.s1(i).x2(i)

ρα12

+ ∆α̃12(i)
)

As can be seen, if the adaptation laws from Eq. (5.43) are used to update β̃11, β̃12,

α̃11, and α̃12 in Eq. (5.53), the Lyapunov difference function becomes ∆V1(i) =

−(1 − ρ1)s2
1(i), which fulfills the required negative semi-definite condition for ∆V1

and guarantees the finite-time zero convergence of s1, β̃11, β̃12, α̃11, and α̃12. The

same conclusions can be reached for higher order systems (r > 2) by utilizing the

adaptation laws in Eq. (5.43) to update the unknown multiplicative and additive
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parameters within the linear system dynamics. �

Overall, the control input of an adaptive first order DSMC with incorporated imple-

mentation imprecisions and adaptation laws from Eq. (5.43) becomes:

Umod,l
adaptive(i) = B−1

T

(
Pr×rSr×1(i) + Xd(i+ 1) (5.54)

−(T Â + Ir×r)X(i)
)
− |µU| × sat(Sr×1(i))

where:

Â =



β̂11a11 + α̂11 β̂12a12 + α̂12 · · · β̂1ra1r + α̂1r

β̂21a21 + α̂21 β̂22a22 + α̂22 · · · β̂2ra2r + α̂2r

... ... . . . ...

β̂r1ar1 + α̂r1 β̂r2ar2 + α̂r2 · · · β̂rrarr + α̂rr


(5.55)

5.4.1 Linear Case Study: DC Motor Speed Control

The state equations of the DC motor model introduced in Section 4.3.1 (Eq. (4.23))

with unknown multiplicative (β) and additive (α) terms become:

θ(i+ 1) = T

(
[−β11

kf
J

+ α11]θ(i) + [α12]I(i)
)

+ T

(
km
J
Iv(i) + 1

J
Γ
)

+ θ(i) (5.56)

I(i+ 1) = T

(
[−β21

kb
L

+ α21]θ(i) + [−β22
R

L
+ α22]I(i)

)
+ T

L
V (i) + I(i) (5.57)

Four additive (αpq) and three multiplicative (βpq) unknown parameters are derived to

their nominal values by solving the adaptation laws in Eq. (5.43). The final adaptive

first order SISO DSMC with predicted ADC uncertainties yields:
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Imodd,adaptive(i) = J

km

( 1
T

[ρ1(s1(i)) + θd(i+ 1)− θ(i)] +

[β̂11
kf
J

+ α̂11]θ(i) + [α̂21]I(i)− 1
J

Γ
)
− |µId(i)|sat(s1(i))

(5.58)

V mod
adaptive(i) = L

( 1
T

[ρ2(s2(i)) + Id(i+ 1)− I(i)]

+[β̂21
kb
L

+ α̂21]θ(i) + [β̂22
R

L
+ α̂22]I(i)

)
− |µ

V
(i)|sat(s2(i))

(5.59)

The convergence results of the unknown parameters are shown in Figure 5.10. This

is done by simultaneously solving Eq. (5.43), Eq. (5.58), and Eq. (5.59). The per-

formance of the baseline adaptive DSMC and adaptive DSMC with incorporated

implementation uncertainties are shown in Figure 5.11 for tracking the desired speed

profile under 200 ms of sampling time and quatization level of 10-bit. As it can be

observed, the adaptive DSMC with predicted uncertainties is able to significantly

improve the tracking performance by 63% compared to the baseline adaptive DSMC.

5.4.2 DC Motor First Order Adaptive DSMC Real-Time
Verification

The designed controllers in the previous section with adaptation mechanisms are

tested in a PIL setup, previously shown in Figure 3.6, to verify the performances of

the adaptive DSMCs in real-time. Figure 5.12 and Figure 5.13 show the results of

real-time PIL testing of the proposed adaptive DSMCs with incorporated ADC uncer-

tainties on control signals for the DC motor and the engine case studies, respectively.

The results verify that the adaptive DSMC is able to (i) remove the uncertainty in
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Figure 5.10: Convergence results of the unknown additive (α) and mul-
tiplicative (β) terms in the DC motor model (200 ms sampling time and
10-bit quantization level).
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Figure 5.11: DC motor speed control using the baseline adaptive DSMC
and the modified adaptive DSMC with predicted ADC uncertainties (sam-
pling time: 200 ms, quantization level: 10-bit).
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the model fast, (ii) track all the desired trajectories under ADC uncertainties, and

(iii) operate in real-time since it is computationally efficient.
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Figure 5.12: Real-time verification result of adaptive robust DSMC for
the DC motor speed control (200 ms sampling time and 10-bit quantization
level).

5.5 Summary and Conclusion

A novel first order adaptive discrete sliding mode controller (DSMC) design for a

general class of linear and nonlinear systems was proposed in this chapter. The

ADC imprecisions were handled via the online uncertainty prediction and propaga-

tion mechanism from Chapter 4. Next, the DSMC design was examined under mul-

tiplicative and additive types of model uncertainties. A discrete Lyapunov argument

was employed to design adaptation laws to compensate for the unknown uncertainty

terms in the controller structure. The final controller is an adaptive robust DSMC
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Figure 5.13: Real-time verification results of the adaptive robust DSMC for
the engine control case study (10 ms sampling time and 10-bit quantization
level).

with incorporated ADC imprecisions which can handle both model and implementa-

tion uncertainties. The PIL testing was performed to verify the real-time performance

of the proposed DSMCs for two case studies, including DC motor speed regulation

and automotive engine control. Real-time experimental and simulation results in this

study show:

1. The adaptation laws are computationally efficient for real-time operation. The

proposed adaptation laws are able to remove quickly the errors in the modeled

dynamics. Although increasing the sampling time raises the required time for

the adaptation laws to remove the errors in the model, these errors can be re-

moved permanently in less than 200 time instants for both case studies. For
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the DC motor case study, all the additive and multiplicative unknown parame-

ters were compensated in 30 sec (sampling time=200 ms). On the other side,

under 10 ms of sampling time, the uncertainties in the engine plant model were

removed in less than 2 sec.

2. For the linear system case study, DC motor speed regulation, the robustness

characteristics of the adaptive DSMC against sampling and quantization im-

precisions was improved by 63% upon incorporating the predicted ADC uncer-

tainties into the controller equations.

3. For the engine control problem, when the sampling time was increased from 10

ms to 35 ms, the tracking errors from the baseline adaptive DSMC increased by

5-10 times. Additionally, by changing the ADC quantization level from 10 bit to

6 bit, the tracking errors of the baseline controller rose by up to 10 times. Similar

to the DC motor case study, incorporating the predicted ADC imprecisions into

the adaptive DSMC improved the tracking errors by 50-60% compared to the

baseline controller.

130



Chapter 6

Second Order SISO/MIMO
Adaptive DSMC1

6.1 Introduction

Converting a higher dimensional tracking control problem into a lower dimensional

stabilization control problem is the key feature of sliding mode control (SMC) [57].

SMC shows robust characteristics against external disturbances and model uncertain-

ty/mismatch, while requiring low computational efforts. However, there are challeng-

ing issues that arise during implementation of SMC on digital processors, which limit

the real-time application of SMC. The two well-recognized challenging issues include:

(i) high frequency oscillations due to chattering phenomenon [95], and (ii) implemen-

tation imprecisions due to the analog-to-digital (ADC) converter unit (Chapters 2

and 4).

1The material of this chapter has been submitted to IEEE Transactions on Control Systems Tech-
nology and ASME 2017 Dynamic Systems and Control Conference.
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The concept of higher order sliding modes for continuous-time systems is shown to

be an effective approach for reducing the oscillation due to chattering. This approach

was first introduced in the 1980s [96]. The basic idea of the higher order SMC is

to not only steer the sliding function to the sliding manifold, but also drive all the

higher order derivatives of the sliding variable to zero. Higher order SMC reduces the

high frequency oscillations by transferring the chattering caused by the discontinuity

to the higher order sliding mode derivatives. At the end, the control input of a

continuous-time chattering-free N th-order SMC is found by integrating the N − 1th

derivative of the input forN−1 times [96]. Higher order SMC leads to less oscillations;

however, it adds complexity to the calculations. Moreover, it has been shown in [97,

98] that converting the continuous-time SMC to a discrete sliding mode controller

(DSMC), by using an implicit Euler discretization, allows for a drastic decrease in the

chattering in both the input and the output. Thus, according to [99], which presents

a second order DSMC, the idea of higher order DSMC can be an ideal solution for the

chattering problem by taking advantage of characteristics of the higher order SMC

and discretized SMC.

In addition to the high frequency oscillations issue, as it was discussed with details

in previous chapters, the SMC structure allows for further modification to improve

the controller robustness against ADC (sampling and quantization) imprecisions, and

compensate for the uncertainties within the plant model [6].
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The second order DSMC in [99] is formulated for linear systems without consideration

of the uncertainties in the model. Moreover, the study in [99] lacks the stability anal-

ysis of the closed-loop system. On the other side, the adaptive DSMC from [5, 6, 62]

is limited to the first order sliding mode controller. To this end, in this chapter,

a new adaptive second order DSMC formulation is developed for a general class of

single-input single-output (SISO) and multiple-input multiple-output (MIMO) un-

certain nonlinear systems. Moreover, the asymptotic stability of the new controller

is guaranteed via a Lyapunov stability argument and by invoking the new Invariance

Principle for nonlinear systems with discontinuity.

The contribution of this chapter is threefold. First, a new second order DSMC is

formulated for a general class of nonlinear affine systems. Second, the proposed

controller is extended to handle an unknown uncertainty within the plant model

using a discrete Lyapunov stability argument that also guarantees the asymptotic

stability of the closed-loop system. Third, this chapter presents the first application

of the second order DSMC for the combustion engine and DC motor control problems.

The proposed second order DSMC not only demonstrates robust behavior against

data sampling and quantization imprecisions compared to a first order DSMC, but

also removes the uncertainties in the model quickly and steers the dynamics to their

nominal values.
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6.2 SISO Second Order Sliding Mode Control

6.2.1 Continuous-Time Second Order SMC

A general class of continuous-time SISO nonlinear systems can be expressed as follows:

ẋ = f(t, x, u) (6.1)

where x∈ Rr, and u∈ R are the state, and the input variables, respectively. The

sliding mode order is the number of continuous successive derivatives of the differen-

tiable sliding variable s, and it is a measure of the degree of smoothness of the sliding

variable in the vicinity of the sliding manifold. For the continuous-time systems, the

N th order sliding mode is determined by the following equalities [100]:

s(t, x) = ṡ(t, x) = s̈(t, x) = ... = sN−1(t, x) = 0 (6.2)

The sliding variable (s) is defined as the difference between desired (xd) and measured

signal (x):

s(t, x) = x(t)− xd(t) (6.3)

For the second order SMC design, the first derivative is calculated from the state

equation (Eq. (6.1)), and the second derivative of the sliding variable is calculated as

follows:
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s̈(t, x, u) = ∂

∂t
ṡ(t, x, u) + ∂

∂x
ṡ(t, x, u)f(t, x, u) (6.4)

+ ∂

∂u
ṡ(t, x, u)u̇(t)

A new sliding variable (ξ) is defined according to s and ṡ:

ξ(t, x) = ṡ(t, x) + βs(t, x), β > 0 (6.5)

Eq. (6.5) describes the sliding surface of a system with a relative order equal to one,

in which the input is u̇ and output is ξ(t, x) [101]. The equivalent control input is

obtained by solving the following equation:

ξ̇(t, x) = 0⇒ s̈(t, x) + βṡ(t, x) = 0 (6.6)

which according to the sliding variable definition needs the second derivative of the

state variable:

ẍ(t) = ∂

∂t
f(t, x, u) + ∂

∂x
f(t, x, u)f(t, x, u) (6.7)

+ ∂

∂u
f(t, x, u)u̇(t)

Substituting Eq. (6.3) and (6.7) in Eq. (6.6) leads to:

(
∂

∂t
f(t, x, u) +

( ∂
∂x
f(t, x, u)

)
f(t, x, u)+ (6.8)

∂

∂u
f(t, x, u)u̇(t)− ẍd(t)

)
+ βṡ(x, t) = 0

Next, u̇ is obtained from Eq. (6.8):
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u̇(t) = 1
∂
∂u
f(t, x, u)

(
− ∂

∂t
f(t, x, u) (6.9)

−
( ∂
∂x
f(t, x, u)

)
f(t, x, u) + ẍd(t)− βṡ(x, t)

)

and finally the equivalent control input (ueq) which satisfies the second order sliding

mode condition is:

ueq(t) =
∫
u̇(t)dt (6.10)

The controller robustness against external (i.e., ADC) uncertainties is ensured by

inclusion of a switching function (usw) [57]:

usw(t) = −Ω× sgn(ξ(t, x)), Ω > 0 (6.11)

Thus, the final control input of the second order SMC is obtained based on Eq. (6.10)

and (6.11) as follows:

u(t) = ueq + usw(t) = ueq − Ω× sgn(ξ(t, x)) (6.12)

where Ω > 0 could be a constant or variable gain. This approach guarantees asymp-

totic convergence of the sliding variable and its derivative to zero in finite time [99].

6.2.2 Discrete-Time Adaptive Second Order SMC

The affine SISO form of the nonlinear system in Eq. (6.1) with an unknown multi-

plicative term (α) can be presented using the following state space equation:
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ẋ(t) = αf(x(t)) + g(x(t))u(t) (6.13)

where g(x(t)) is a non-zero input coefficient and f(x(t)) represents the dynamics of the

plant and does not depend on the inputs. α, which represents the errors/mismatches

in the plant model, is unknown and constant. The continuous-time model in Eq. (6.13)

is discretized by utilizing the first order Euler approximation:

x(i+ 1) = Tαf(x(i)) + Tg(x(i))u(i) + x(i) (6.14)

in which T is the sampling time. Similar to Eq. (6.5), a new discrete sliding variable

is defined:

ξ(i) = s(i+ 1) + βs(i), β > 0 (6.15)

where s(i) = x(i)− xd(i) and β is a constant second order sliding mode gain.

