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α Backlash angle [deg.]

θax Angular position of axle shaft [rad]
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θd Angular deflection of shaft [rad]
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θs Angular position of shaft [rad]

θtr Angular position of transmission output shaft [rad]

θps Angular position of propeller shaft at final drive end [rad]

θti Angular position of tire [rad]

θ̇ax Angular speed of axle shaft at tire end [rad/s]
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θ̇ti Angular speed of tire [rad/s]

θ̇tr Angular speed of transmission output shaft [rad/s]

θ̇w Angular speed of wheel hub [rad/s]

θ̈e Angular acceleration of the engine [rad/s2]
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cs Damping of shaft [N.m/RPM ]

cti Damping of the tire [N.m/RPM ]

Dx Aerodynamic force in the longitudinal direction [N ]

f Frequency of oscillation [Hz]

Fload Sum of aerodynamic, rolling resistance and slope forces acting on the vehicle [N ]

g Acceleration due to gravity [m/s2]

itr Gear ratio of current gear state of the transmission [−]

ifdr Gear ratio of the final drive[−]

Je Rotational inertia of the engine [kg.m2]

Jw Rotational inertia of the wheel hub [kg.m2]

J1 Lumped inertia of engine, torque converter clutch and transmission [kg.m2]

J2 Lumped inertia of propeller shaft and the differential [kg.m2]
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ks Stiffness of shaft [N.m/deg]

kti Stiffness of the tire [N.m/deg]

φ phase delay [radiasn]

rt Radius of the tire [m]
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t Time [sec]
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Tfdr Torque output from final drive [N.m]

Tgearloss Torque loss inside the transmission [N.m]
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Abstract

Vehicle drivability is an important factor which more and more customers have started

assessing before buying a vehicle. Customers carry out this assessment based on both

vehicle reviews/ratings and based on the test drives. One of common maneuver which

a customers perform during the test drive is sudden accelerator pedal tip-in or tip-out

to accelerate or coast the vehicle. Clunk and shuffle are the phenomena that usually

occur during this scenario causing driver discomfort. The clunk and shuffle are caused

by the backlash and compliance physical properties of the driveline. Consequently,

control strategy needs to be developed which can provide a fast driveline response

without clunk and shuffle. One major input to develop a control strategy is the

knowledge of the vehicle states and parameters based on the available measurements,

which is the major focus of this work.

This work begins with a discussion of various existing estimation strategies that have

been used to estimate the states of vehicle along with their merits and demerits.

Then a full order model, developed in the previous works, is validated for a locked

torque converter case along with its reduced order model which is used for estimator

development. The error in the simulated shuffle frequency for the full order model

and reduced order model is less than 1%. The reduced order model is then used

to develop an observable state space model to estimate the backlash state and size

xxix



of the model. The estimators developed are validated and the robustness analysis

is done for different scenarios of torque inputs, delays and sampling times. It is

found that the sampling time of the estimators and measurement inputs significantly

effect the estimates of lash traversal time and backlash size with a mean error of

9% in lash traversal time estimate and 2% error in lash size for 10ms sampling time.

Furthermore, the estimators are found to be more robust to the variations in the wheel

speed measurements as compared to variations in the engine speed measurements.
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Chapter 1

Introduction

1.1 Motivation

In the modern era, the value proposition of an automobile is not just to provide

a means of transportation from one location to another, but to provide a unique

experience to the customer. This unique experience is a combination of varying

proportions of certain aspects of an automobile. The proportion of these aspects

can be defined as the voice of the customer who are the potential buyer. Figure

1.1, refer [5], shows a list of some of the prominent aspects which a potential vehicle

buyer considers. As a result of this, an automobile Original Equipment Manufacturer

(OEM) also has to develop vehicles with attributes such that they can meet the
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Figure 1.1: Customer’s vehicle purchase criteria or Voice of customer

voice of the customer. Most of the OEMs, before the concept stage of the vehicle

development, conduct market survey to gather data and also conduct bench-marking

studies with vehicles of other OEMs. This is done so that they can define their targets

(proportions) of these aspects the vehicle specifications can be derived.

2



The vehicle aspects shown in Figure 1.1 can be classified into 2 categories, quantita-

tive and qualitative. Price and size aspects are straight forward quantitative aspects.

For aspects such as fuel economy, emissions and safety, there exists standards and/or

regulations which help provide quantitative assessment of these aspects for both the

OEMs as well as the customers. But the other aspects are qualitative in nature, re-

quiring subjective assessments in order to compare these aspects of different vehicles.

The OEMs carry out jury trails or develop their internal standards to define criterion

to assess these qualitative aspects. While the customers have to rely on test drives,

word to mouth reviews or more recently on online reviews or ratings. Figure 1.2

shows one such overall ratings developed by the Edmunds [1] for a few of the vehicles.

Studies show these ratings are gaining traction among potential vehicle buyers. This

can be seen in Figure 1.3 which shows the data collected by Deloitte [2] suggesting

that 70% of the Gen Y (ref [6]) population are influenced by the independent reviews

whereas 55% of the Gen X population are influenced by similar ratings. Thus, these

ratings play a significant influence on the customer buying decisions

From the different aspects of the vehicle shown in Figure 1.1, one important aspect is

the drivability of the vehicle. Drivability can be defined as driver’s perception of how

smoothly and consistently a vehicle’s powertrain drives the vehicle in different oper-

ating conditions. Some of the operating conditions are discussed in references [5] and

[7]. These scenarios are also shown in Figure 1.4, which are taken into consideration
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Figure 1.2: Edmunds overall ratings for a few vehicles, [1]

to assess the drivability of the vehicle. Study in [8] was one of the earliest papers to

define drivability and effect of emission control strategies on the drivability of vehicle.

The paper discusses measuring vehicle surge to objectively define drivability. More

recent works such as [9], [5], [7], and [10] also aim to develop objective methods to

assess drivability and its co-relation to subjective assessments. While a lot of work

is going on in this field, it is mostly headed towards assisting the automotive devel-

opment engineers to provide them with objective metrics to assess the drivability.

This is important as they can thrive for continuous improvement in the drivability

without the human error in subjective evaluation. Furthermore, these metrics also
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provide them to objectively compare the performance of their vehicle with others.

But from the customer point of view, online reviews provide ratings for drivability

assessment based on their own developed criterion. This can be seen in Figure 1.5

were drivability ratings for a few of the vehicles is shown.

Thus, it can be seen that the drivability of the vehicle is an important voice of

customer factor which needs to be considered while developing a vehicle. Out of the

different scenarios which constitute the overall drivability assessment of a vehicle,

Figure 1.4, this work focuses on vehicle driveline torque response during tip-in and
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Figure 1.4: Criterion under drivability assessment of a vehicle

tip-out events. Next section of this chapter provides the background of tip-in/tip-out

as well as how it affects the drivability as perceived by the customer.
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1.2 Technical terms used in this work

Some of the technical terms that have been frequently used in this work are discussed

in this section and a background is provided to the reader to assist in understanding

the objectives and findings of the this work.

An automotive driveline consists of a number of systems/components which makes

the transfer of torque from the engine/propulsion device to the wheels possible. These
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systems/components can be further classified into launch devices, gearbox and the

axles/shafts. The launch devices decouple the propulsion system from the driveline

via using either clutches or the torque converters. The gearbox is a set of gears,

shafts and bearings (to name a few) constrained inside a housing with the purpose of

reducing the speed and increasing the torque from the propulsion system. They can

be further classified into transmission, transfer cases and differential for (North-South

powertrain configuration) and, transaxles and Power Transfer units for (East-West

powertrain configurations). The shafts/axles are defined as torsional interconnections

among gears of the gearbox, among the gearbox and launch devices and among the

differentials and the wheels.

All these systems and their constituting components have certain physical properties

and certain constraints from the manufacturing, assembly or operation point of view.

For example, the gear box has different mating gears to provide required gear reduc-

tion. But in order to make the assembly of those gears inside the gearbox possible

certain amount of clearance needs to be provided between the mating gear teeth.

The clearance also needs to be provided to avoid the gear biting into each other.

The clearance also helps provide lubrication to the gear while transferring torque

and finally, the clearance also occurs due to the limitation of manufacturing of the

gear tooth profiles. Furthermore, the amount of clearance also depends of the type

of gear geometry. For spur gears the clearance to be provided is lesser as compared

to for gears with helical tooth profile. While the clearance is maximum for hypoid
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Figure 1.6: Backlash between mating gear teeth and change of tooth face
from drive to coast

gear tooth profiles. This clearance is know as backlash. Even for shafts and axles

to interface with the gears, splines are provided on the mating gear-shaft, gear-axle

interface. These interfaces can also have a backlash associated with them which are

typically smaller than the gear teeth meshing interface. Thus, the backlash inside the

powertrain is distributed across the driveline. Figure 1.6 shows the clearance between

the mating gear teeth i.e. the backlash.

Apart from backlash, the shaft and axles of the driveline have stiffness and damping

physical properties associated with them. The stiffness causes the deflection of shaft

when subjected to a torque input, and can lead to oscillation in the driveline. The
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damping opposes the oscillation and tries to damp them out.

A combination of the two, the backlash and the compliance (stiffness and damping) of

the driveline causes a response within the driveline when it is subjected to a sudden

torque reversal, tip-in or tip-out. This is shown in Figure 1.7. A sudden torque

reversal occurs when the magnitude of torque delivered by the engine/propulsion

device suddenly changes its sign. This can be seen in subplot (a) where the delivered

torque is initially negative and it suddenly changes to a positive torque value. This

is referred to as the tip-in scenario in this work. The inverse of it can be referred to

as the tip-out scenario where the torque suddenly changes from a positive value to a

negative value. In the tip-in case, the vehicle is initially in coasting condition when

the torque is negative. The coasting condition can be further defined as the wheels

driving the engine because of vehicle’s momentum. The vehicle driving/accelerating

condition is when the engine delivered torque is positive. As it can be seen from

Figure 1.6, if the vehicle transitions from coasting to driving or vice a verse, mating

gears have to overcome backlash and the side of tooth face in contact changes. While

traversing the backlash there is no torque transfer between the gears and thus the

driver gear can accelerate during the lash traversal, causing an impact when it hits

contact on the other side of lash. The impact can cause an audible noise which is

referred to as clunk. Referring back to figure 1.7 the subplot (c) shows the traversal of

the backlash from contact on the coast side, referred to as negative contact to contact

towards the drive side, referred to as positive contact and the subplot (b) showing
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the time of clunk in the propeller shaft torque. Finally, because of this impact an

oscillation is caused in the propeller shaft trajectory because of its compliance. This

is experienced by the driver in the form of longitudinal fore and aft oscillation with

frequency between 2-10 Hz depending the current engaged gear of the vehicle.

The clunk and shuffle phenomena described above are critical as they affect the drive

feel of the vehicle. Clunk affects in the form of audible noise generally causing irri-

tation to the driver and the shuffle causes driver discomfort as the natural frequency

of human organ lies within the frequency range of shuffle [11].

Jerk is defined as a sudden change in the acceleration. As can be seen that the

shuffle causes fore and aft oscillation this gets reflected as longitudinal jerking of

the vehicle. Furthermore, as both the backlash and the compliance are unavoidable,

control strategies need to be developed which can shape the torque input to the

driveline to mitigate the effects of clunk and shuffle. Such control strategies are

known as Anti-Jerk control strategies.
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Figure 1.7: Representative output of driveline delivered torque indicat-
ing tip-in, propeller shaft torque indicating clunk and shuffle and driveline
lumped backlash indicating backlash traversal
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1.3 Literature review

Figure 1.8 shows the time-line of research in the field of driveline clunk and shuffle

simulation, estimation and development of AJC control strategies to mitigate the

effect of clunk and shuffle.

Estimating the response of vehicle during tip-in and tip-out scenarios and using that

information to develop strategies to investigate and improve the vehicle performance

started with simulating the driveline response during the tip-in and tip-out scenarios.

The study in [12] was one of the earliest attempts to investigate the low frequency

torsional oscillation of the driveline. The emphasis of the work is to simulate the

low frequency (<30 Hz) driveline torsional oscillations during, tip-in/tip-out, due to

engine firing pulsation and due to the self excited driveline oscillation.

The authors systematically define the tip-in jerk as clunk, which is defined as the

abrupt change in the acceleration of the vehicle, the leading fore and aft oscillation of

the driveline as shuffle and the characteristics of oscillation as frequency, amplitude

and the tip-in overshoot. A simplified rear wheel drive driveline model is considered

with engine torque input to the driveline, a torque converter with hydraulically or

centrifugally controlled by-pass clutch, a one way clutch and a torsional damper, an

option for a coast-unlock one way clutch, a lumped transmission inertia, stiffness and
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Figure 1.8: Progress of works in the field of AJC research [3]
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damping, a lumped backlash for transmission and final drive gears, the axle shaft and

tire stiffness and damping. The authors, as a part of their analysis, compared the

clunk and shuffle observed in the driveline under various conditions such as a driveline

with and without backlash, the effect of open and locked torque converter by-pass

clutch, the effect of torsional damper properties on the response. An important study

which was done as a part of this paper was the analysis of the driveline response

with and without the coast down one way clutch. The authors also experimentally

validated the model via vehicle level measurements and found the accuracy of the

simulated frequency to be within 10%.

An experimental approach towards [12] is taken in [13] where the authors specifically

focused on reduction of clunk and shuffle. Both clunk and shuffle have been described

in detail using experimental data. Furthermore, the authors highlighted the major

parameters affecting the clunk and shuffle as the engine torque rate, the driveline lash

and the driveline compliance. The authors also discussed the experimental method

to measure the lash in a driveline and highlighted major sources the driveline lash.