The equivalent control input of the second order DSMC should satisfy the second

order discrete sliding mode criteria, which is [99]:

ξ(i+ 1) = ξ(i) = 0 (6.16)

Applying the second order sliding mode condition from Eq. (6.16) to the nonlinear

system in Eq. (6.14) results in the following equivalent control input (ueq):

ueq(i) = 1
gT

(
− T α̂(i)f(x(i))− x(i) + xd(i+ 1)− βs(i)

)
(6.17)

where α̂(i) is the estimation of the unknown multiplicative uncertainty term in the
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plant’s model. By incorporating the control law (ueq) into the second order sliding

variable (ξ), we have:

ξ(i) = Tf(x(i))(α− α̂(i)) = Tf(x(i))α̃(i) (6.18)

α̃(i) is the error in estimating the unknown multiplicative term (α̃(i) = α − α̂(i)).

Next, a Lyapunov stability analysis is conducted to (i) determine the stability of the

closed-loop system, and (ii) derive the adaptation law to remove the uncertainty in

the model. To this end, the following Lyapunov candidate function is proposed:

V (i) = 1
2

(
s2(i+ 1) + βs2(i)

)
+ 1

2ρα
(
α̃2(i+ 1) + βα̃2(i)

)
(6.19)

where ρα > 0 is a tunable adaptation gain chosen for the numerical sensitivity of the

unknown parameter estimation. As can be seen from Eq. (6.19), the proposed Lya-

punov function is positive definite and quadratic with respect to the sliding variable

(s(i)) and the unknown parameter estimation error (α̃(i)). Asymptotic and finite-

time convergence of s and α̃ to zero are the desired conditions. To guarantee the

latter conditions, in the discrete time domain, the difference function of V should be

at least negative semi-definite to ensure the stability of the closed-loop system [5].

The Lyapunov difference function is calculated using a Taylor series expansion:
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V (i+ 1) = V (i) + ∂V (i)
∂s(i) ∆s(i) (6.20)

+ ∂V (i)
∂s(i+ 1)∆s(i+ 1) + ∂V (i)

∂α̃(i) ∆α̃(i)

+ ∂V (i)
∂α̃(i+ 1)∆α̃(i+ 1) + 1

2
∂2V (i)
∂s2(i) ∆s2(i)

+1
2

∂2V (i)
∂s2(i+ 1)∆s2(i+ 1) + 1

2
∂2V (i)
∂α̃2(i) ∆α̃2(i) + 1

2
∂2V (i)

∂α̃2(i+ 1)∆α̃2(i+ 1) + ...

where:

∆s(i) ≡ s(i+ 1)− s(i) (6.21a)

∆α̃(i) ≡ α̃(i+ 1)− α̃(i) (6.21b)

The first order Lyapunov difference function (∆V (i) = V (i + 1) − V (i)) can be

obtained by substituting the values of the partial derivatives into Eq. (6.20):

∆V (i) = βs(i)∆s(i) + s(i+ 1)∆s(i+ 1) (6.22)

+ραβα̃(i)∆α̃(i) + ραα̃(i+ 1)∆α̃(i+ 1)

+1
2β∆s2(i) + 1

2∆s2(i+ 1) + 1
2ραβ∆α̃2(i) + 1

2ρα∆α̃2(i+ 1) + ...

Eq. (6.22) can be simplified after substituting Eq. (6.18) and (6.21) at i and i + 1

time steps:

∆V (i) = −β(β + 1)s2(i)− (β + 1)s2(i+ 1) (6.23)

+βs(i)Tfα̃(i) + ραβα̃(i)∆α̃(i)

+s(i+ 1)Tfα̃(i+ 1) + ραα̃(i+ 1)∆α̃(i+ 1)

+O
(
∆s2(i),∆s2(i+ 1),∆α̃2(i),∆α̃2(i+ 1)

)
+ ...
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which yields:

∆V (i) = −(β + 1)
(
s2(i+ 1) + βs2(i)

)
(6.24)

+ραβα̃(i)
(
s(i)Tf
ρα

+ ∆α̃(i)
)

+ραα̃(i+ 1)
(
s(i+ 1)Tf

ρα
+ ∆α̃(i+ 1)

)

+O
(
∆s2(i),∆s2(i+ 1),∆α̃2(i),∆α̃2(i+ 1)

)

in which all the higher order (> 2) terms are zero. In Eq. (6.24), the first term is a

negative definite when β > 0. As explained earlier, the Lyapunov difference function

should be at least negative semi-definite. To this end, the second and third terms in

Eq. (6.24) should become zero, which leads to the following adaptation law:

α̃(i+ 1) = α̃(i)− Ts(i)f(x(i))
ρα

(6.25)

It should be noticed that the adaptation law for handling the modeling uncertainties

for the second order DSMC (Eq. (6.25)) has the same structure of the proposed

adaptation laws for the first order DSMC (Eq. (5.14)). By applying Eq. (6.25), as

the adaptation law, the Lyapunov difference function becomes:

∆V (i) = −(β + 1)
(
s2(i+ 1) + βs2(i)

)
(6.26)

+O
(
∆s2(i),∆s2(i+ 1),∆α̃2(i),∆α̃2(i+ 1)

)

The proposed equivalent control input (Eq. (6.17)) of the second order DSMC is

next evaluated on Gao’s reaching law [102]. To this end, we begin with the first
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order continuous-time SMC, which can be realized by applying the following sliding

reaching law [57, 103]:

ṡ(t) = −λs(t)− ε× sgn(s(t)), λ > 0, ε > 0 (6.27)

Eq. (6.27) can be discretized using the first order Euler approximation as follows:

s(i+ 1)− s(i)
T

= −λs(i)− ε× sgn(s(i))→ (6.28)

s(i+ 1) = (1− Tλ)s(i)− Tε× sgn(s(i))

where the 1 > 1 − Tλ > 0 condition should be met to guarantee that states of the

system will move monotonically toward the switching plane (s = 0), and cross it in

finite time [102]. Next, the first order sliding variable (s) in Eq. (6.28) is replaced

with the second order sliding variable (ξ):

ξ(i+ 1) = (1− Tλ)ξ(i)− Tε× sgn(ξ(i)), (1− Tλ) > 0 (6.29)

By recalling Eq. (6.15) we have:

ξ(i+ 1) = s(i+ 2) + βs(i+ 1), β > 0 (6.30)

→ s(i+ 2) = ξ(i+ 1)− βs(i+ 1)

Then, substituting Eq. (6.29) in to Eq. (6.30) yields:

s(i+ 2) = (1− Tλ)(s(i+ 1) + βs(i))− βs(i+ 1)− Tε× sgn(ξ(i)) (6.31)

and, finally Eq. (6.31) can be simplified as follows [103]:

141



s(i+ 2) = φ1(Tαf(x(i)) + Tg(x(i))u(i) + x(i) (6.32)

−xd(i+ 1)) + φ2s(i)− Tε× sgn(ξ(i))

where φ1 = 1− Tλ− β and φ2 = β(1− Tλ). Next, the calculated equivalent control

input of the second order DSMC from Eq. (6.17) along with the so-called switching

control input (usw) are substituted in Eq. (6.32):

s(i+ 2) = φ1

(
x(i) + Tαf(x(i))+ (6.33)

gT
( 1
gT

(−T α̂f(x(i))− x(i) + xd(i+ 1)− βs(i)) + usw

)

−xd(i+ 1)
)

+ φ2s(i)− Tε× sgn(ξ(i))

which can be simplified as follows:

s(i+ 2) = φ1

(
T α̃f(x(i))− βs(i) + Tg(x(i))usw

)
+ φ2s(i)− Tε× sgn(ξ(i)) (6.34)

In [102], it has been stated that once the state trajectory has crossed the sliding

surface, the state trajectory will cross the surface again in every successive sampling

period. This means:

sgn(ξ(i)) = −sgn(ξ(i− 1)) (6.35)

thus, Eq. (6.34) can be written as:

s(i+ 2) = φ1

(
T α̃f(x(i))− βs(i) + Tg(x(i))usw

)
(6.36)

+φ2s(i) + Tε× sgn(ξ(i− 1))
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Finally, by incorporating the values of φ1 and φ2 we have:

s(i+ 2) = β2s(i) + φ1

(
T α̃f(x(i)) + Tg(x(i))usw

)
+ Tε× sgn(ξ(i− 1)) (6.37)

If the switching control input is selected to be

usw = − ε

φ1g(x(i)) × sgn(ξ(i− 1)) (6.38)

in which g(x(i)) 6= 0 and φ1 6= 0, then, Eq. (6.37) becomes:

s(i+ 2) = β2s(i) + φ1

(
T α̃f(x(i))

)
(6.39)

Let assume that by using Eq. (6.25), the uncertainty in the model will be removed.

This means that the error in estimating the unknown parameter converges to zero

(i.e., α̃(i+ 1) = α̃(i) = 0). Thus:

s(i+ 2) ≈ β2s(i) (6.40)

Eq. (6.40) shows that, if 1 > β > β2 > 0, the proposed equivalent control input of

the second order DMSC along with the switching function in Eq. (6.38) fulfills Gao’s

discrete sliding mode reaching law, which guarantees finite time convergence of the

system’s states to the sliding manifold [102].

In the next step, by expanding the second order terms (O(.)) in Eq. (6.26), and

assuming a small enough sampling time (T ), which means all terms that contain T 2

can be neglected, Eq. (6.26) can be re-arranged as follows:
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∆V (i) = −1
2

(
βs2(i+ 1) + βs2(i) + 2β2s2(i) (6.41)

+s2(i+ 1)− s2(i+ 2)
)
− βs(i+ 1)s(i)− s(i+ 2)s(i+ 1)

in which, it is assumed that the uncertainty in the model is compensated by applying

Eq. (6.25). According to the second order sliding variable ξ definition (Eq. (6.16)) and

Eq. (6.40), s(i + 1) and s(i + 2) can be replaced by −βs(i) and β2s(i), respectively.

By doing these replacements, Eq. (6.41) can be simplified as:

∆V (i) = −1
2β
(
− β3 − β2 + β + 1

)
s2(i) (6.42)

−β3−β2+β+1 is positive if 1 > β > 0. In other words, if 1 > β > 0, then ∆V (i) ≤ 0,

which guarantees the stability of the system (ξ(i) → 0). Of interesting note is the

1 > β > 0 constraint which is consistent with the earlier concluded condition on β

to make sure Gao’s sliding reaching law is fulfilled by the equivalent control input of

the second order DSMC.

We showed that by using ueq from Eq. (6.17), usw from Eq. (6.38), and the adaptation

law from Eq. (6.25), the negative semi-definite condition of the Lyapunov difference

function is guaranteed. This means that the sliding variable (the tracking error, s)

converges to zero, and the error in estimating the unknown parameter (α̃) is at least

bounded. Moreover, according to Eq. (6.40), since 1 > β > 0, it is obvious that

1 > β > β2 > 0. Because the Lyapunov difference function is at least negative-semi

definite, it can be concluded that:
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s(i) > s(i+ 1) > s(i+ 2) (6.43)

and, s(i+2) 6= s(i+1) 6= s(i) unless s(i+2) = s(i+1) = s(i) = 0. Therefore, Eq. (6.43)

shows that the second order DSMC guarantees asymptotic decrease of s for the next

two steps (i, i + 1, i + 2). However, in order to guarantee the global asymptotic

convergence and stability characteristics of the second order DMSC, it is required to

show that all the higher order Lyapunov difference functions vanish as s→ 0 [6, 59].

To this end, the analysis begins with the second order Lyapunov difference function

(∆V (i+ 1)−∆V (i)). Let us first define a new term, % = β(−β3− β2 + β+ 1), where

% > 0. With the definition of %, ∆V (i+ 1)−∆V (i) is calculated as follows:

∆V (i+ 1)−∆V (i) ≈ 1
2%s

2(i+ 1)− 1
2%s

2(i) ≈ 1
2%(s2(i+ 1)− s2(i)) (6.44)

The objective is to show that ∆V (i + 1) − ∆V (i) = 0 when s(i) = 0. According

to Eq. (6.44), it is obvious that ∆V (i + 1) − ∆V (i) = 0 if s2(i + 1) − s2(i) = 0.

s2(i+ 1)− s2(i) = 0 if either of the following conditions is met:

s(i+ 1) = s(i) = 0 (I) (6.45a)

s(i+ 1) = s(i) 6= 0 (II) (6.45b)

Eq. (6.42) says that if s(i) = 0, then ∆V (i) = 0. If one assumes that the unknown

uncertainty term is removed from the model using the proposed adaptation algorithm,

the second order sliding mode condition denotes that ξ(i+1) = ξ(i) = 0, which means

s(i + 1) = −βs(i). Thus, if s(i) = 0, s(i + 1) also becomes zero, and consequently
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∆V (i+ 1)−∆V (i) = 0. This means that condition (I) in Eq. (6.45) is realizable.

According to Eq. (6.43), s(i+ 1) < s(i). This means s(i+ 1) 6= s(i) unless s(i+ 1) =

s(i) = 0. Thus, the condition (II) in Eq. (6.45) cannot be true and only condition

(I) is feasible. According to condition (I), if s(i) = 0, not only ∆V (i) = 0, but also

∆V (i + 1) − ∆V (i) = 0. Next, the third Lyapunov difference function should be

calculated:

[∆V (i+ 2)−∆V (i+ 1)]− [∆V (i+ 1)−∆V (i)] (6.46)

≈ 1
2Γ(s2(i+ 2)− 2s2(i+ 1) + s2(i))

Again, since s(i+2) < s(i+1) < s(i), s(i+2) 6= s(i+1) 6= s(i) unless s(i+2) = s(i+

1) = s(i) = 0. Thus, if s(i) = 0, not only s(i+ 1) = s(i+ 2) = 0, but also ∆V (i) = 0,

∆V (i + 1) −∆V (i) = 0, and (∆V (i + 2) −∆V (i + 1)) − (∆V (i + 1) −∆V (i)) = 0.

In a same manner as the first, second, and third order difference functions, it can

be shown that higher order Lyapunov difference functions (>3) become zero if, and

only if s(i) = 0 [6, 59]. This is a key conclusion that allows for proof of the global

asymptotic stability by invoking the new Invariance Principle for nonautonomous

systems [104].