Although significant progress has been and is being made in developing detail models

capable of simulating the tip-in and tip-out response, works in the field of estimating

the driveline states to control the engine torque during such scenarios started after

the detailed models defining backlash were made.

Lagerberg in [14] discussed the various dynamical models which have been used to
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represent the dynamics of the backlash in geared systems. All these models essentially

have a non-linear structure categorizing the behaviour of the driveline into contact

mode and backlash mode of operation which is based on the position of the shaft

within the lash. Lagerberg and Egart also evaluated the performance of a number

of control strategies in [15] and suggested that the controller with different compen-

sations for contact mode and backlash mode provides better response as compared

to controller which do not account for backlash. Thus, in order to develop a control

strategy which can mitigate the effect of clunk and shuffle, the control input needs to

be commanded based on the status of the driveline. This in turn requires the posi-

tion of shaft within the lash needs to be known. Since the backlash in the driveline

is distributed knowing the backlash position becomes difficult.

Various estimation methods have been used to estimate the backlash position and

driveline parameters in the literature of anti-jerk control strategies. The need to

estimate the parameter arises from the fact that, the properties of the driveline com-

ponent changes over the life of vehicle because of usage. And in order for the controller

to be effective, they should be updated as well.

Estimation methods generally use a dynamic model of the physical system with some

of its states being measured via actual physical sensors. These measurements are used

to correct the prediction made by the dynamical model resulting in the estimates of

the system. The estimator developed so far can be classified into two categories.
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The first classification can be made on the basis of the measurement signals that are

used for the estimation of the backlash position. The study in [16] uses the actual

position of the engine and wheel to determine. Other works such as [17] and [18] used

the engine and the wheel speed measurements to estimate the position of backlash.

The constraint with using angular positions as the measurement is that the angular

position sensors are generally not used in production vehicles.

The other classification of estimator design can be made on the type of estimation

strategy used to estimate the backlash position. Studies in referenes [19] and [16]

uses two derivative of the Kalman filter estimation approach to estimate the size

of backlash and position of backlash. In these works, for size estimation, a Switched

Kalman Fiter (SKF) is developed while for backlash position estimation, an Extended

Kalman Filter (EKF) approach is used.

The Kalman filter approach is applicable for linear dynamical models only. But if the

non linear model of the dynamical system can be represented by a linear combination

of multiple linear models , a SKF approach can be used to estimate the states of the

system. The SKF applies the Kalman filter approach to the individual linear model or

any linear combination of the models and use a switching variable to select the model

to be used for estimation. As the backlash model of [19] and [16] can be represented

by linear models of contact and backlash mode, this approach can be used to estimate

the size of backlash. Apart from the contact and backlash modes a wait mode is also
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used by the authors in [19] and [16].

The EKF approach uses the principle of linearization of a nonlinear state space model

to apply the Kalman filter approach and estimate the states of the dynamic system.

The model is linearized at each time step based on the mean value of last estimated

state of the system. This method is widely used to estimate the states of non-linear

models. The estimates of EKF are no longer optimal when compared to a Kalman

filter estimates because of the linearization of the model. In the works of [19], [20] and

[16], the non-linear backlash model is linearized and a switched EKF is developed.

When the driveline is in backlash mode, the engine and wheels are not directly con-

nected to each other. As a result, the backlash model dynamics of the system are

not observable. Consequently, the works in [21], [22] and [23] only estimate the states

of the driveline in the contact mode but use the system dynamics to calculate the

backlash position. The [21] and [23] used a standard Discrete Kalman filter approach

for the state estimation while [22] uses Loop transfer recovery to estimate the states

of the system.

A combined Simth Predictor and Luenberger based state observer approach is used to

estimate the states of the driveline in [24]. The Smith predictor approach is generally

used in control system with delay. In the case of driveline control, there is delay

between the time torque is commanded by the engine to the time the command

torque effects the wheel speeds and the wheel speed sensor data is received back by
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the controller. The Luenberger observer is based on pole-placement to observe the

states of the plant and is used in [24] to reduce the error between the simulated and

measured engine speed.

These different estimation approaches that have been used in the literature to estimate

the states and parameters of the driveline have their inherent pros and cons. The

standard Kalman filter approach is optimal if the co-variances of the measurements

and states are Gaussian in nature with zero mean. Any deviation from this affects the

optimality. This same limitation is applicable to the case of SKF as well. The EKF

approach is sub-optimal because of the state space linearization and consequently

computationally demanding than the Luenberger Observer as well as the Kalman

fitler. Furthermore, the Luenberger observer are not robust to model uncertainties

and measurement noise.

Apart from the methods that have been discussed so far, a non-linear least square

optimization-based approach is used to estimate the parameters of the driveline of-

fline in [20]. It uses a cost function to minimize the error between the estimated

and measured states to estimate the parameters of the system. A summary of the

estimator used to estimate the states and the parameters of the driveline is shown in

figure 1.9
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Figure 1.9: Summary of estimators used to estimate the states as well as
the parameter of the driveline
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1.4 Research scope and thesis organization

This work is in continuation to the work published in Prince [25] and Reddy [3] under

aegis of the alliance project between Ford Motor Company and Michigan Technolog-

ical University to develop estimation and control strategies for driveline jerk control.

The previous works presented the development of a full order vehicle driveline model.

This model is capable of simulating the driveline response of a vehicle during tip-in

and tip-out scenarios. This work augments the previous works via validating their

full order model (FOM). The validation is done for a use case of locked torque con-

verter during tip-in and tip-out scenarios. As an intermediate step, this work further

modifies the FOM to a control oriented reduced order model (ROM). The reason to

transform the FOM to ROM is to develop an estimation strategy for backlash state

and size, based on the ROM, so that necessary information about the state of the

vehicle driveline is available. This available information is critical to achieve the final

goal of controlling driveline jerk during tip-in and tip-out scenarios.

To estimate the backlash position of the driveline, [19] and [16] uses the angular

position sensors to make the backlash model observable, while [22], [21] and [23]

uses backlash mode simulation to predict the backlash position using the production

speed measurements. This work uses a combination of the prediction and estimation

to predict the backlash position of the driveline using production speed measurements
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so that the error in the predicted backlash position can be reduced. Furthermore, the

size estimation approach developed in this work uses commanded torque based trigger

to estimate the backlash size as compared to backlash position based switching, as

used [19] and [16], to estimate the size of the backlash. Finally, the performance of

the estimators to production vehicle based measurement delays and signal jitters is

also assessed this work.

Figure 1.10 shows the organizational layout of this thesis. The second chapter of the

thesis discusses the validation of the full model, developed in the previous works, and

the development of a reduced order model as well as its validation. The third chapter

discusses the development of the backlash state estimator, its validation and the

robustness analysis. Next, the fourth chapter discusses the development of backlash

size estimator, its validation and its robustness analysis. Finally, the fifth chapter

discusses the conclusion and future works that are planned based on the works of this

thesis.
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Figure 1.10: Thesis organization
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Chapter 2

Control Oriented Driveline Model

Development and Validation

This chapter starts with a brief discussion of the full order model (FOM) that has

been developed by Lakhani [25] and Reddy [3]. An overview of the components of

the model is discussed without the equations of the dynamics of these components.