Continuity is one of the required conditions for the LaSalle’s Invariance Principle [105]

to conclude the asymptotic stability with respect to a negative semi-definite deriva-

tive of a positive definite Lyapunov function. LaSalle’s Invariance Principle has been

extended in [104] to nonlinear systems with discontinuity. The extension of LaSalle’s
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Invariance Principle to discrete systems, which is called the new Invariance Prin-

ciple theorem, removes the continuity requirement, and allows us to conclude the

asymptotic stability with respect to a negative semi definite difference function of a

positive definite Lyapunov discrete equation. It was shown that when s(i) = 0, the

Lyapunov difference function, all the future values of the sliding variable, and higher

order Lyapunov differences become zero. Therefore, all the trajectories of the system

approach the set defined by ∆V (i) ≡ 0. Since s(i) = 0 and α̃(i) = 0 are the only

trajectories which satisfy the nonlinear uncertain system equations, this trajectory

(s(i) = 0, α̃(i) = 0) is a limit point, and also an equilibrium point, of the closed-loop

system [6, 59].

Since the Lyapunov difference function cannot be negative for any unlimited period of

time, according to the new Invariance Principle theorem [104], ∆V must be identically

zero at any limit point [94]. Let define two new domains:

Ω0 = {x|V (x) ≤ V (x0)} (6.47)

Ωi = {x|∆V (x) ≡ 0)}

where x0=x(0) is the initial condition. The negative semi definite condition of the

Lyapunov difference function means that all system states are bounded and contained

within the domain Ω0 [104]. For a small enough sampling time, if the following

condition holds [104]:

• |x(i) + Tf(x(i)) + Tg(x(i))u(i)| is bounded for any bounded x
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then, s(i)=α̃(i)=0, which is the only limit point (equilibrium point) of the system,

belongs to Ωf=Ω0
⋂Ωi. Therefore, s(i) and α̃(i) → 0 as i → ∞. Thus, according

to the new Invariance Principle theorem [104], the asymptotic convergence of the

two variables to zero with a positive definite Lyapunov function and a negative semi-

definite Lyapunov difference equation is concluded.

Overall, the control input of the second order DSMC is:

u(i) = ueq(i) + usw(i) (6.48)

where ueq and usw are calculated according to Eq. (6.17), and Eq. (6.38), respectively.

The gain of the switching function (sgn(ξ(i−1))), which depends on the DSMC tuning

parameters (λ, β) and g (Eq. (6.13)), is the key to ensure the controller robustness

against external uncertainties [6]. By looking into Eq. (6.38), it can be seen that

the gain of the switching function has the same unit of the control input. This gain

represents the boundary of the external uncertainties on the control signals, i.e. ADC

imprecisions [1, 24]. Tuning the switching function gain based on constant λ and β is

hard to achieve. Instead, an online sampling and quantization uncertainty prediction

mechanism was proposed in [4] which allows for estimating and propagating the ADC

uncertainty bounds on the control signal, and avoids conservative controller design.

The switching function with the predicted ADC uncertainty bounds has the following

structure:

usw(i) = −|µu|sgn(ξ(i− 1)) (6.49)
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where µu is the propagated sampling and quantization imprecisions. µu is estimated

according to the mechanism presented with details in [4, 6]. In order to avoid possible

high frequency chattering which occurs in discrete systems during implementation of

the signum function, the signum function is replaced with saturation (sat) function

which provides smoother behaviour:

usw(i) = −|µu|sat
(
s(i) + βs(i− 1)

)
(6.50)

6.3 MIMO Adaptive Second Order DSMC

The discretized nonlinear system can be expressed in MIMO structure as follows:

x(i+ 1) = T f(x(i)) + Tg(x(i))u(i) + x(i), (6.51)

where xk ⊂ x ∈ Rr, (k = 1 : r), and uj ⊂ u ∈ Rh, (j = 1 : h) are the state and

control input vectors, respectively. The remaining dynamics are represented as f(x(i))

and g(x(i)). A generic first order DSMC for the MIMO system in Eq. (6.51) has been

proposed in our previous work [62]. Here, we use the results from [62] to derive the

first order sliding surface vector (s(i) = [s1(i), ..., sh(i)]ᵀ) based on a system output

vector which is defined to be yj ⊂ y ∈ Rh, (j = 1 : h):

yj(i) = mj(x(i)). (6.52)

For a system with an output yj that has a relative degree of κj, the scalar sliding
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surface sj(t) is defined as:

sj(t) =
(
d

dt
+ λj

)κj−1
(yj(t)− yjd(t)), (6.53)

where yjd ⊂ yd ∈ Rh, (j = 1 : h) is the desired output values. It was shown in [62] that

for a MIMO system with a relative degree of κj (∑h
1 κj < r), the discrete dynamics

of the first order sliding surface (s) in the presence of the model uncertainties is:

s(i+ 1) = s(i) + T Λ̂ + TFa + TΥu(i), (6.54)

where a ∈ Rp is a vector of unknown constants in the model and F ∈ Rh×p is known

as a data matrix [62]. Λ̂ is defined as follows:

Λ̂ = Λ− Fa, (6.55)

in which Λ = [l1, l2, ..., lh]ᵀ, and:

lj = L
κj
f (hj) +

1∑
q=κj−1

cj(κj−q+1).[Lqf (hj)−
dκj

dtκj
y

(κj)
jd

(t)], (6.56)

and, Lqf (hj) is defined as [105]:

Lqf (hj) = dqyj(t)
dtq

, (6.57)

with cj(κj−q+1) chosen such that all poles are at −λj [59]. In the absence of the

model uncertainties, it is obvious that Λ̂ = Λ. Here, we assume a relative degree of

one (κj = 1) for the output. Thus, according to the sliding surface definition and

the relative degree of the outputs, the non-singular Υ ∈ Rh×h matrix in Eq. (6.54)

becomes:
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Υ =



g11 ... g1h

... . . .

gh1 ... ghh


. (6.58)

It is assumed that here we deal with a MIMO system that has an output with a

relative degree of one. Therefore, according to Eq. (6.53), sj(i)=yj(i) − ydj(i). For

the sake of simplicity it can be assumed that r = h (which means k=j=p=1:r),

mi(x)=xi(i), and ydk(i)=xdk(i). The latter assumption means that here, state space

variables of the state vector are treated as the output variables, and for each state

variable (xi), a sliding surface (si) is defined and it is assumed that a unique control

input (ui), either physical or synthetic, exists for every single sliding surface within

the sliding surface vector (s).

Now, the second order sliding surface vector (ξ = [ξ1, ..., ξr]ᵀ) is constructed:

ξ(i) = s(i+ 1) + βs(i), (6.59)

where s(i + 1) is calculated with respect to Eq. (6.54) and β ∈ Rr×r is the positive

definite matrix of the second order sliding mode gains. The equivalent control input

vector which satisfies the second order sliding mode condition (ξ(i + 1) = ξ(i) = 0)

can be found by solving the following equation for ueq:

TΥueq(i) = −(I + β)s(i)− T Λ̂− TFâ(i), (6.60)
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where â(i) is the estimation of the unknown constants a. In a similar manner to the

SISO controller, upon substitution of Eq. (6.60) into Eq. (6.59), we have:

ξ(i) = TFã(i), (6.61)

where ã(i) = a − â(i).

Similar to the SISO controller, a discrete Lyapunov analysis is carried out to first

converge ã to zero and remove the uncertainty in the model, and second, guarantee

the asymptotic stability of the closed loop system. To this end, the argument begins

with the following Lyapunov candidate function [62]:

V (i) = 1
2s(i)ᵀs(i) + 1

2 ã(i)ᵀΓã(i), (6.62)

where Γ ∈ Rr×r is the tunable adaptation symmetric positive matrix. The Lyapunov

difference function, ∆V (i) = V (i + 1) − V (i), is obtained by performing the Taylor

series expansion on Eq. (6.62). To this end, first we define ∆s and ∆ã vectors as

follows:

∆s(i) = s(i+ 1)− s(i) (6.63)

∆ã(i) = ã(i+ 1)− ã(i).

Next, ∆V (i) is calculated:
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∆V (i) = ∂V (i)
∂s(i) ∆s(i) + ∂V (i)

∂ã(i) ∆ã(i) (6.64)

+1
2

∂2V (i)
∂(s(i)ᵀs(i))(∆s(i)ᵀ∆s(i)

+1
2

∂2V (i)
∂(ã(i)ᵀã(i))(∆ã(i)ᵀ∆ã(i)) + ...,

where all the higher order (> 2) partial derivatives and also second order cross deriva-

tive are zero. The first order partial derivatives in Eq. (6.64) are:

∂V (i)
∂s(i) = s(i)ᵀ, ∂V (i)

∂ã(i) = ã(i)ᵀΓ, (6.65)

and the second order partial derivatives are:

∂2V (i)
∂(s(i)ᵀs(i)) = I,

∂2V (i)
∂(ã(i)ᵀã(i)) = Γ. (6.66)

Substituting Eq. (6.65) and (6.66) in to Eq. (6.64) yields:

∆V (i) = s(i)ᵀ(s(i+ 1)− s(i)) (6.67)

+ã(i)ᵀΓ(ã(i+ 1)− ã(i))

+1
2

(
∆s(i)ᵀ∆s(i) + ∆ã(i)ᵀΓ∆ã(i)

)
.

A new function, O(i) is defined based on the second order terms in Eq. (6.67):

O(i) = 1
2

(
∆s(i)ᵀ∆s(i) + ∆ã(i)ᵀΓ∆ã(i)

)
. (6.68)

According to Eq. (6.61) and (6.68), Eq. (6.67) can be simplified as follows:
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∆V (i) = s(i)ᵀ(−βs(i) + TFã(i)− s(i)) (6.69)

+ ã(i)ᵀΓ(ã(i+ 1)− ã(i)) +O(i).

By re-arranging Eq. (6.69), we obtain:

∆V (i) = −s(i)ᵀ(β + I)s(i) (6.70)

+ã(i)ᵀΓ
(
TΓ−1Fᵀs(i)− â(i+ 1) + â(i)

)
+O(i).

If the following equation, as the adaptation law, is used to update the estimation of

the unknown parameters vector (â(i)):

â(i+ 1) = â(i) + T (ΓΓ)−1Fᵀs(i), (6.71)

then, Eq. (6.70) becomes:

∆V (i) = −s(i)ᵀ(β + I)s(i) +O(i). (6.72)

One can easily find the analogous structure between MIMO (Eq. (6.71)) and SISO

(Eq. (6.25)) adaptation laws. Next, by expanding the second order term (O(i)) with

respect to Eq. (6.68), and assuming that the model uncertainties have been removed

by the adaptation law (Eq. (6.71)), Eq. (6.72) becomes:

∆V (i) = −s(i)ᵀ(β + I)s(i) + 1
2s(i)ᵀ(β + I)ᵀ(β + I)s(i). (6.73)

Finally, assuming that β is symmetric, Eq. (6.73) can be simplified as:
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∆V (i) = −1
2s(i)ᵀ(I− ββ)s(i). (6.74)

∆V is negative semi-definite if eigenvalues of β lie within the unit circle [59].

Although the Lyapunov function in Eq. (6.62) guarantees the finite-time zero con-

vergence of the first order sliding vector (s), and intuitively gives the adaptation law

to remove the uncertainty in the model, still it is required to prove the asymptotic

convergence of the second order sliding vector (ξ) to zero. To this end, first it is

assumed that the uncertainty in the model is removed permanently by incorporating

the adaptation rule from Eq. (6.71). Validity of this assumption will be testified in

Section 6.4.3. Next, the system switches to another Lyapunov function (V ∗, proposed

in Eq. (6.75)), which covers the time interval after the completion of the adaptation

period.

The idea of multiple Lyapunov functions has been studied for switched and hybrid

systems in the literature [106, 107, 108]. The study in reference [106] presents a

stability analysis based on multiple Lyapunov functions for discontinuous systems,

where the dynamic of the system (f) switches between multiple functions that are

globally Lipschitz continuous. Here, it is assumed that the dynamics hold the Lips-

chitz condition, but it does not switch. The sufficient condition, to show the stability

of the system in the sense of Lyapunov, is to show that at the switching sequence,

both of the Lyapunov functions (V, V ∗) are Lyapunov-like [106]. For our case, in
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which V switches just once, the Lyapunov functions are Lyapunov-like when the dif-

ference functions are at least negative semi-definite [106]. As shown before, for V from

Eq. (6.62), the negative semi-definite condition for ∆V holds. Thus, it is required

that the new candidate function (V ∗) is also Lyapunov-like. The new Lyapunov func-

tion is the extended version of the Lyapunov function in Eq. (6.62), which not only

preserves the nature of the problem, but also takes into account the finite-time zero

convergence conditions of the second order sliding vector (ξ), which is required to

prove the asymptotic stability of the second order MIMO DSMC.

We define the new Lyapunov function (V ∗) as follows:

V ∗(i) = 1
2

(
s(i+ 1)ᵀs(i+ 1) + s(i)ᵀβs(i)

)
. (6.75)

By using the Taylor series expansion, implementing the values for the first and second

order partial derivatives of V ∗ with respect to s(i) and s(i+ 1), and knowing that all

the higher order partial derivatives and also second order cross derivative are zero,

the Lyapunov difference function becomes:

∆V ∗(i) = s(i)ᵀβ(s(i+ 1)− s(i)) (6.76)

+ s(i+ 1)ᵀ(s(i+ 2)− s(i+ 1))

+ 1
2

(
∆s(i)ᵀβ∆s(i)

+ ∆s(i+ 1)ᵀ∆s(i+ 1)
)
.

According to the earlier assumption, upon removal of the uncertainties in the model,
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Eq. (6.61) becomes ξ(i) = 0. Thus, Eq. (6.76) can be simplified as follows:

∆V ∗(i) = −s(i)ᵀβ(β + I)s(i) (6.77)

− s(i+ 1)ᵀ(β + I)s(i+ 1)

+ 1
2

(
∆s(i)ᵀβ∆s(i)

+ ∆s(i+ 1)ᵀ∆s(i+ 1)
)
.

In a similar manner to the SISO system, it can be shown that upon applying the

equivalent control input of the MIMO second order DSMC (Eq. (6.60)) along with

the vector of the switching functions (|µui |sat(ξi)) on the MIMO form of Gao’s reach-

ing law [109, 110], and assuming the removal of the model uncertainties by using

Eq. (6.71), we obtain:

s(i+ 2) ≈ β2s(i), (6.78)

where the input of the second order MIMO DSMC is [109, 110]:

u = ueq(i)−



|µu1 |sat(ξ1(i− 1))
...

|µur |sat(ξi(i− 1))


, (6.79)

in which µui , i = 0 : r is the predicted uncertainties on the corresponding control

signal. Next, by substituting Eq. (6.78) into Eq. (6.77), we have:

∆V ∗(i) = −sᵀβ
(
− β3 − β2 + β − I

)
s(i), (6.80)
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which also has a similar structure to Eq. (6.42). ∆V ∗ in Eq. (6.80), is negative semi-

definite in s(i) when β is chosen such that its eigenvalues lie within the unit circle.

More importantly, due to the analogous structure between MIMO and SISO adaptive

second order DSMCs, the asymptotic stability of the MIMO controller can be proved

by invoking the new Invariance Principle [94, 104] and noting that the higher order

Lyapunov difference functions are zero, if and only if s = 0 [62].

6.4 Nonlinear Case Study: Engine Control

In this section, the proposed adaptive second order DSMC is designed for the physics-

based spark ignition (SI) combustion engine model during transient cold start period

(Eq. (4.28)-4.31)). Four states of the model and corresponding nonlinear dynamics

in the state-space structure are as follows [86]:

Texh(i+ 1)

ṁf (i+ 1)

ma(i+ 1)

ωe(i+ 1)


=



Texh(i)

ṁf (i)

ma(i)

ωe(i)


+ T





fTexh(i) 0 0 0

0 fṁf (i) 0 0

0 0 fma(i) 0

0 0 0 fωe(i)





αTexh

αṁf

αma

αωe



+



gTexh(i) 0 0 0

0 gṁf (i) 0 0

0 0 gma(i) 0

0 0 0 gωe(i)





∆(i)

ṁf,c(i)

ṁai(i)

ma,d(i)




,

(6.81)
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where F = diag[fTexh , fṁf , fωe , fma ], and:

fTexh = 1
τe

[600AFI − Texh] (6.82a)

fṁf = − 1
τf
ṁf (i) (6.82b)

fωe = − 1
J

(0.4 ωe(i) + 100) (6.82c)

fma = −ṁao. (6.82d)

Also Υ = diag[gTexh , gṁf , gωe , gma ], and:

gTexh = 7.5
τe
, gṁf = 1

τf

gωe = 30000
J

, gma = 1. (6.83)

The sliding vector is:

s(k) =



s1(i)

s2(i)

s3(i)

s4(i)


=



Texh(i)− Texh,d(i)

AFR(i)− AFRd(i)

ma(i)−ma,d(i)

ωe(i)− ωe,d(i)


. (6.84)

The equivalent control input vector (ueq) of the baseline second order DSMC for the

engine case study can be obtained by substituting F, Υ, and s into Eq. (6.60). For the

SISO DSMC, β is chosen to be diagonal, while for the MIMO controller, the dynamic

coupling is included via the off-diagonal element of β. For the second order DSMC

with ADC uncertainties, according to Eq. (6.79), the predicted ADC uncertainties
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are incorporated into the DSMC structure through the switching control input (usw)

gains. For the engine case study, the gains of the switching control input (µ∆, µṁfc ,

µṁai , µma,d) are estimated online using the mechanism previously shown in Figure 4.2.

6.4.1 Handling Implementation Imprecisions

In order to demonstrate the robustness characteristics of the second order DSMC

compared to the first order controller in handling ADC uncertainties, first we assume

that the engine model is ideal and there is no uncertainty in the modeled dynamics

(αTexh=αṁf=αωe=αma=1). Figure 6.1 shows the desired trajectories (AFR, Texh, and

engine speed) tracking results, using the first and second order DSMCs for sampling

times of 20 ms and 80 ms, and quantization level of 16-bit and 10-bit, respectively.

The mean tracking errors for both controllers are listed in Table 6.1. It can be

observed from Figure 6.1 and Table 6.1 that, when the signals at the controller I/O

are sampled every 20 ms, both first and second order baseline DSMCs illustrate

smooth and acceptable tracking performances, while the second order controller is

more accurate by up to 67% in terms of the tracking errors.

Upon increasing the sampling rate from 20 ms to 80 ms, and changing the ADC

quantization level from 16-bit to 10-bit, the first order DSMC performance degrades

significantly. On the other side, the second order DSMC still presents accurate track-

ing results. By comparing the first and second order DSMC results at T = 80 ms
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Table 6.1
Mean (ē) of Tracking Errors. Values Inside the Parentheses Show the

Resulting Improvement from the Second Order DSMC Compared to the
First Order DSMC.

ē (T=20 ms, 16-bit) ē (T=80 ms, 10-bit)
1st-Order 2nd-Order 1st-Order 2nd-Order

DSMC DSMC DSMC DSMC
Reference Reference

AFR 0.03 0.01 0.28 0.03
[-] (-66.67%) (-89.29%)
Texh 0.2 0.1 4.0 0.4
[oC] (-50%) (-90.0%)
N 0.1 0.1 13.8 0.9
[RPM] (≈0%) (-93.5%)
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Figure 6.1: Engine tracking results by the first and second order SISO
DSMCs for (a) T=20 ms, quantization level=16-bit, and (b) T=80 ms, quan-
tization level=10-bit.

161



and quantization level of 10-bit, it can be concluded that the proposed second order

DSMC offers higher robustness against ADC uncertainties, and outperforms the first

order controller by up to 90% in terms of the mean tracking errors.

For the SI engine case study, AFR controller is the most uncertainty-sensitive con-

troller, in comparison with the engine speed and exhaust gas temperature con-

trollers [2, 3]. Figure 6.2 shows the tracking results of the first (SISO) and second

(SISO and MIMO) order DSMCs under a relatively large sampling rate of 200 ms,

which causes significant uncertainty at the controller I/O. As shown in Figure 6.2,

the first order DSMC fails to track all the desired trajectories under these extreme

ADC uncertainties, but the SISO second order DSMC shows acceptable tracking

performances.
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Figure 6.2: Results of desired trajectories tracking from SISO Baseline 1st
and 2nd order DSMCs, and MIMO 2nd order DSMC with predicted ADC
uncertainties (T=200 ms, quantization level=16-bit).
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Figure 6.2-a shows that among the three SISO second order controllers, the AFR

controller is deviated more upon increasing the sampling rate. This deviation from

the desired AFR trajectories is larger when there is a change in the desired engine

speed trajectory (Figure 6.2-c). The link between engine speed and AFR controllers

can be traced in the strong coupling between AFR and rotational dynamics via the

intake air mass flow term (ṁao):

AFR = ṁao

ṁf

(6.85a)

ma(i+ 1) = ma(i) + T (ṁai(i)− ṁao(i)). (6.85b)

Moreover, Figure 6.2-b shows that the changes in desired engine speed profile have an

effect on Texh controller performance. Similar to the AFR controller, the link between

Texh and engine speed controllers is the exhaust gas temperature time constant (τe)

which is calculated with respect to the engine speed:

τe = 2π
ωe
. (6.86)

The coupling within the engine dynamics can be represented in the MIMO DSMC

design via β matrix. The diagonal elements of β are the same as the SISO con-

troller, while the off-diagonal element represents the coupling between various sliding

variables. According to Eq. (6.85) and (6.86), β is defined to present the coupling

between AFR, Texh, and engine speed controllers. Additionally, the engine speed and

air mass flow dynamics are inherently coupled because of the synthetic ma,d control
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input which is the input to the engine speed controller, and the reference trajectory

for the air mass flow controller. Previously, the results in [111, 112] showed that

allowing ṁf,c (used to regulate AFR) to depend upon the cam phasing (rotational

dynamics) leads to smaller transients in AFR tracking results. With a similar trend

to [111, 112], here, Figure 6.2-a shows that by utilizing the MIMO controller with

predicted ADC uncertainties, not only the AFR tracking error decreases (by 46%),

but also the effects of the engine speed trajectory variation on the AFR tracking

become smaller.

In a similar manner to AFR controller, by utilizing the MIMO second order controller

for Texh, the desired Texh tracking performance improves slightly (by 11%) compared

to the SISO second order DSMC, and the large overshoot at the beginning of the

simulation will be removed. On the other side, by looking into Figure 6.2-c, it can

be seen that changing the engine speed controller to MIMO structure has almost

no significant effect on the tracking performance. As highlighted in Figure 6.2-c, the

MIMO controller results in small spikes, which occur when the desired AFR trajectory

has a sudden change (Figure 6.2-a).

6.4.2 External Disturbance Rejection

Another interesting feature of the second order DSMC, in comparison with the first

order controller, is its unknown external disturbance rejection characteristics. To
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illustrate this feature, here the DSMC response to external disturbing torque load

is investigated. A physical example of this disturbing torque is when a driver turns

on a car’s air conditioning unit. This acts as disturbance for engine speed/torque

controller. The disturbing torque directly impacts the rotational dynamics of the

engine. However, since the AFR and Texh controllers are linked to engine speed

controller, any changes in the engine speed dynamics can affect AFR and, with

a lower degree, Texh controllers performance accordingly [3]. Figure 6.3 shows the

profile of the disturbing torque (Td=5 Nm) which is applied for 10 s during the

simulation time. Figure 6.4 shows the comparison between the baseline first and

second order SISO DSMCs under 20 ms of sampling time and quantization level of

16-bit. As expected, the disturbing torque affects AFR and speed tracking results.

It can be seen from Figure 6.4-c that both first and second order DSMCs can reject

the disturbance, however, the second order controller reacts faster to the disturbance,

and provides better tracking performance. By looking into Figure 6.4-a, it can be

observed that although the second order DSMC rejects the effects of the external

disturbance very fast, it comes at the cost of slightly higher overshoots in the desired

AFR tracking.
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Figure 6.3: Disturbing load torque profile.
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Figure 6.4: Disturbance rejection performance of the SISO baseline first
and second order DSMCs for the disturbing torque profile shown in Fig-
ure 6.3 (T=20 ms, quantization level=16-bit).

The disturbing torque load rejection performance is investigated at a higher sampling

rate (80ms) with the same external torque load profile shown in Figure 6.3. This time,

the baseline MIMO second order DSMC is also simulated in addition to the SISO first

and second order baseline controllers. Their tracking results are shown in Figure 6.5,

where it can be seen that both SISO and MIMO second order DSMCs show better and

faster tracking results compared to the first order controller. While both SISO and

MIMO second order engine speed DSMCs show very fast reactions to the disturbing

torque (Figure 6.5-c), the MIMO controller makes the AFR (Figure 6.5-a) and Texh
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Figure 6.5: Disturbance rejection performance of the SISO and MIMO
baseline first and second order DSMCs for the disturbing torque profile
shown in Figure 6.3 (T=80 ms, quantization level=16-bit).

(Figure 6.5-b) controllers’ response to the disturbance become more smooth compared

to the SISO second order DSMC. This is because the coupling among different engine

dynamics is reflected into the controller structure via the MIMO design. Therefore,

when there is a disturbance on one of the controllers, other controllers can react

accordingly to minimize the impact of the disturbance on the overall controller’s

performance.

The comparison results between the SISO and MIMO second order DSMCs from

167



Figure 6.2 and Figure 6.5 are consistent with our previous observation in [62], where

the MIMO first order DSMC is evaluated. Overall, by using the MIMO structure,

better tracking performance for AFR and Texh controllers can be achieved. However,

the performance of the engine speed controller leans toward a minimally coupled

structure.

6.4.3 Real-Time Engine 2nd Order DSMC Verification

In the next step, the performance of the proposed adaptation mechanism for the

SISO/MIMO second order DSMC is investigated under up to 50% multiplicative

uncertainty within the engine model. The uncertainty withing the engine model was

studied with details in Section 5.3 in Chapter 5. Since the adaptation laws for the

first and second order DSMCs have the same structures, Eq. (5.21), (5.24), (5.27),

and (5.32) are recalled as the adaptation laws for the second order DSMC. In this

section, the performance of both SISO and MIMO adaptive second order DSMCs

will be evaluated by testing the controller software on a real ECU in a PIL setup

(Figure 3.6) to verify the performances of the adaptive DSMC in real-time.

The model of the engine plant is built into the PXI processor. The output of the

PXI processor is the controller feedback signal from the plant. Using embedded ADC

units, the feedback signal is sampled and quantized at 80 ms and 16-bit, respectively.

On the other side, the adaptive second order DSMC logic along with the adaptation
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and uncertainty prediction mechanisms are implemented into the MABX, which is

the main ECU. The output of the MABX is the control signal which is set to be

updated at every 80 ms.

Figure 6.6 shows the results of four unknown multiplicative parameters estimation

from SISO and MIMO second order DSMCs with predicted ADC uncertainties. It

can be seen that under up to 50% uncertainty on each of the engine model’s dynamics,

by using the proposed adaptation mechanism, the unknown terms converge to their

nominal values, “1”, in less than 4 sec. Moreover, the MIMO controller shows faster

convergence for αTexh and αṁf , while for αma and αωe , SISO and MIMO controllers

show similar convergence behaviour. Additionally, it can be observed that for all cases,

despite the variation in the desired trajectories, after completion of the adaptation

period, the uncertainties in the models are removed permanently. Finally, the PIL

testing results show that the proposed adaptation mechanism is able to operate in

real-time since it is computationally efficient. The adaptation time is significantly

reduced if shorter sampling time is applied.

Figure 6.7 shows the desired trajectory tracking results form the non-adaptive, and

SISO/MIMO second order DSMCs. First of all, it can be seen that in the absence of

the adaptation mechanism, due to the large uncertainties in the plant model (50%),

the non-adaptive controller fails to track the desired trajectories for all the cases.

Upon activation of the adaptation mechanism, it can be seen that after completion
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of the adaptation period, both SISO and MIMO adaptive second order DSMCs with

predicted ADC uncertainties provide accurate tracking performances. By comparing

the non-adaptive and adaptive DSMCs it is revealed that the adaptation mechanism

is able to remove the uncertainties in the model by more than 95%, that consequently

results in more than 90% improvement in the controller tracking performance.