The model overview is followed by the discussion of the validation of the FOM based

on the vehicle measurements data provided by the sponsor organization. Then, this

chapter progresses towards the development and the validation of the reduced order

model which will lay the ground for the development of state and size estimators

discussed in the subsequent chapters.
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2.1 Full order model (FOM)

2.1.1 Overview of Full order model

The FOM developed for this work is for a rear wheel driven vehicle with longitudi-

nally mounted powertrain configuration. The model consists of a mean value engine

model, a torque converter, a 10-speed automatic transmission, a propeller shaft, a

final drive reduction, the axle shafts, and the tires. The engine is modeled to include

the dynamics of the base path (air path) and the instantaneous path (spark path),

refer [26]. The base path dynamics take into account the first order dynamics with

a time delay. The instantaneous path dynamics take into account the effect of spark

modulation to evaluate the torque delivered to the driveline. Uncertainty in the en-

gine torque is also modeled to account for the error in the ECU estimated crankshaft

torque as well as the error due to variation in production engines. The model for the

engine dynamics, as a torque source, is developed in Simulink®.

The rest of the vehicle driveline is modeled in AMESim®. This is done so that the

readily available driveline model library of AMESim® can be used with only changes

in the value of model parameters. Refer [3] for the interface between Simulink® and

AMESim®. In the driveline model, the torque converter is modeled using torque ratio
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versus speed ratio, and capacity factor versus speed ratio look-up tables, a torsional

damper and a torque converter clutch (TCC) is also considered in the model. When

the TCC is engaged it locks up the impeller to the turbine establishing a mechanical

connection between them. This leads to the torque flowing through the clutch path

and not through the hydraulic path. As a result, the torque at the impeller and the

torque at the turbine are the same. The 10-speed automatic transmission is modeled

using 4 planetary gear sets with the node inertia for each of the planetary gear set

and a lumped backlash for the transmission. The powertrain gear losses, which are a

function of the currently engaged gear and the speed of the engine, are also modeled

at the input to the transmission. The output of the transmission is connected to a

propeller shaft which is modeled via a stiffness, and a damping element. The output

of the propeller shaft is then connected to the differential via a backlash element

to represent the backlash between the hypoid gear pair inside the differential. This

hypoid accounts for the maximum backlash, in the wheel domain, for the powertrain.

The differential is modeled as a gear reduction and its output is connected to the two

axle shafts. The axle shafts, similar to propeller shaft are modeled via stiffness and

the damping elements. The axle shafts finally drive the tires through the wheel hubs

and the suspension stiffness elements modeled to account for the effect of suspension

on the torsional oscillation. The wheel hubs, tires and vehicle longitudinal forces

(aerodynamic and rolling resistance) are modeled via a simple vehicle model in the

AMESim® using the inertia of wheels, the stiffness and damping of the tires. The
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values of the parameters used in the model were provided by the sponsor organization.

Figure 2.1 shows the AMESim® model that has been developed to represent the

driveline model. Similarly, Figure 2.2 shows the layout and interactions between the

different components involved in the full order driveline model.
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Figure 2.1: AMESim® Full Order Plant Model
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Figure 2.2: Layout of the components of the full order model [4]
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2.1.2 Assumptions of full-order model

Certain assumptions have been made while developing the full order model of the

vehicle to simulate the clunk and shuffle response. One of the major assumptions is

that the model has been developed only to simulate straight line vehicle driving i.e.

the affect of cornering is not considered. This assumption is valid as the longitudinal

acceleration experienced by the driver during straight-line driving would be maximum.

During cornering, the lateral acceleration will also affect the magnitude of shuffle as

perceived by the driver. The second assumption is that the clunk and shuffle are

simulated for a constant gear torque reversal scenario and not during the gear shift

transients. This assumption is made because the control action to mitigate clunk

and shuffle during constant gear tip-ins and tip-outs are managed via the torque

actuators, while in the case of gear shifts, the transmission clutch pack actuators will

also influence the resulting clunk and shuffle. Finally, a locked torque converter case

is considered as this will lead to the maximum amount of clunk and shuffle as studied

in [12] show that with open and slipping torque converter, the fluid path would act

as a damper reducing the observed clunk and shuffle.
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2.1.3 Validation of full order model

The primary motivation for the development of the full order model is to capture the

dynamics of the driveline during the torque reversal (tip-in and tip-out) scenarios,

thus vehicle level measurements were done by the sponsor organization to simulate

torque reversal scenarios in the vehicle and data was provided to validate the full

order model.

2.1.3.1 Vehicle measurements

In order to provide the data which can be used to validate the model, the sponsor

organization conducted vehicle level measurements.A test vehicle was instrumented

with a torque measurement sensor (torque meter) on the propeller shaft, a driver

seat track accelerometer, and a differential case accelerometer. Although, the effect

of shuffle is maximum on the axle shaft, because of the highest torque value due to

the gear reduction and the compliance of the axle shaft, it is difficult to measure the

torque on the axle shaft as it is enclosed inside the Banjo beam or the Salisbury axle

(based on the construction of the rear axle). Consequently, the propeller shaft, which

is easily accessible, was instrumented to measure the torque delivered to the vehicle.

Furthermore, jerk is defined as a change in acceleration, thus in order to measure the
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shuffle response as perceived by the driver, an accelerometer was placed at the driver

seat track. Finally, since the maximum lash traversal takes place in the final drive,

an accelerometer was placed on the differential housing to measure the acceleration

response during the clunk event. Figure 2.3 shows a layout of the locations of sensors

in the vehicle.

Apart from these additionally placed sensors, vehicle data on CAN such as the engine

speed, the wheel speed, the vehicle speed, the ECU estimated crankshaft torque, the

slip across the torque converter, the current gear position and the accelerator pedal

position were also recorded in sync with the measured data. This was done to simulate

the full order model with the same conditions as that of the test vehicle. Finally, the

existing control strategy to shape the torque during torque reversal scenarios was also

calibrated off so that the driveline can be excited and the clunk and shuffle response

can be generated in the driveline and measured via instrumented sensors.

The vehicle data measured and provided by the sponsor organization was analyzed

to identify intercepts of the data which can be used to validate the FOM. It was

observed that the vehicle tip-in and tip-out trails were done in 5th and 6th gears. Out

of this data, an intercept of 5th gear data was taken out to validate the model which

had sufficient steady state time before and after the tip-in maneuver. Additionally,

feedback was received from the sponsor organization that even though the torque

shaping strategy was calibrated off during the tip-in and tip-out scenarios, torque
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Figure 2.3: Layout of sensors on the instrumented vehicle
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shaping still shaped during the tip-out event because of other controllers. Thus,

model validation has been carried out only for tip-in scenarios.

Figure 2.4 shows the intercept of the vehicle measured data that is used to validate

the FOM. Figure 2.4 (a) shows the CAN estimated crankshaft torque input to the

driveline. The sudden rise in the crankshaft torque can be seen as an indicator of the

tip-in scenario. Figure 2.4 (b), the left axis shows the variation of the engine speed

caused by the sudden change in the crankshaft torque. It can be seen that the RPM

of the engine has an oscillatory behavior which is representative of shuffle. The right-

hand axis of the Figure 2.4 (b) shows the variation of vehicle speed during the event.

It can be seen that the vehicle speed increases with slight oscillation in its trajectory.

The reduced nature of oscillation in the vehicle speed can be explained by higher tire

damping. Figure 2.4 (c) shows the variation of propeller shaft (alternatively referred

to as driveshaft) torque during the event. It can be seen that before the tip-in, the

torque at the propeller shaft is negative an indicative of the coasting torque due to

the engine friction. As the crankshaft torque increases, the propeller shaft torque

rises to a near-zero value, stays there for some time and shoots up with an oscillatory

response. The zero torque is held by the propeller shaft until the backlash traversal

in the driveline takes place as during lash traversal there is no resistance from the

wheels on the shaft. This also leads to the acceleration of the propeller shaft leading

to an impact at the end of backlash traversal. This impact causes a sudden rise in the

propeller shaft torque twisting it to the drive side followed by untwisting and twisting
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shuffle oscillations. The frequency of this shuffle oscillation, based on the measured

propeller shaft, is found to be 5.84 Hz. Finally, Figure 2.4 (d) shows the variation of

seat track acceleration in the longitudinal direction. The jerk i.e. a sudden change

in the magnitude of the acceleration can be seen in the trajectory of the acceleration

during the event. As all the signals plotted in Figure 2.4, except the ECU calculated

crankshaft torque are actual measured data, these signals are considered from here

on to validate the FOM as well as the ROM.
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Figure 2.4: Sample vehicle measured data
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2.1.3.2 Model validation results with baseline parameters

The FOM developed in Section 2.1.1 was simulated with ECU estimated crankshaft

torque along with torque uncertainty as an input to the AMESim® driveline model.

This was done so that the powertrain losses and the accessory load, which were not

modeled in the engine dynamics, can be taken into account. Figure 2.5 shows the

response of the FOM with the baseline model parameters. Figure 2.5 (a) shows

the effect of the engine torque uncertainty causing a difference between the input

crankshaft torque and the simulated crankshaft torque. Figure 2.5 (b) shows the

variation of the simulated engine and vehicle speed with respect to the measured

engine and vehicle speeds. The comparison of engine speeds suggest that although

the plant model is capable of simulating the driveline dynamics, there is a significant

error in the amplitude as well as the frequency of the simulated engine speed. In

contrast to the engine speed, the error in the vehicle speed is less, this can be seen

on the right axis of Figure 2.5 (b). This is because during the tip-in scenario, the

vehicle speed does not change significantly due to the higher vehicle inertia as well

as the higher damping of the tires. From Table 2.1 it can be seen that the error

in the frequency of the shuffle oscillation is 22.26% while the maximum and average

error in the simulated engine is 13.90% and 1.25%, respectively. Figure 2.5 (c) shows

the comparison of the simulated and measured propeller shaft torque. It can be seen

that the simulated frequency of the shuffle oscillation as well as the magnitude of the
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Table 2.1
Summary of simulation results with baseline vehicle parameters

Description Value Unit

Measured frequency of shuffle 5.84 Hz
Simulated frequency of shuffle 7.14 Hz
Error in shuffle frequency 22.26 %
Max error in engine speed 13.90 %
Average error in engine speed 1.25 %
Max error in propeller torque 35.24 %
Average error in propeller torque 8.41 %

propeller shaft torque are different as compared to the measured shuffle frequency and

torque amplitudes. The maximum and average errors in the simulated value of the

propeller torque, from Table 2.1, are 35.24% and 8.41% respectively. Apart from the

differences in amplitude and frequency, it can be seen that there is a phase lag in the

measured propeller shaft torque as compared to the simulated propeller shaft torque.

Finally, Figure 2.5 (d) shows the comparison of the simulated and the measured seat

track acceleration were the effect of measurement noise can be seen in the measured

acceleration. Ignoring the measurement noise in the seat track acceleration and taking

into account the consistent difference in the frequency of oscillation, as observed in

the engine and the propeller shaft trajectories, the simulated vehicle acceleration is

higher than the mean values of the measured acceleration.
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Figure 2.5: Comparison of measured data and simulation results based on
baseline vehicle parameters
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2.1.3.3 Full order plant model with modified parameters

The differences in the simulated and the measured engine speeds, wheel speeds, pro-

peller shaft torques, and vehicle accelerations, refer Section 2.1.3.2, can be attributed

to different sources in the vehicle FOM. A step by step approach to eliminate those

differences, via updating the vehicle parameters, based on discussions with sponsor

organization has been discussed in this section.

For a shaft with moment of inertia J , subjected to an input torque T1 at one end and

a load torque T2 at the other end, the rate of change of angular speed of the shaft,

dω
dt

is given by :-

T1 − T2 = J
dω

dt
(2.1)

For a shaft with stiffness K and polar moment of inertia J , the natural frequency of

oscillation, ωn, is given by:

ωn =

√
K

J
(2.2)

† From Equation 2.1, it can be seen that the speed as well as the acceleration of the

shaft, for a given input torque, is a function of the load torque. The load torque,

for the FOM, is the sum of the aerodynamic drag and the rolling resistance force.

The rolling resistance of the vehicle is a function of the coefficient of the rolling
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resistance and the vertical load on the wheels which is a function of the mass

of the vehicle. For the baseline model, the vehicle weight was taken as the

un-loaded mass of the vehicle. This was changed to take into consideration the

weight of passengers and the instrumentation when the vehicle test was carried

out. Apart from the vehicle weight, the coefficient of rolling resistance was

also modified. The coefficient of rolling resistance depends on factors such as

the tire temperature, tire inflation pressure, vehicle velocity, tire material and

design and tire slip, and based on studies in references [27], [28], [29], the value

of the coefficient of rolling resistance was also modified from 0.02 to 0.01.

† From Equation 2.1 and Equation 2.2 it can be seen that the moment of iner-

tia of the driveline components also plays a major role in the determination

of the engine speed, vehicle speeds and the frequency of the driveline oscilla-

tions. Thus, in order to reduce the simulation error in speeds and the frequency,

the values of driveline inertia should be a representative of the actual vehicle.

Based on the discussion with the sponsor organization, it was found that the

test vehicle had a 4WD configuration i.e. it was installed with a transfer case.

Adding the transfer case would increase the inertia of the vehicle reducing the

frequency of shuffle oscillation (refer Equation 2.2) inline with the desired fre-

quency change (refer Table 2.1). Additionally, the engine was also equipped

with a dual mass flywheel, which would increase the inertia at the crankshaft.