Figure 6.7 shows that the MIMO and SISO second order DSMCs have similar track-

ing behavior for the engine speed tracking. However, by using the MIMO structure,

the tracking performance for AFR and Texh controllers can be improved by 43%, and

33%, respectively. These improvements are more significant during the adaptation

period, and also at those points where there are sudden changes in the desired engine

speed profile. The latter observations can be explained based on the engine dynamics,

in which the engine speed loop acts as a disturbance to AFR and Texh (Eq. (6.85)

and (6.86)). By using the MIMO controller, ṁfc and ∆, which are used respectively

to regulate AFR and Texh, can be configured to depend upon the engine speed dy-

namics. Linking the control input of the AFR and Texh controllers to the rotational

dynamics allows for better AFR and Texh tracking performances during the engine

speed transients.
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6.5 Second Order Adaptive DSMC for Uncertain
Linear Systems

The second order DSMC control input is calculated by solving Eq. (6.16) [99]. Ap-

plying Eq. (6.16) to the linear system in Eq. (5.35), in the absence of model and ADC

uncertainties, results in the following control input (U) for the second order DSMC:

U(i) = B−1
( 1
T

[(β + I)X(i)− βXd(i) + Xd(i+ 1)]−AX(i)
)

(6.87)

The control input of the baseline second order DSMC (Eq. (6.87)) can be modified

(Umod) against sampling and quantization imprecisions by inclusion of the propagated

ADC uncertainties (µU) [8]:

Umod(i) = U(i)− |µU(i)| × sat(ξ(i− 1)) (6.88)

where µU is calculated according to Eq. (5.40). By applying Eq. (6.88) to the linear

system (Eq. (5.35)) in the presence of the unknown multiplicative (no additive un-

certainty term is considered), the vector (ξ) of the second order sliding variables (ξ)

becomes:

ξr×1(i) = T



α̃11a11 · · · α̃1ra1r

α̃21a21 · · · α̃2ra2r

... . . . ...

α̃r1ar1 · · · α̃rrarr


Xr×1(i) (6.89)

The multiplicative uncertainty within the linear model is removed (α̂ → 0 : α̂ → α)
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by utilizing Eq. (5.44) from Chapter 5.

6.5.1 Linear Case Study: DC Motor Speed Control

In a similar manner to the first order adaptive DSMC design for the DC motor case

study (Section 5.4.1), the control inputs of the adaptive second order SISO DSMC

with predicted ADC uncertainties are as follows:

Imodd,adaptive(i) = J

km

( 1
T

[−β1(s1(i)) + θd(i+ 1)− θ(i)]

+[α̂11
kf
J

]θ(i)− 1
J

Γ
)
− |µId(i)|sat(ξ1(i− 1))

(6.90)

V mod
adaptive(i) = L

( 1
T

[−β2(s2(i)) + Id(i+ 1)− I(i)]

+[α̂21
kb
L

]θ(i) + [α̂22
R

L
]I(i)

)
− |µ

V
(i)|sat(ξ2(i))

(6.91)

The SISO second order DSMC from Eq. (6.90) and (6.91) can be converted into a

MIMO structure via the second order sliding mode tuning gains (β), in which the

off-diagonal elements of β are chosen to be non-zero to reflect the coupling between

the states of the DC motor model in the controller structure. In the absence of

model uncertainties (αpq = 1), Figure 6.8 shows the comparison between the SISO

first, and SISO/MIMO second order DSMCs for different sampling rates. Shannon’s

sampling theorem criteria states that the sampling frequency must be at least twice

the maximum frequency of the measured analog signal [113]. As long as the Shan-

non’s sampling theorem is satisfied, increasing the sampling time helps to reduce the

computation cost. Although at lower sampling rates (e.g. 200 ms) all the controllers
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show similar performances, by increasing the sampling rate to 800 ms, the higher ro-

bustness characteristics of both SISO and MIMO second order DSMCs in comparison

with the first order controller is revealed. The comparison results show that the SISO

second order DSMC is improving the tracking errors by 69% on average for different

sampling rates, compared to the first order controller. Moreover, it can be seen that

the MIMO second order controller is barely affected by the sampling time increase,

and this illustrates its strong robustness against ADC uncertainties.
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Figure 6.8: Comparison among the speed tracking results of the first and
second order DSMCs for different sampling rates and quantization level of
16-bit: (a) SISO first order DSMC, (b) SISO second order DSMC, (c) MIMO
second order DSMC. No model uncertainty is applied.

Figure 6.9 shows how the DSMC tracking performance could be affected by the quan-

tization level of the ADC unit. As can be seen from Figure 6.9-a, the SISO first order

DSMC is more sensitive to quantization level compared to SISO/MIMO second order
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DSMC. On the other side, any changes in the quantization level from 10-bit to 4-bit

have no effect on both SISO and MIMO second order DSMCs tracking performances.

In order to show the effectiveness of incorporating the predicted ADC uncertainties

in improving the DSMC against uncertainties, the second order DSMC is evaluated

under extreme sampling and quantization levels which cause high level of imprecisions

at the controller I/O. By looking into Figure 6.10, one can conclude the better tracking

performance of the second order DSMC with predicted ADC uncertainties for both

SISO and MIMO cases, compared to the two other controllers.

Another interesting feature of the MIMO second order DSMC in comparison with the

SISO controller is its disturbance rejection characteristics. As shown in Eq. (5.56),
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it is assumed that there is a constant torque (Γ) on the shaft of the DC motor.

If there will be any unknown disturbing torque on the motor shaft, the controller

should reject the disturbance fast, to make sure the desired speed tracking is not

affected. Figure 6.11 shows the disturbance rejection characteristics of the SISO and

MIMO second order DSMCs, under different sampling and quantization levels. The

disturbing torque, shown in Figure 6.11-c, is defined with respect to the constant

nominal torque on the DC motor shaft, and it generates up to 20% disturbing torque

load. Figure 6.11-a shows that when the sampling rate is fast (200 ms), both SISO

and MIMO second order DSMCs reject the disturbing torque effect very quickly.

However, upon increasing the sampling rate from 200 ms to 800 ms (Figure 6.11-b),

while the MIMO controller still shows accurate speed tracking and fast disturbance
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rejection results, the SISO controller fails to reject the disturbing torque impact and

the tracking performance is affected significantly.
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Figure 6.11: Disturbance rejection performance of the SISO and MIMO
second order DSMCs for up to 20% sudden changes on the nominal external
torque for (a) T=200 ms, quantization level=10-bit, (b) T=800 ms, quan-
tization level=10-bit. Disturbing torque percentage is plotted in (c). No
model uncertainty is applied.

Figure 6.12-a shows that at the extreme sampling rate (1000ms) and quantization lev-

els (4-bit), even the MIMO second order baseline DSMC fails to reject the disturbing

torque (Figure 6.12-b). It is not a surprise that the disturbance rejection character-

istics of the controller is weakened when the external uncertainties become larger.

Figure 6.12-b shows that incorporation of the predicted ADC uncertainties (inclu-

sion of the switching control input) helps to improve both tracking performance and
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disturbing torque rejection results, for both SISO and MIMO second order DSMCs

compared to the baseline controllers.
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6.5.2 Real-Time DC motor 2nd order DSMC Verification

The performance of the designed second order adaptive DSMC for the DC motor

speed tracking problem is evaluated on an actual ECU within a PIL setup. The

desired speed trajectory tracking performance of the controllers are studied in real-

time under sampling time=200 ms and quantization level=10 bit on the feedback and

control signals, in the presence of multiplicative type of model uncertainties inside the

model-based controller structure. The performance of the adaptive SISO first order
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DSMC, and adaptive MIMO second order DSMC with incorporated implementation

uncertainties are shown in Figure 6.13 for tracking the desired speed profile. As can be

observed, the adaptive second order MIMO DSMC with predicted ADC uncertainties

is able to significantly improve the tracking performance by 60% compared to the

first order adaptive SISO DSMC.
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Figure 6.13: Real-time verification result of the DC motor speed control
using the adaptive first order SISO DSMC and the modified adaptive second
order MIMO DSMC with predicted ADC uncertainties. Test conditions:
sampling time: 200 ms, quantization level: 10-bit, 50% model uncertainty is
applied.

6.6 Summary and Conclusion

A new adaptive second order discrete sliding mode controller (DSMC) formulation

for nonlinear uncertain systems was introduced in this paper. Based on the discrete

Lyapunov stability theorem, an adaptation law was determined for removing generic

unknown multiplicative uncertainty terms within the nonlinear difference equation
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of the plant’s model. In order to ensure the controller robustness against external

ADC imprecisions, a new switching control input was introduced, which contains the

knowledge of ADC imprecisions via an online sampling and quantization uncertainties

prediction and propagation mechanism. The proposed controller was examined for

two case studies, including (i) DC motor speed control, (ii) spark ignition engine con-

trol problem to track desired air-fuel ratio, engine speed, and exhaust gas temperature

trajectories. Comparing to the first order DSMC, the second order DSMC shows sig-

nificantly better robustness against data sampling imprecisions, and can provide up

to 80% improvement in terms of the tracking errors. The better performance of the

second order DSMC can be traced in driving the higher order derivatives (difference

functions) of the sliding variable to zero. In the presence of the model uncertainties, it

was shown that the adaptation mechanism is able to remove the errors in the modeled

dynamics quickly, and steer the dynamics towards their nominal values for both case

studies. Increasing the sampling time raises the required time for the adaptation law

to compensate for the uncertainties in the models. This required time was increased

by two times, when the sampling time was increased from 10 ms to 40 ms in the en-

gine tracking control problem, though the adaptation mechanism still could remove

the model uncertainties in less than two seconds.
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Chapter 7

Experimental Testing of the DSMC
on an Electronic Throttle Body1

7.1 Introduction

Air mass flow control into the intake manifold of internal combustion engines (ICEs)

is an important part of vehicle powertrain control. Accurate air-to-fuel ratio (AFR)

and engine torque controls are achieved via air mass flow control [2]. Imprecise air

mass flow control will result in undesired ICE performance, and directly affects vehicle

drivability, fuel economy, and engine-out emissions. Air mass flow is modulated by an

electromechanical throttle actuator, which is basically a DC motor which steers the

throttle plate towards a desired position based on the demanded air mass flow from

the ECU. Due to the nonlinear return spring with variable stiffness and significant

1The material of this chapter has been accepted for publication in SAE International Journal of
Commercial Vehicles (doi:10.4271/2017-01-0598) [9].
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dry friction, the dynamics of the throttle is highly nonlinear. Because of this nonlin-

earity in the dynamics, classic control design techniques, such as PID controllers, are

limited to provide accurate and fast throttle position tracking characteristics without

extensive controller tuning.

Several linear and nonlinear control design techniques have been previously applied

to the throttle position tracking problem. Studies in references [114, 115] presented a

PID controller along with the nonlinear friction and limp-home compensators. Con-

strained time-optimal control problem for a piecewise affine (PWA) model of the

throttle was presented in [116, 117]. The study in reference [118] demonstrated the

application of adaptive pulse control (APC) to throttle angle control. A nonlinear con-

trol design was proposed utilizing the input-output feedback linearization approach

in [119], and the controller was experimentally validated on a throttle body. A non-

linear feedforward and feedback controller based on flatness was designed in [120];

however, this approach was shown to be very sensitive to the parameter variations.

Moreover, the application of linear parameter varying (LPV) methods for the elec-

tronic throttle control has been studied in the literature [121, 122, 123]. LPV methods

allow for achieving the requirement of optimal control of the system performance over

a certain operating range and improve the accuracy of the linearization of a nonlinear

system [123]. A physics-based LPV model of the throttle was presented in [122], in

which the highly nonlinear system is converted into an LPV system. Based on the
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LPV system, an H2 static output feedback control was designed to guarantee the sys-

tem performance; however, it was observed that the system is not robust and small

modeling error could make the system become unstable. This issue was addressed

in [123], in which the mixed constrained H2/H∞ LPV gain-scheduling control tech-

nique was investigated for the electronic throttle position control.

The capabilities of continuous-time sliding mode control (SMC) [124, 125, 126], and

discrete-time sliding model control (DSMC) [127, 128], as robust and low-cost non-

linear control design techniques, have been shown in the literature for the throttle

control problem. As it was discussed in details in the previous chapters, performance

of previous model-based control techniques significantly deteriorates under impreci-

sions due to controller software implementation. In this chapter, the novel generic

DSMC formulation from Chapter 4 including the predicted ADC imprecisions is em-

ployed to design and implement a position controller for an electromechanical throttle

body.

The main contribution of this chapter is to (i) experimentally illustrate the importance

of handling the ADC imprecisions in a model-based controller, and (ii) introduce a

novel DSMC formulation for the throttle position control in order to improve the

robustness characteristics against sampling and quantization imprecisions.
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7.2 Throttle Experimental Setup

Figure 7.1 shows the experimental setup developed in this study for open-loop and

closed-loop throttle position regulations. The electronic throttle body is a ACDelcor,

Model 2173429, that uses a Throttle Position Sensor (TPS) for measuring angle of

the throttle plate. The throttle housing width is 63.0 mm. This throttle is the same

as the throttle used on a GM 2-Liter Turbocharged I4 Ecotec Gen I LHU engine.

Figure 7.1: Throttle experimental setup: (a) schematic, and (b) real sys-
tem.

The ECU is a National Instrument (NI) PXI processor (NI PXIe-8135). PXI processor
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acquires and sends the signals from/to the throttle body via the NI PXI-7841R data

acquisition card (DAQ), which is able to read/send the analog/digital signals with

the quantization level of up to 16 bit. The throttle driver (full H-bridge) is a NI 9759

module which is connected to the PXI chassis (NI PXIe-1082) via a NI 9151 R-series

expansion chassis. Real-time test configuration for NI PXI ECU is conducted using

NI VeriStandr software on the user interface desktop computer. Access to the NI PXI

possessor input/output (I/O) and interfaces (NI PXI-8135) is granted by VeriStandr.

Sampler and quantizer blocks are embedded on the throttle ECU I/Os to virtually

emulate different sampling and quantization levels.

7.3 Throttle Modelling and Parameter Identifica-
tion

The throttle has two main electrical and mechanical parts as shown in Figure 7.2.

The electrical part is a DC motor armature which takes voltage (U) as input and

the output is torque on the output shaft. The generated torque by the DC motor

is transferred to the shaft of the throttle via a gear set. The return spring on the

throttle shaft brings the throttle back to the so-called “limp-home” region, if there

would be any failure in the power supply [114]. To this end, the stiffness of the return

spring in the limp-home region is set to be relatively high, compared to the normal

position range of the throttle. The variable stiffness of the throttle return spring, and

the limp-home region are demonstrated in the throttle torque response in Figure 7.3.
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In addition to the limp-home region, there are two other regions in the spring with

relatively high stiffness, which make the return spring dynamic more nonlinear. As

can be seen from Figure 7.3, these two regions are the areas near “Full Close” and

“Full Open” positions. The high stiffness of the return spring at the full-close and full-

open positions represents the mechanical hardstops which limit the operation range

of the throttle (i.e., ϕ = 0o − 90o).