Since the exact values of inertia were not available for the transfer case and the
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dual mass flywheel, it was decided that a 25% increase in the inertia of engine,

torque converter and the transmission would account for the effect of the dual

mass flywheel and the transfer case.

† Equation 2.2 also suggests that the natural frequency of oscillation of the driv-

eline is directly proportional to the square root of the stiffness of the driveline.

Since the suspension was modeled to be a stiff element in the FOM, based on

the discussions with sponsor organization the suspension element was elimi-

nated and after a number of iteration to tune the model, the stiffness of the

axle and propeller shaft were reduced by 25%.

† Finally, based on the discussion with the sponsor organization, it was identified

that the supplier for the torque meter i.e. propeller torque measurement sensor,

has installed a low pass filter with stopband frequency of 30 Hz to attenuate

the high-frequency noise in the torque measurement of the propeller shaft. This

can cause a phase lag between the measured and the simulated values of the

propeller shaft torque. Thus, a Chebyshev low pass filter was designed based

on the parameters shown in Table 2.2 and applied to the simulated propeller

shaft torque to understand the effect of the low pass filter.

The changes discussed in the model parameters for the FOM are summarized in

Table 2.3 and the result of the simulation is shown in Figure 2.6. A summary and

comparison of results with baseline plant parameters and modified parameters for the
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Table 2.2
propeller torque meter low pass filter design parameters

Description Value

Filter Response type Low pass
Filter Design method IIR - Chebyshev Type II
Sampling Frequency 1000 Hz
Pass band frequency 27 Hz
Stop band frequency 30 Hz
Pass band ripple 1 dB
Stop band ripple 80 dB

Table 2.3
Comparison of baseline and modified full order plant parameters

Description
Baseline
parameter

Modified
parameter

Mass of vehicle M kg M + 334 kg
Coefficient of rolling resistance 0.02 0.01
Engine inertia Je 1.25Je
Torque conveter inertia Jtc 1.25Jtc
Transmission inertia Jt 1.25Jt
Axle shaft stiffness Ka 0.75Ka

propeller stiffness Kd 0.75Kd

propeller torque meter low pass filter No Yes

full order model in Table 2.4.

It is evident from the comparison of Table 2.4 that error in the maximum as well as

the average values of the simulated engine speed and the propeller shaft torque with

respect to the measured values has significantly reduced with modified parameters

as compared to the baseline parameters. It can also be seen that the frequency of

shuffle oscillation with the modified parameters has less than 1% error with the vehicle

measured frequency (refer Table 2.1 and 2.4). This can also be seen in Figure 2.6
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Table 2.4
Validation summary results with baseline and modified plant parameters

Description
Baseline
parameter

Modified
parameter

Units

Simulated frequency of shuffle 7.14 5.88 Hz
Error in frequency of shuffle 22.26 0.68 %
Max error in engine speed 13.9 6.92 %
Average error in engine speed 1.25 0.86 %
Max error in propeller torque 35.24 32.4 %
Average error in propeller torque 8.41 0.6 %

(c) where the period of shuffle oscillation for the measured and simulated propeller

shaft torques are significantly close as compared to the period of shuffle oscillation in

Figure 2.5 (c). A comparison of of Figure 2.5 (c) and Figure 2.6 (c) also reveals that

due to the implementation of the low pass filter (refer Table 2.2) there is no lag in

the measured propeller torque with respect to the simulated propeller shaft torque.

This can be further explained with the help of Figure 2.7 and Equation 2.3:

φ = 2π f4 t (2.3)

where φ represents the phase delay in radians, f represent the frequency of oscillation

in Hz and 4 t represents the time delay in seconds.

Figure 2.7 shows the frequency response of the low pass filter represented by param-

eters in Table 2.2. From the phase response curve, shown by the dashed line, it can

be seen that at approximately a frequency of 5.88 Hz, the phase delay caused by the
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Figure 2.6: Comparison of measured data and simulation results based on
modified vehicle parameters
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Figure 2.7: Frequency response of propeller torque meter bandpass filter,
solid line shows the Magnitude response and dashed line shows the Phase
response

filter would be -1.28 radians. Using Equation 2.3 with a phase value of 1.28 radi-

ans and frequency of 5.88 Hz, we get a time advance of 34.67 ms. A closer look to

Figure 2.4 (c) reveals that the simulated values of shaft torque is approximately 37

ms advance of the measured value which is close to the advance calculated based on

the frequency response of the low pass filter validating our filter design. The is also

evident from the comparison of the simulated and measured propeller shaft torques in

Figure 2.6 where the peaks and valleys of the trajectories are aligned with almost no

delay. With these changes and discussions with the sponsor organization, the FOM

was considered to be validated.
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2.2 Reduced order model

Model order reduction is a process of representing a detailed dynamic model in a way

that it is capable of capturing the important features of the full order model quickly,

with a reasonable amount of accuracy and reliability. Usually, model order reduction

involves simplifying a dynamic model so that either the number of equations or the

number of variables or both can be reduced. This can be useful either via reducing

the amount of calculations to be done or via reducing the number of variables to be

stored. This is applicable for both offline or online systems were behavioral predictions

are made. Refer [30] for further details. For instance, the current offline full order

driveline model developed for this project, discussed in section 2.1.1 and Reddy [3],

involves 47 AMESim® explicit states and 3 Simulink® states, 4 1-D tables and 10

2-D tables. Solving these requires considerable computation power in terms of solving

the resulting state equations, carrying out the numerical iterations, as well as storing

the output results, [31]. If such a computationally expensive model is used to control

a real-time dynamic model of the system, there is a significant probability that the

dynamics of interest would over by the time the detailed model is able to predict the

behavior of the system. Thus, model order reduction becomes necessary in order to

develop a control system which, with reasonable accuracy and within an acceptable

time frame, can predict/estimate the behavior of the system to be controlled. Thus,

for the FOM developed for this project, a reduced order model was developed so that
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a backlash state estimator can be designed which can provide state information to the

anti-jerk controller to mitigate clunk and shuffle with a reduced amount of complexity

and acceptable accuracy.

As discussed in [32] and [33], a dynamic system with backlash is modeled using two

inertia connected via a shaft and a nonlinear backlash element. The two inertia rep-

resent the driver and the driven components of the system while the shaft represents

the stiffness and damping within the system. The shaft traverses the backlash with

no torque transmission to the driven components while the traversal takes place. As

a result of this model representation, in a significant number of literary studies of au-

tomotive driveline modeling with backlash, the driveline is modeled via 2 mass model

along with the gear reduction of the transmission and the final drive. This is shown

in [34], [14], [15], [16], [18], [35] and [23]. In this model type for the driveline, the first

mass or the driver components represents the lumped inertia of the engine/propul-

sion system, the torque converters/clutch, the transmission and the propeller shaft,

whereas the second mass or the driven components represents the lumped inertia of

the final drive, the axle shafts, wheels and the vehicle inertia. The shaft represents the

lumped stiffness and damping of the propeller shaft, the axle shafts, and the tires.

Finally, the backlash represents the lumped backlash of the transmission assembly

and the final drive assembly.

The validation of the full order driveline model has been discussed in [21] and [36].
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[36] also discusses the development of a two mass and a three mass reduced order

model referred to as 2 degrees of freedom (2DOF) and 3 degrees of freedom model

(3DOF) respectively, based on the number of inertia elements present in the model.

Their findings suggest that the errors in the simulated acceleration of the vehicle

are lower for a 3DOF model as compared to that of 2DOF model. An important

assumption of their model is that the backlash has been traversed. A similar study

with a 3 inertia and 4 inertia model of the driveline was also done in [37] for a front

wheel drive vehicle. Their simulations suggest that better results are obtained for

a 4 mass model and a specific set of vehicle conditions, while performing tip-in and

tip-out in 3rd and 4th gears. Thus, it was considered essential to evaluate both the

configurations 2DOF model (2 mass model) and the 3DOF model (3 mass model)

and increase the complexity based on the results of simulations, if required.

2.2.1 ROM I - 2DOF

In this section of the chapter, the development of the 2DOF ROM model is discussed

along with the equations representing the dynamics of the model. The simulation

results of the ROM model are then compared to that of the FOM to see if the model

is able to capture the dynamics with acceptable accuracy.
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Figure 2.8: 2DOF reduced order model

2.2.1.1 Model development

This section discusses the 2DOF ROM model that has been developed based on the

full order model developed in [3]. Figure 2.8 shows the layout of the reduced order

model. The elements of the model are discussed below:

† Te,inst,brake and Tload [Nm] represent the input torque from the engine to the

driveline model and the road load torque experienced by the vehicle respectively.

The Te,inst,brake for the 2DOF model is the crankshaft torque with the gear losses

taken into account. While the Tload is the result of the aerodynamic force, the

rolling resistance, road gradient force, and toe load force, if any, acting on the

wheels of the vehicle.

† J1 [kgm2] represents in the lumped inertia of the engine, the torque converter,

the transmission, and the propeller shaft.
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† θe and θw [radians] represent the angular position of the engine crankshaft and

the wheels respectively.

† itr and ifdr represent the transmission gear ratio and the final drive ratio re-

spectively. For our study, the transmission gear is fixed as 5th gear.

† θ1, θ2 and θ3 [radians] represent respectively the angular position of the compli-

ant shaft at the output of the transmission, at the input to the backlash element

and at the output of backlash element.

† ks Nm/rad and cs [Nm/(rads/s)] represent respectively the lumped stiffness

and the lumped damping of the propeller, axle shafts and the tires.

† J2 [kgm2] represents the lumped inertia of the axle shafts, the wheel hubs, and

the tires.

† 2α [radians] represents the total driveline lumped backlash.

The governing equations for the 2DOF ROM model are -

J1θ̈e = Te,inst,brake +
Ts
itr

(2.4)

here, Ts represents the shaft torque (torque on the compliant element)

θd = θ1 − θ3 (2.5)
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θb = θ2 − θ3 (2.6)

here, θd and θb represent the shaft deflection angle and the backlash angle respectively

and the derivative of the backlash angle is given by:

θ̇b =



max
{

0, θ̇d + ks
cs

(
θd − θb

)}
if θb = −α

θ̇d + ks
cs

(
θd − θb

)
if |θb| < α

min
{

0, θ̇d + ks
cs

(
θd − θb

)}
if θb = α

(2.7)

Ts = ks(θd − θb) + cs(θ̇d − θ̇b) (2.8)

Refer [15] for details of backlash element modeling.

J2θ̈w = Tsifdr − Tload (2.9)

Mθ̈wrt =
Tload
rt
−Dx −Rx, (2.10)

where M [Kg] represents the mass of the vehicle, rt [m] represents the radius of the

tires, Dx [N] represents the aerodynamic drag force at the tires and Rx [N] represents

the rolling resistance force at the tires.
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2.2.1.2 Model Validation

Based on the equations developed in section 2.2.1.1 for 2DOF ROM model, an

AMESim® model of the ROM was developed and the input to the AMESim® model

was given based on the measured crankshaft torque input. An additional modification

was required to be made to account for the gear-train losses which were considered

in the FOM at the input to the transmission [3]. This was done via subtracting the

gear-train losses directly from the crankshaft torque in the Simulink® environment

and then sending it to the AMESim®.

A comparison of the outputs of the 2DOF ROM with the outputs of the FOM (refer

Section 2.1.3.3) is shown in Figure 2.9. Figure 2.9 (a) shows a comparison of the

crankshaft torque for both the FOM and the ROM and it can be seen that the

input to both the models is the same. Figure 2.9 (b) shows the comparison of the

engine and the wheel speeds brought in the engine domain. Although the mean

of the engine speed simulated by the ROM model is close to the mean of engine

speed simulated by the FOM, the ROM model response is significantly under-damped.

This is evident from the sustained oscillation in the ROM simulated engine speed.

Another observation which can be made from the simulated engine speeds of the

ROM and FOM is that the frequency of shuffle oscillation is also different for the

ROM. Similar observations, i.e. an under-damped system with a lower frequency of
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Table 2.5
Comparison of error in shuffle frequency for 2DOF-ROM with FOM and

measured vehicle data

Model type
Shuffle frequency
(Hz)

Error with vehicle
measurement
(%)

Error with FOM
(%)

Measured 5.84 - -
FOM 5.88 0.68 -
ROM - 2DOF 4.39 24.83 25.34

shuffle oscillations, can be made from the trajectories of the propeller shaft torque as

well as the vehicle acceleration which are plotted in Figure 2.9 (c) and Figure 2.9 (d).

Table 2.5 shows the error in the shuffle frequency for the ROM with 2DOF.
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Figure 2.9: Validation result for 2DOF ROM model with FOM model
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2.2.2 ROM II - 3DOF lumped backlash

Based on the observations made in the validation section of 2DOF ROM (section

2.2.1.2, it can be seen that the 2DOF model is not able to capture the dynamics of

the driveline. Thus, 3DOF ROM was developed as shown in Figure 2.10. The changes

in the model based on Figure 2.10 and the system dynamics are discussed in the next

section.

2.2.2.1 Model development

Figure 2.10: 3DOF reduced order model with lumped backlash element

For the 3DOF ROM, the axle shaft and the wheel inertia were lumped together in an

intermediate inertia. The tire stiffness and compliance were modeled separately with

a compliant element instead of lumping them inside the vehicle dynamics model. The

modified dynamic equations are given below:
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† Te,inst,brake and Tload [Nm] represent the input torque from the engine to the

driveline model and the road load torque experienced by the vehicle at the

wheels respectively.

† J1 [kgm2] represents the lumped inertia of the engine, the torque converter, the

transmission and the propeller, whereas J2 [kgm2] represents the inertia of the

axle shaft and the wheel assembly and J3 [kgm2] represents the inertia of the

tires.

† θe, θfdr and θw [radians] represent the angular positions of the engine, the final

drive and the wheel respectively.