Figure 7.2: Schematic of the electronic throttle actuator.

Figure 7.3: Effect of nonlinear return spring with variable stiffness (ks) on
throttle torque-position response.
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Figures 7.4 and 7.5 show the open-loop experimental response of the throttle to the

sinusoidal inputs with two different frequencies. The input, the duty cycle of the

pulse width modulation (PWM) signal, is based on 0.25sin(2πωt) + 0.5 form, where

ω is the input frequency. This input was applied to the throttle with ω = 0.1 Hz,

and 0.5 Hz. It can be observed that three important regions make the throttle

dynamics highly nonlinear. These regions are limp-home region, and near full closing

and opening regions. Inside limp-home region (30-40o), despite the increase in the

applied input, the throttle position does not change. This behavior can be traced in

the return spring which has a high stiffness in the limp-home region. Increasing the

input frequency, due to the moment of inertia, decreases the operation range of the

throttle. However, the dominant impact of the high stiff spring at limp-home, and

full-open/close regions disappears. Ideally, at very high input frequency, those regions

will disappear from the throttle dynamics completely, and similar to the applied input,

the throttle behavior will be sinusoidal. Here, the objective is to capture the dominant

parts of the throttle dynamics which cover the whole operation range of the throttle,

and allow for the fast and accurate position tracking based on the ECU demand. To

this end, mathematical models of different electrical/mechanical components of the

throttle body will be discussed in the following.

The relation between current (I) and the input voltage (U) in the armature circuit

of the DC motor is [129]:

U = RI + L
dI
dt

+ kemf ϕ̇M (7.1)
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namic at different input frequencies. The experimental data are collected
from the throttle by applying 0.25sin(2πωt)+0.5 as the input at (a) ω = 0.1
and (b) ω = 0.5 Hz.

where, R is the electrical resistance, L is the inductance, ϕM is the DC motor shaft’s

position, and kemf is the back electromotive force constant. Assuming a neglectable
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electrical dynamics (L = 0) [129, 130], the current (I) can be calculated as follows:

I = 1
R

(U − kemf ϕ̇M) (7.2)

The electrical torque on the DC motor shaft (τM) is obtained according to the arma-

ture circuit current:

τM = kemfI (7.3)

Next, τM is transferred to the throttle shaft via gears. The relation between DC

motor shaft position (ϕM) and the throttle position (ϕ) is calculated by:

ϕM = Nϕ (7.4)

where, N is the total gear ratio from the DC motor shaft to the throttle’s shaft. Sim-

ilarly, the transferred torque from the DC motor to the throttle shaft (τ) is calculated

by:

τ = NητM (7.5)

where, η is the overall efficiency of the mechanical system. By substituting Eq. (7.1)-

(7.4) into Eq. (7.5), τ can be expressed with respect to the input voltage:

τ = Nkemfη

R
U −

N2k2
emfη

R
ϕ̇ (7.6)

The following equation describes the system dynamics on the mechanical side:

Jϕ̈ = τ − τv − τs − τf (7.7)

where, τv is the mechanical viscous torque; τs is the torque from the nonlinear return
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spring; τf is the dry friction torque; J is the throttle moment of inertia. τv is calculated

as follows:

τv = bmechϕ̇ (7.8)

where, bmech is the mechanical viscous damping coefficient. τs, the generated torque

by the nonlinear return spring, is determined by:

τs = ks(ϕ)ϕ (7.9)

where, ks(ϕ) is not constant and is a function of the throttle position (Figure 7.3).

Finally, the torque loss due to dry friction (τf ) is calculated using the following

equation [124, 131]:

τf = µξsgn(ϕ̇) (7.10)

where, µ and ξ are the friction coefficient and vertical force, respectively. By substi-

tuting Eq. (7.6), and (7.8)-(7.10) into Eq. (7.7), the mechanical dynamics is presented

by:

Jϕ̈ = Nkemfη

R
U −

N2k2
emfη

R
ϕ̇ (7.11)

−bmechϕ̇− ks(ϕ)ϕ− µξsgn(ϕ̇)

Eq. (7.11) is normalized with respect to control input U by multiplying R
Nkemfη

to the

both sides of the equation. This yields [130]:

J∗ϕ̈ = U − b∗ϕ̇−K∗(ϕ)ϕ− µ∗sgn(ϕ̇) (7.12)
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Normalized parameters in Eq. (7.12) are noted by superscript ‘*’ and are calculated

by:

J∗ = R

Nkemfη
J (7.13a)

b∗ = R

Nkemfη

(N2k2
emfη

R
+ bmech

)
(7.13b)

K∗ = R

Nkemfη
ks(ϕ) (7.13c)

µ∗ = R

Nkemfη
µξ (7.13d)

The parameters of the throttle dynamics in Eq. (7.13) are estimated based on the

open-loop experimental data which are collected by applying different control inputs

to make sure the dominant parts of the dynamics are captured. To take into account

the nonlinear behavior of the spring and keep the model as simple as possible, a

switching model with different sets of parameters is identified. The model switches to

the corresponding set of the parameters based on the throttle position. Three sets of

parameters are listed in Table 7.1. The first set covers full-close to limp-home region

(Region I in Figure 7.3). Second set is dedicated to the limp-home region (Region II

in Figure 7.3), while the third set covers the region between limp-home area to the

full-open position (Region III in Figure 7.3). A nonlinear least square method is

used to find each set of parameters using MATLABr System Identification Toolbox.

Figure 7.6 shows the results of validating the identified model against the open-loop

experimental data. The verification results show that the model is able to capture

the dominant part of the throttle dynamics with an overall mean error of 1.5o.
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Table 7.1
Identified parameters of the throttle model in Eq. (7.13), according to the

operating regions in Figure 7.3.

Parameter Set 1 Set 2 Set 3
(Region I) (Region II) (Region III)

J∗ 1.89× 10−6 2.96× 10−7 1.62× 10−6

b∗ 5.48× 10−3 6.33× 10−3 5.75× 10−3

K∗ 0.63 0.95 0.79
µ∗ 3.58× 10−4 3.21× 10−3 3.50× 10−4
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Figure 7.6: Results of throttle model verification against two sets of ex-
perimental data (ē and σ are the mean and standard deviation errors, re-
spectively).
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7.4 DSMC design for Throttle Position Control

The state space representation of the throttle dynamics can be expressed using the

following second order system by assuming x1 = ϕ and x2 = ϕ̇ as the system states:

ẋ1(t) =x2(t) (7.14a)

ẋ2(t) = 1
J∗

(
U(t)− b∗x2(t)−K∗x1(t)− µ∗sgn(x2(t))

)
(7.14b)

The discrete difference equations of the model can be obtained using the first order

Euler approximation [89]:

x1(i+ 1) = x1(i) + Tx2(i) (7.15a)

x2(i+ 1) = x2(i)

+ T

J∗

(
U(i)− b∗x2(i)−K∗x1(i)− µ∗sgn(x2(i))

)
(7.15b)

The first sliding variable (s1) is defined to be the error in tracing the desired throttle

position (s1(i) = ϕ(i) − ϕd(i)). As can be seen from Eq. (7.15), there is no direct

control input on throttle position. On the other side, the voltage (U) is the input for

the second state equation (x2). In order to link the first and second state variables,

and indirectly apply the voltage to the throttle position, a synthetic control input is

defined. The synthetic control input is first calculated from the first sliding reaching

law. Next, it will be used as the desired value for the second sliding variable. Applying

the sliding reaching law (Eq. (5.36)) to the first sliding variable yields:
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s1(i+ 1) = x1(i+ 1)− x1d(i+ 1) = ρ1s1(i) −→ (7.16)

x1(i) + Tx2(i)− x1d(i+ 1) = ρ1s1(i) −→

x2d(i) = 1
T

(ρ1s1(i)− x1(i) + x1d(i+ 1))

where, x2d is the calculated synthetic control input which will be used to define the

second sliding variable (s2). It is assumed that s2(i) = x2(i)− x2d(i), where x2 is the

throttle speed (ϕ̇), and x2d is calculated from Eq. (7.16). Since the only measured

signal is the throttle position, the derivative of the throttle position is estimated using

a third order Euler approximation:

x2(i) =
−1

3ϕ(i− 3) + 3
2ϕ(i− 2)− 3ϕ(i− 1) + 11

6 ϕ(i)
T

(7.17)

The main control input (U) is calculated by applying the sliding reaching law to s2:

s2(i+ 1) = x2(i+ 1)− x2d(i+ 1) = ρ2s2(i) −→ (7.18)

x2(i) + T

J∗

(
U(i)− b∗x2(i)−K∗x1(i)− µ∗sgn(x2(i))

)

−x2d(i+ 1) = ρ2s2(i)

which yields:

U(i) = J∗

T

(
ρ2s2(i)− x2(i) + x2d(i+ 1)

)
(7.19)

(
b∗x2(i) +K∗x1(i) + µ∗sgn(x2(i))

)

x2d(i+ 1) in Eq. (7.19) is obtained by expanding Eq. (7.16):
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x2d(i+ 1) = 1
T

(
ρ1(Tx2(i) + x1(i)− x1d(i+ 1)) (7.20)

−Tx2(i) + x1(i) + x1d(i+ 2)
)

By comparing Eq. (7.19) and (7.20), it can be seen that the calculated control input at

ith time step is a function of x1d at i, i+1, i+2 time steps. This means that the control

input at ith time step considers the desired trajectories with a 2-step horizon. The

inherent receding characteristics of the designed DSMC leads to better understanding

of the desired throttle position profile, and consequently better tracking performances.

Eq. (7.19) determines the value of the control input of the baseline DSMC. In the next

step, the baseline control law is modified against ADC imprecision by incorporating

the propagated sampling and quantization uncertainties on the control input into the

DSMC formulation. To this end, first it is required to estimate the ADC uncertainties

on control signal (µU).

The proposed technique in Figure 4.2 is employed for online ADC uncertainty predic-

tion and propagation in real-time. Upon successful implementation of the uncertainty

prediction algorithm, the estimated µU is incorporated into the baseline DSMC con-

trol input according to Eq. (4.22) as follows:

Umod(i) = J∗

T

(
ρ2s2(i)− x2(i) + x2d(i+ 1)

)
(7.21)

(
b∗x2(i) +K∗x1(i) + µ∗sgn(x2(i))

)
− µU(i)s2(i)
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Figure 7.7 shows the simulation results of testing the baseline DSMC for tracking the

desired throttle position profile under 1 ms, 2 ms, and 5 ms sampling times, and

16 bit quantization on the signals at the controller I/O. The significant effect of the

sampling time on the controller performance can be observed from Figure 7.7, when

at T = 1 ms, the controller tracks the desired position accurately. However, once the

sampling time increases, the baseline DSMC tracking performance degrades from its

ideal case.
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Figure 7.7: Simulation results of the baseline DSMC for tracking the de-
sired throttle position under quantization level of 16 bit, and (a) T = 1 ms,
(b) T = 2 ms, and (c) T = 5 ms.

The results of the ADC uncertainty prediction on the throttle position measured

signal are shown in Figure 7.8. The high accuracy of the uncertainty prediction

mechanism can be concluded from the mean error of the introduced sampling and
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Figure 7.8: Comparison of actual and predicted uncertainties due to sam-
pling and quantization on measured throttle position (5 ms sampling time
and 16-bit quantization level. ē is the mean error, and σ is the standard
deviation error).

quantization imprecisions estimation. Next, using the uncertainty propagation tech-

nique, shown in Figure 4.2, the ADC uncertainties are incorporated into the DSMC.

Figure 7.9 illustrates the effectiveness of the designed robust DSMC in enhancing the

baseline controller robustness against sampling and quantization imprecisions. While

the baseline controller fails to offer a precise and fast tracking performance under 5 ms

of sampling time and quantization level of 16 bit, the robust DSMC with predicted

ADC imprecisions shows significantly better results under the same conditions.

The impact of quantization level on the baseline DSMC is shown in Figure 7.10 for

T = 2 ms. It can be observed that the introduced uncertainty due to quantization

will increase by lowering the quantization level. When the quantization level is 6 bit,
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Figure 7.9: Simulation results of the baseline DSMC and robust DSMC
with predicted sampling uncertainties for tracking the desired throttle posi-
tion (T = 5 ms, and quantization level=16 bit).
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Figure 7.10: Simulation results of the baseline DSMC and robust DSMC
with predicted ADC uncertainties for tracking the desired throttle position
under 2 ms of sampling time and (a) no quantization, (b) 10 bit, (c) 8 bit,
and (d) 6 bit.
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the baseline DSMC fails to track the desired positions and the tracking error rises by

80% compared to the ideal case, in which there is no quantization. On the other side,

by incorporating the predicted ADC uncertainties into the baseline DSMC structure,

Figure 7.10 verifies that the robust DSMC removes the ADC imprecisions effects and

the controller performs similar to the ideal controller, with minimum tracking errors.

Figure 7.11 shows the experimental results of testing the baseline DSMC for different

desired position trajectories, while the signals to the controller I/O are sampled ev-

ery 1 ms, and the quantization level is 16 bit. These experimental results verify the

simulation test results in Figure 7.7. In addition, when the experiments were con-

ducted under sampling time of 5 ms, in Figure 7.12, the experimental observations

are similar to those in Figure 7.7. The experimental results show that performance

of the baseline DSMC is affected significantly by the sampling imprecisions.

Finally, the proposed robust DSMC with predicted ADC uncertainties was experi-

mentally tested on the throttle under different sampling and quantization conditions

to verify the effectiveness of the proposed approach in enhancing the controller per-

formance against ADC imprecisions. Figure 7.13 shows the experimental test results

under sampling time of 5 ms and quantization level of 10 bit. It can be seen that the

baseline DSMC (µU = 0) tracks the desired trajectories slowly and the tracking er-

rors are high (ē = 6.8o). Once the robust DSMC is activated, the controller response

becomes faster and the tracking errors decreases by 70% on average (ē = 0.1o).
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Figure 7.11: Experimental testing results of the baseline DSMC for track-
ing the desired throttle position at T = 1 ms, and quantization level=16 bit
for different desired position trajectories.
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Figure 7.12: Experimental testing results of the baseline DSMC for track-
ing the desired throttle position: (a) T = 1 ms, (b) T = 5 ms (quantization
level=16 bit in both cases).
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Figure 7.13: Experimental testing results of the baseline and robust DSMC
for tracking the desired throttle position (T = 5 ms, n = 10 bit).

Figure 7.14 shows the experimental test results under very low quantization level and

large sampling time, where the signals are digitized at the quantization level of 6 bit.

Due to the substantial ADC uncertainty, the baseline DSMC cannot even move the

throttle. However during the period that the robust DSMC is active, the throttle

recovers from the dead condition and tries to follow the desired position at its best,

under an extreme ADC condition.

7.5 Second Order DSMC for Throttle Position
Control

In this section, the effectiveness of the second order DSMC in improving the controller

robustness against ADC imprecisions is investigated. The control input of the second
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Figure 7.14: Experimental testing results of the baseline and robust DSMC
for tracking the desired throttle position (T = 10 ms, n = 6 bit).

order DSMC, based on the definition of the first order sliding variables (s1,s2) in

Eq. (7.16) and (7.18), is found by using Eq. (6.17):

U(i) = J∗

T

(
− β2s2(i)− x2(i) + x2d(i+ 1)

)
(7.22)

(
b∗x2(i) +K∗x1(i) + µ∗sgn(x2(i))

)

in which, x2d is calculated as follows:

x2d(i+ 1) = 1
T

(
− β1(Tx2(i) + x1(i)− x1d(i+ 1)) (7.23)

−Tx2(i) + x1(i) + x1d(i+ 2)
)

Figure 7.15 shows the comparison results of testing the first and second order baseline

DSMCs under different sampling times. Table 7.2 summarizes the comparison results

between the first and second order DSMCs in terms of the mean (ē) and standard
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deviation (σe) of the tracking errors. Similar to the DC motor and engine case studies

in Chapter 6, Figure 7.15 and Table 7.2 show the higher robustness characteristics of

the second order DSMC against implementation imprecisions for the throttle body

case study. The results from Table 7.2 illustrates that the baseline second order DSMC

improves the throttle position tracking performance by 60-90%, in comparison with

the first order DSMC. Figure 7.15 shows that once the sampling time is increased

from 1 ms to 10 ms, the first order DSMC fails to track the desired throttle position.

On the other side, despite the increase in the sampling time, the second order DSMC

provides fast and accurate tracking performance in all cases.

Table 7.2
Comparison results between the first and second order DSMCs for tracking

the desired throttle position in terms of the mean (ē) and standard
deviation (σe) of the tracking errors (Values inside the parentheses show
the resulting improvement from the second order DSMC compared to the

baseline first order DSMC).

ē [o] σe [o]
Sampling First Order Second Order First Order Second Order

Time DSMC DSMC DSMC DSMC
T (Ref) (Ref)

1 ms 0.8 0.3 5.8 3.5
(-62.5%) (-39.7%)

2 ms 3.3 0.4 10.1 3.9
(-87.9%) (-61.4%)

5 ms 14.2 0.8 11.5 6.1
(-94.3%) (-17.3%)

10 ms 32.7 2.6 12.7 10.5
(-92.0%) (-17.3%)
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Figure 7.15: Simulation results of comparing the baseline second order
DSMC with the baseline first order DSMC for tracking the desired throttle
position, (a) T = 1 ms, n = 16 bit, (b) T = 2 ms, n = 16 bit, (c) T =
5 ms, n = 16 bit, and (d) T = 10 ms, n = 16 bit.

7.6 Summary and Conclusion

The discrete sliding mode control formulation from Chapter 4 was used to design a

position controller for an air throttle body under sampling and quantization impre-

cisions. The new design uses an online mechanism to predict and propagate ADC

imprecisions. The robust DSMC was experimentally tested for an engine electronic

throttle position tracking control problem with highly nonlinear dynamics. First, a

nonlinear model was developed to simulate the throttle nonlinear dynamics. The
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parameters of the model were identified by applying a nonlinear least square tech-

nique on the experimental data collected from the throttle body experimental setup.

Next, the validated physics-based model of the throttle was employed to formulate

the baseline and robust DSMCs. Both controllers were experimentally tested on the

throttle body setup developed in this study. The experimental and simulation results

show:

• The developed switching nonlinear throttle model is able to predict the throttle

dynamics with less than 1.5o error.

• The proposed mechanism for predicting and propagating ADC imprecisions is

viable for real-time operation, and can predict the uncertainties accurately, with

an estimation error less than 0.01o.

• For the baseline DSMC, when the sampling time increases from 1 ms to 2 ms,

the tracking error increases by more than 5 times. Additionally, when the

sampling time becomes 5 ms, the tracking error increases by more than 14

times. In a similar manner to the sampling time, once the quantization level of

the baseline DSMC changes from 10-bit to 6-bit, the tracking error grows by up

to 80%, compared to the case with no quantization.

• While the baseline DSMC tracking performance is considerably affected by the

ADC imprecisions, upon incorporation of the predicted ADC uncertainties into

the DSMC, the robustness against ADC uncertainties significantly improves.

When the sampling time is increased from 1 ms to 5 ms, and quantization level

is decreased from 16 bit to 10 bit, the experimental test results showed that the
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robust DSMC can reduce the tracking errors of the baseline DSMC by up to

95%. Similarly, once the sampling time is increased to 10 ms, and quantization

level is decreased to 6 bit, the robust DSMC showed better tracking performance

by upto 60%, compared to the baseline DSMC.

• The simulation test results showed the higher robustness characteristics of the

second order DSMC against ADC imprecisions, compared to the baseline first

order DSMC. It was observed that the second order DSMC can improve the

tracking results of the equivalent first order DSMC by 60-90%, in terms of the

mean tracking errors.
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Chapter 8

Conclusion and Future Work

8.1 Summary and Conclusion

This PhD dissertation aspired to bridge the gap between the designed and imple-

mented controllers with focus to overcome implementation and model uncertainties.

It was shown that this gap can be filled by (i) modeling and quantification of un-

certainties that arise from digital controller implementation imprecisions, (ii) design

of robust controllers to overcome implementation imprecisions, and (iii) development

of an adaptive control framework to mitigate the modeling uncertainties. The final

outcome from this PhD dissertation is an uncertainty/imprecisions-adaptive, easily

verifiable, and robust control theory framework. This goal has been achieved by com-

pleting the following seven stages. Summary of the results and contributions from

each of these seven stages are listed below:

• Stage I (Chapter 2) - Early model-based controller verification and validation

using reduced order controller design and studying the impact of implementation

imprecisions on controller performance:
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1. A novel nonlinear model/controller (SMC) order reduction technique based

on singular perturbation approximation (SPA) was developed and tested

successfully for the automotive cold start emission control challenge in an

SI engine. This resulted in simplification of the SMC design and reduced

the computation costs.

2. The results of the reduced order SMC were compared with those from a full

order SMC. The simulation results showed that the designed reduced order

SMC outperforms the full order SMC in terms of engine-out and tailpipe

HC emission with about 12% reduction in HC tailpipe emission. This is

because the full order SMC treats all the control actuations equally. How-

ever, the reduced order SMC puts an optimized weight among the three

control actuations since it evaluates the importance of affecting dynamics

through the SPA model order reduction technique. Overall, the developed

SPA approach not only simplified the original cold start model, but also

helped the control design to better adjust priority among different control

actuations.

3. An early model-based controller verification and validation (V&V) was pro-

posed and illustrated to study the effects of implementation imprecisions.

including sampling time, quantization level, and fixed-point computations

on the controller tracking performance. The proposed model-based con-

troller design and verification approach can reduce the development time
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and cost for automotive controllers.

• Stage II (Chapter 3) -Easily verifiable uncertainty-adaptive sliding mode con-

troller design to improve robustness against implementation imprecisions:

1. An uncertainty-adaptive SMC design methodology, based on the Lyapunov

stability analysis, was developed to improve the SMC tracking perfor-

mance under sampling and quantization imprecisions. The proposed con-

trol framework aimed to reduce the debugging efforts in the V&V cycle by

improving the controller robustness against implementation imprecisions.

2. The proposed single-input single-output (SISO) uncertainty-adaptive SMC

framework was examined on the engine control problem introduced in

Chapter 2. The uncertainty-adaptive SISO SMC showed better perfor-

mance in exhaust temperature control by up to 50% reduction in the

tracking error. However, due to the complexity of the engine plant, the

developed adaptive SISO SMC could only provide small improvement (up

to 16% and 2%) in tracking the engine speed and air-to-fuel (AFR) ratio.

3. The SISO uncertainty-adaptive SMC was converted to a multi-input multi-

output (MIMO) SMC using nonlinear balanced realization which trans-

forms the physical state space to a non-physical space in which the states

are prioritized according to their energy level.

4. The new uncertainty-adaptive MIMO SMC is able to improve the tracking

errors for engine speed and AFR up to 41% and 22%, respectively. The
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real-time testing of the MIMO SMC on a processor-in-the-loop (PIL) plat-

form showed that the new adaptive controller is able to meet the control

targets under ADC imprecisions, while the baseline SMC fails to meet the

targets due to impacts of implementation imprecisions.

• Stage III (Chapter 4) - ADC uncertainty prediction and propagation models to

design discrete sliding mode controllers (DSMC) with predicted implementation

imprecisions:

1. An online methodology was developed for predicting and propagating the

sampling and quantization imprecisions on both measured and control sig-

nals based on DSMC formulation. An analytical approach was proposed

to propagate the imprecisions from measured signals to control signals,

while for the nonlinear systems, an experimental approach was proposed

to enable real-time uncertainty propagation.

2. The proposed prediction mechanism for sampling and quantization impre-

cisions was tested in real-time for the nonlinear combustion engine model

(from Chapter 2), and also a linear model of a DC motor. The results

verified the high accuracy of the uncertainty prediction technique.

3. The robustness characteristics of a conventional DSMC formulation was

improved against ADC imprecisions by incorporating the predicted sam-

pling and quantization imprecisions. This also helps to avoid conservative

controller design.

4. The modified DSMC with predicted ADC imprecisions was designed and
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evaluated in real-time (by using the PIL setup from Chapter 3) for the SI

engine and DC motor control problems under different sampling times and

quantization levels.

5. Real-time testing results for both case studies showed that the new DSMC

design is able to improve the tracking performance under sampling and

quantization imprecisions by 40-90% compared to a conventional SMC

design.

• Stage IV (Chapter 5)- Design of a first order adaptive DSMC with robustness

to implementation and model uncertainties:

1. The DSMC with predicted ADC imprecisions from Chapter 4 was exam-

ined under multiplicative and additive types of model uncertainties. It was

shown that the controller performance is sensitive to these uncertainties in

the modeled dynamics. A discrete Lyapunov argument was employed to

design adaptation laws to compensate for the unknown uncertainty terms

in the controller structure.

2. The proposed adaptation laws are computationally efficient for real-time

operation. The adaptation laws are able to quickly remove the errors in

the modeled dynamics. Increasing the sampling time raises the required

time for the adaptation laws to remove the errors in the model; however,

these errors can be removed permanently. For the engine case study, all

the additive and multiplicative unknown parameters were resolved within
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2 sec (sampling time=10 ms).

3. When the sampling time is increased from 10 ms to 35 ms, the tracking

errors from the baseline adaptive DSMC increase by 5-10 times. Addi-

tionally, by changing the ADC quantization level from 10 bit to 6 bit, the

tracking errors of the baseline controller rise by up to 10 times. Incorpo-

rating the predicted ADC imprecisions into the adaptive DSMC improves

the tracking errors by 50-60% compared to the baseline controller.

4. Multiplicative and additive unknown parameters within the engine and DC

motor control problems were considered to represent any mismatches in the

modeled plants’ dynamics. Although the baseline DSMCs are too sensitive

to any errors in the models and fails under these mismatches, the proposed

adaptation technique provides an effective tool for permanent removal of

the errors due to unknown parameters. The proposed adaptation laws

were derived via the stability analysis of the closed loop system which not

only remove the errors in the model, but also guarantees the asymptotic

stability of the controller. The adaptive robust DSMC is able to enhance

the trajectory tracking errors by more than 95%, compared to the non-

adaptive DSMC, and removes the errors in the engine dynamics by up to

98%.

• Stage V (Chapter 6) - Design of a second order MIMO adaptive DSMC with

predicted implementation imprecisions:
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1. A new adaptive second order DSMC formulation for MIMO nonlinear and

linear uncertain systems, along with an adaptation mechanism and a new

switching control input, was presented in Chapter 6. First, the adaptation

law, for handling the uncertainties within the model, was driven based on

a discrete Lyapunov stability theorem. Second, the behavior of the second

order DSMC was studied on both reaching and sliding phases. In order to

ensure the controller robustness against external ADC imprecisions, a new

switching control input was introduced, which contains the knowledge of

ADC imprecisions via an online sampling and quantization uncertainties

prediction and propagation mechanism. Third, the asymptotic stability

of the proposed controller was guaranteed by invoking the new Invariance

Principal for nonlinear discontinuous systems.

2. The proposed controller was evaluated for the nonlinear combustion engine

(Chapter 2) and linear DC motor (Chapter 4) control problems. The

designed second order adaptive MIMO/SISO DSMC was tested in real-

time on a real ECU inside a PIL setup.

3. The second order DSMC showed higher robustness against ADC uncer-

tainties. For the engine case study, when the sampling rate was changed

from 20 ms to 80 ms, and the quantization level changed from 16-bit to

10-bit, the second order DSMC was able to improve the tracking errors by

more than 90% compared to the first order DSMC. For the DC motor case,

up to 84% improvements were achieved by using the MIMO second order
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DSMC compared to the SISO first order DSMC, under ADC uncertainties.

4. Inclusion of the physical coupling within the engine dynamics in the con-

troller structure via the MIMO formulation allows for further improvement

in AFR and Texh controllers tracking performance (by up to 46% and 11%,

respectively). However, the engine speed seems to lean strongly toward a

decoupled or minimally coupled structure. On the other side, it was ob-

served that by utilizing the MIMO structure for the DC motor controller,

which takes into account the dynamics coupling in the controller actions,

the performance of the adaptive second order MIMO DSMC with ADC un-

certainties is improved by 40-60%, compared to the adaptive SISO second

order DSMC.

5. In the presence of model uncertainties, it was shown that the proposed

adaptation mechanism is able to remove the errors in the engine and DC

motor models permanently and quickly (by up to 90%). Moreover, com-

pared to the SISO DSMC, the MIMO engine controller shows faster un-

known parameters convergence rates for the AFR and Texh controllers.

The MIMO adaptive second order DSMC is able to improve the AFR and

Texh tracking errors by 43% and 33%, respectively, compared to the SISO

second order adaptive DSMC under modeling and ADC uncertainties.

• Stage VI - Design and build PIL platforms for real-time testing of the proposed

control algorithms from Chapter 3, 4, 5, and 6:
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1. A modular processor-in-the-loop (PIL) powertrain simulator was designed

and built. This included design of hardware configuration, selection of the

components according to the research requirements, procurement of the

components, and PIL setup installation and integration.

2. The designed PIL setup is able to do the processing real-time, read and

send analog/digital signals through configurable I/O ports, and commu-

nicate with real control unit via standard communication protocols. Two

processors are employed in the PIL setup. The first one is a National In-

strument (NI) PXI processor (NI PXIe-8135) in which the engine plant

model is implemented. The second processor is a dSPACE MicroAutobox

II (MABX) which is the main ECU.

3. The application of the PIL setup is to verify the performance of the real

control units. It means that the control algorithms can be implemented

on real control units, and their functionality can be tested using PIL setup

under different levels of implementation and modeling uncertainties, prior

to the test on the vehicle platform.

• Stage VII (Chapter 7) - Experimental validation of the first order DSMC

with predicted implementation imprecisions on an electronic air throttle body

test setup:

1. A nonlinear physics-based model was developed and identified for an elec-

tronic throttle body with respect to experimental data. The developed

nonlinear model is able to predict the throttle dynamics with less than
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1.5o error.

2. Based on the developed model, the new DSMC formulation from Chap-

ter 4 was used to design a position controller for the throttle. The designed

controller with and without the incorporated ADC imprecisions was ex-

perimentally tested on the throttle testbed. The test results showed that

the tracking performance of the DSMC with no incorporated ADC im-

preciseness knowledge is considerably affected by the ADC imprecisions

3. Upon incorporation of the predicted ADC uncertainties into the DSMC,

the robustness against ADC uncertainties significantly improves. When

the sampling time was increased from 1 ms to 5 ms, and quantization level

was decreased from 16 bit to 10 bit, the experimental test results showed

that the robust DSMC could reduce the tracking errors of the baseline

DSMC by up to 95%. Similarly, once the sampling time was increased to

10 ms, and quantization level was decreased to 6 bit, the robust DSMC

showed better tracking performance by upto 60%, compared to the baseline

DSMC. Overall, the simulation and experimental test results proved that

the designed robust DSMC with predicted ADC uncertainties can enhance

the throttle position tracking errors under various digital implementation

conditions compared to the baseline DSMC by up to 70% on average.
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8.2 Suggestions for Future Work

The results and outcomes of this PhD dissertation may be extended in the future

works via the following research areas:

• The proposed first and second order DSMCs in this study, which were designed

and tested for the engine cold start emission problem, could be experimentally

implemented on the actual engine setup.

• The adaptive DSMC framework in this study considers the uncertainty and

variation within the plant model (f). The adaptation technique could be ex-

tended to address uncertainties in the control input functions (g in Eq. (4.15)).

• The robustness of the conventional DSMC needs to be investigated and im-

proved under measurement noise. The analog and digital signals before ADC

are subject to measurement noise which can increase the imprecisions at the

controller inputs and outputs (I/O) significantly, if they are not handled effec-

tively downstream of the ECU input.

• The proposed adaptation laws for handling multiplicative and additive types

of modeling uncertainties could be extended to nonlinear/linear systems with

time-varying unknown uncertainty terms.

• The concept of higher order sliding modes for discrete-time systems could be

extended to develop a predictive sliding mode control theory with lower opti-

mization costs.

217



• For the throttle body position DSMC design, future works may focus on: (i)

inclusion of uncertainties in the throttle plant model to address the model pa-

rameter variations over temperature and time via the first and second order

adaptive DSMCs proposed in Chapter 5 and 6, and (ii) developing a high-

fidelity model to extend the operation range of the model-based controller and

test the controller against various desired throttle position profiles including

ramp trajectories.

• The proposed model-based DSMC design in this study is generic and could be

applied to various challenging automotive control systems.
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Appendix A

Parameters of the
Models/Controllers

A.1 Parameters of cold start plant model
A.1.1 Constants

Table A.1
Plant model constants.

Constant Value [unit]
J 0.1454 [m2kg]
τf 0.06 [1/sec]
mCp 1250 [J/K]
a -2 [-]
n 110 [-]
θevo 110 [o ATDC]
rc 9 [-]

A.1.2 Functions

SI = 7.5 ∆ + 600 (A.1)

AI = cos (0.13(AFR− 13.5)) (A.2)
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TE = 30000 ma − 0.4 ωe − 100 (A.3)

τe = 2 π / ωe (A.4)

Q̇in = 16(Texh − Tcat) (A.5)

Q̇out = 0.642(Tcat − Tatm) (A.6)

Q̇gen = 22.53(ṁao + ṁfTexh).ηcat. ˙HCeng (A.7)

ṁao = 0.0254 ma. ωe. ηvol (A.8)

ηvol = ma
2(−0.1636 ωe2 − 7.093 ωe − 1750) (A.9)

+ma(0.0029 ωe2 − 0.4033 ωe + 85.38)

− (1.06e− 5 ωe2 − 0.0021 ωe − 0.2719)

θ0 = ∆ + 10 (A.10)

δθ =


0.1(16.2− AFR)2 + 80 AFR > AFRst

0.4(16.2− AFR)2 + 80 AFR ≤ AFRst

(A.11)
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A.2 Parameters of the Engine SMCs in Chapter 3

A.2.1 Uncertainty-Adaptive SISO SMC

Table A.2
Gains (λ, γ) and boundary layers (φ) of designed SISO adaptive SMC for

the engine control.

Controller λ φ γ
∆ 10 7 0.9
ṁfc 100 10−3 0.0025
ma,d 10 1 0.1
ṁai 10 1.8×10−5 0.15

A.2.2 Uncertainty-Adaptive MIMO SMC

Table A.3
Gains and boundary layers of designed MIMO adaptive SMC for the

engine control.

Controller λ φ γ
MIMO Adaptive MSC 100 0.1 0.9

A.3 Parameters of DC Motor Plant Model

Table A.4
DC motor model constants.

Constant Value [unit]
J 0.02 [m2kg]
R 2 [Ohm]
L 0.5 [H]
km 0.015 [N.m/A]
kf 0.02 [N.m.s]
kb 0.015 [V/rad/s]
Γ 0.5 [N.m]
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Appendix C

Program and Data File Summary
Following files were used for this dissertation arranged in the tables.

C.1 Chapter 1
Table C.1

Chapter 1 Figure files.

File name File description
Figure 1 1.vsd Figure 1.1
Figure 1 2.vsd Figure 1.2
Figure 1 3.vsd Figure 1.3
Figure 1 4.jpeg Figure 1.4
Figure 1 5.vsd Figure 1.5

C.2 Chapter 2
Table C.2

Chapter 2 Figure files.

File name File description
Figure 2 1.vsd Figure 2.1
Figure 2 2.vsd Figure 2.2
Figure 2 3.vsd Figure 2.3
Figure 2 4.fig Figure 2.4
Figure 2 5.fig Figure 2.5
Figure 2 6.fig Figure 2.6
Figure 2 7.vsd Figure 2.7
Figure 2 8.fig Figure 2.8
Figure 2 9.fig Figure 2.9
Figure 2 10.fig Figure 2.10
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Table C.3
Chapter 2 MATLAB script and SIMULINK files.

File name File description
SPA Reduced Order SMC.m Reduced Order SMC

walker filter.m Walker Filter
load singular data2.m Load exp data

balanced realization nonlinear.m Nonlinear balanced realization
balanced truncation.m Balanced truncation

singular perturbation.m Singular perturbation
approximation

engine model nf oneoutput.mdl Engine model
smc 4balrea engmodel4.mdl Engine Controller

C.3 Chapter 3
Table C.4

Chapter 3 Figure files.

File name File description
Figure 3 1.vsd Figure 3.1

Figure 3 2 a.fig, Figure 3 2 b.fig, Figure 3 2 c.fig Figure 3.2
Figure 3 3.fig Figure 3.3
Figure 3 4.fig Figure 3.4
Figure 3 5.vsd Figure 3.5
Figure 3 6.vsd Figure 3.6

Figure 3 7 a.fig, Figure 3 7 b.fig, Figure 3 7 c.fig Figure 3.7
Figure 3 8.fig Figure 3.8
Figure 3 9.fig Figure 3.9
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Table C.5
Chapter 3 MATLAB script and SIMULINK files.

File name File description

Adaptive MIMO SMC.m Uncertainty adaptive
MIMO SMC

walker filter.m Walker Filter
load singular data2.m Load exp data

balanced realization nonlinear.m Nonlinear balanced realization
balanced truncation.m Balanced truncation

engine model nf oneoutput.mdl Engine model
smc 4balrea engmodel3Orig.mdl Engine Controller

linmod engmodel3 nf.m Linear engine model

C.4 Chapter 4
Table C.6

Chapter 4 Figure files.

File name File description
Figure 4 1.vsd Figure 4.1
Figure 4 2.vsd Figure 4.2
Figure 4 3.vsdx Figure 4.3
Figure 4 4.fig Figure 4.4
Figure 4 5.fig Figure 4.5

Figure 4 6 a.fig, Figure 4 6 b.fig, Figure 4 6 c.fig Figure 4.6
Figure 4 7.fig Figure 4.7
Figure 4 8.fig Figure 4.8

Table C.7
Chapter 4 MATLAB script and SIMULINK files (Engine case study).

File name File description

Engine First Order DSMC Robust.m Robust First Order
SISO DSMC

walker filter.m Walker Filter

load trajectories.m Load desired
engine trajectories

dsmc ADC2.mdl Engine Controller
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Table C.8
Chapter 4 MATLAB script and SIMULINK files (DC motor case study).

File name File description

DC Motor First Order DSMC.m Robust First Order
SISO DSMC

dS MRAC ADC DSMC.mdl DC motor Controller

C.5 Chapter 5
Table C.9

Chapter 5 Figure files.

File name File description
Figure 5 1.vsd Figure 5.1
Figure 5 2.vsd Figure 5.2
Figure 5 3.fig Figure 5.3
Figure 5 4.fig Figure 5.4
Figure 5 5.fig Figure 5.5
Figure 5 6.fig Figure 5.6
Figure 5 7.fig Figure 5.7
Figure 5 8.fig Figure 5.8
Figure 5 9.fig Figure 5.9
Figure 5 10.fig Figure 5.10
Figure 5 11.fig Figure 5.11
Figure 5 12.fig Figure 5.12
Figure 5 13.fig Figure 5.13

Table C.10
Chapter 5 MATLAB script and SIMULINK files (Engine case study).

File name File description

Engine SISO Adaptive DSMC.m Adaptive Robust First
Order SISO DSMC

walker filter.m Walker Filter

load trajectories.m Load desired
engine trajectories

dsmc ADC Adaptive combine.mdl Engine Controller
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Table C.11
Chapter 5 MATLAB script and SIMULINK files (DC motor case study).

File name File description

DC Motor Adaptive DSMC.m Adaptive Robust First
Order SISO DSMC

DC Motor Adaptive DSMC Sim.mdl DC motor Controller

C.6 Chapter 6
Table C.12

Chapter 6 Figure files.

File name File description
Figure 6 1.fig Figure 6.1
Figure 6 2.fig Figure 6.2
Figure 6 3.fig Figure 6.3
Figure 6 4.fig Figure 6.4
Figure 6 5.fig Figure 6.5
Figure 6 6.fig Figure 6.6
Figure 6 7.fig Figure 6.7
Figure 6 8.fig Figure 6.8
Figure 6 9.fig Figure 6.9
Figure 6 10.fig Figure 6.10
Figure 6 11.fig Figure 6.11
Figure 6 12.fig Figure 6.12
Figure 6 13.fig Figure 6.13

Table C.13
Chapter 6 MATLAB script and SIMULINK files (Engine case study).

File name File description

Engine MIMO Second Order DSMC.m Adaptive Robust Second
Order MIMO DSMC

walker filter.m Walker Filter

load trajectories.m Load desired
engine trajectories

MIMO2OrderDSMC.mdl Engine Controller
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Table C.14
Chapter 6 MATLAB script and SIMULINK files (DC motor case study).

File name File description

DC Motor MIMO Second Order DSMC.m Adaptive Second
Order MIMO DSMC

DC 2DSMC Final.mdl DC motor Controller

C.7 Chapter 7
Table C.15

Chapter 7 Figure files.

File name File description
Figure 7 1.vsd Figure 7.1
Figure 7 2.vsd Figure 7.2
Figure 7 3.vsd Figure 7.3
Figure 7 4.fig Figure 7.4
Figure 7 5.fig Figure 7.5
Figure 7 6.fig Figure 7.6
Figure 7 7.fig Figure 7.7
Figure 7 8.fig Figure 7.8
Figure 7 9.fig Figure 7.9
Figure 7 10.fig Figure 7.10
Figure 7 11.fig Figure 7.11
Figure 7 12.fig Figure 7.12
Figure 7 13.fig Figure 7.13
Figure 7 14.fig Figure 7.14
Figure 7 15.fig Figure 7.15
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Table C.16
Chapter 7 MATLAB script, SIMULINK files, and experimental data.

File name File description

DSMC code.m Throttle Robust
SISO DSMC

DDSMC V2.mdl Throttle Controller
Throttle model ident.m Throttle model identification

ident U sim.mat Control input exp data (1)
ident U sim 2.mat Control input exp data (2)
ident TPS sim.mat TPS exp data (1)

ident TPS sim 2.mat TPS exp data (2)
filtering data.mdl Digital low pass filter

ident new 04012016 Folder of throttle
identification data

exp1 001.csv Experimental DSMC test data (1)
exp1 002.csv Experimental DSMC test data (2)
exp1 003.csv Experimental DSMC test data (3)
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Beth Darchi <DarchiB@asme.org> Wed, Mar 1, 2017 at 4:15 PM
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Dear Prof. Amini,
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