† itr and ifdr represent the gear ratios of the transmission and the final drive

reduction respectively.

† θ1, θ2 and θ3 [radians] represent the angular positions of the transmission output

shaft, the angular position of the propeller shaft before backlash and the angular

position at the input to the final drive reduction respectively.

† ks and kw [Nm/rads] respectively represent the stiffness of the propeller and the

lumped stiffness of the axle shafts and the wheels.

† cs and cw [Nm/(rad/s)] represent the damping of the propeller shaft and the

lumped axle shafts and the wheels respectively.

† 2α [radians]represents the total driveline lumped backlash.
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The system dynamics are represented by below equations:

J1θ̈e = Te,inst,brake +
Ts
itr

(2.11)

here, Ts represents the shaft torque (torque on the compliant element)

θd = θ1 − θ3 (2.12)

θb = θ2 − θ3 (2.13)

here, θd and θb represents the shaft deflection angle and the backlash angle respec-

tively.

Ts = ks(θd − θb) + cs(θ̇d − θ̇b) (2.14)

where the derivative of backlash angle θ̇b if given by: -

θ̇b =



max
{

0, θ̇d + ks
cs

(
θd − θb

)}
if θb = −α

θ̇d + ks
cs

(
θd − θb

)
if |θb| < α

min
{

0, θ̇d + ks
cs

(
θd − θb

)}
if θb = α

(2.15)

θ1 =
θe
itr

(2.16)

θfdr =
θ3
ifdr

(2.17)
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Tfdr = Tsifdr (2.18)

J2θ̈fdr = Tfdr − Tw (2.19)

Tw = kw(θfdr − θw) + cw(θ̇fdr − θ̇w) (2.20)

J3θ̈w = Tw − Tload (2.21)

Mθ̈wrt =
Tload
rt
−Dx −Rx, (2.22)

where M [Kg] represents the mass of the vehicle, rt [m] represents the radius of the

tires, Dx [N] represents the aerodynamic drag force at the tires and Rx [N] represents

the rolling resistance force at the tires.

Based on the equations developed for the 3DOF ROM system, an AMESim® model

was developed with similar input torque, the difference of the crankshaft torque and

the gear-train losses, from Simulink® sent to the AMESim® model.

2.2.2.2 Model Validation

This section compares the simulation results of the 3DOF ROM model, namely the

engine speed, the wheel speed, the propeller shaft torque and the vehicle acceleration,

with that of the FOM model. A comparison of the transmission and the final drive

lash traversal of the FOM is also made with the lumped lash traversal of the 3DOF
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Table 2.6
Comparison of error in shuffle frequency for 2DOF-ROM and 3DOF-ROM

with FOM and measured vehicle data

Model type
Shuffle frequency
(Hz)

Error with vehicle
measurement
(%)

Error with FOM
(%)

Measured 5.84 - -
FOM 5.88 0.68 -
ROM - 2DOF 4.39 24.83 25.34
ROM - 3DOF 5.85 0.14 0.54

ROM. Finally, a comparison of the 3DOF ROM simulated output is made with the

vehicle measurements to validate the model with respect to vehicle measurements.

Figure 2.11 shows the comparison of the simulated FOM and 3DOF ROM. Figure

2.11 (a) shows the comparison of the input torque to the driveline. This same for both

the cases so that the model can be validated. Figure 2.11 (b) compares the engine

and wheel speeds for the FOM and the 3DOF ROM when brought in the engine

domain. When compared to the outputs of the 2DOF ROM, refer Figure 2.9, it can

be seen that the outputs with 3DOF ROM overlaps with the FOM. The error in the

frequency of shuffle has reduced from 25% to 0.5% with respect to the FOM, refer

Table 2.6. Similar trends can be seen in Figure 2.11 (c) and Figure 2.11 (d) for the

propeller shaft torque and the vehicle acceleration were the amplitude of oscillation

as well as the shuffle frequency is close to the FOM simulated amplitude and the

frequency.

A critical parameter for the ROM is the simulated lumped backlash traversal. Error
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Figure 2.11: Validation of 3DOF with lumped backlash ROM with FOM
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in the simulation of backlash traversal would affect the estimator’s accuracy which is

based on the ROM model developed. This would consequently affect the controller

performance as backlash state estimation is an important aspect of controlling jerk

during lash traversal scenarios (refer [16]). Figure 2.12 shows the comparison of lash

traversal for the FOM and the 3DOF ROM. Figure 2.12 (a) shows the comparison of

the FOM’s final drive reduction and the transmission backlash traversal, brought at

the input to the final drive domain, with the lumped backlash traversal of the 3DOF

ROM. It can be seen that the ROM lash traversal starts when the FOM transmission

backlash starts to traverse and ends when the final drive lash traversal ends. Figure

2.12 (b) shows the comparison of ROM lash traversal and the lash traversal of FOM

when the final drive and the transmission lash are lumped together. It can be seen

that the ROM is able to track the FOM lash traversal closely.

A comparison of the 3DOF ROM simulation outputs is also made with the vehicle

measurements which is shown in Figure 2.13. An overview of Figure 2.13 for the

ROM’s comparison with vehicle measurements shows similarities with Figure 2.6 for

the FOM’s comparison with the vehicle measurements. There is a difference in the

input torque for the vehicle and the ROM, Figure 2.13 (a), which is because of the

gear-train losses being accounted at the input to the ROM as compared to the input

to transmission in case of the FOM. The engine speeds and the wheel speeds have

the same frequency of shuffle oscillation with a difference in the magnitude of the

oscillations which can be seen in Figure 2.13 (b). We also see a delay in the vehicle
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Figure 2.12: Comparison of backlash traversal for 3DOF lumped backlash
ROM with FOM

measured propeller shaft torque as compared to the ROM simulated torque in Figure

2.13 (c) as the low pass filter was not modeled for the ROM. Finally, Figure 2.13 (d)

shows the comparison of the vehicle acceleration and the ROM simulated acceleration

and it can be seen that they align with each other.

As a final step in the development of ROM, the effect of lumping the backlash was

also studied via having two backlash elements in the 3DOF-ROM. A layout of the

3DOF ROM with two backlash elements is shown in Figure 2.14 where the lumped

backlash 2α in 2DOF ROM and 3DOF-ROM is split into two backlashes, one at the

input to the transmission, 2α1 and one at the input to the final drive reduction,2α2.

Rest of the structure of the ROM is similar to 3DOF model. With the inclusion of the
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Figure 2.13: Validation of 3DOF lumped backlash ROM with vehicle mea-
surements
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Figure 2.14: 3DOF reduced order model with 2 backlash elements

2 backlashes, the response of the ROM with respect to the FOM is shown in Figure

2.15

If Figure 2.11 for the 3DOF lumped backlash validation results is compared with

Figure 2.15 for the 3DOF split backlash validation results, it can be seen that the

results are similar and there no significant difference in outputs. Thus, a 3DOF-ROM

model with lumped backlash is able to simulate the dynamics of the system with less

than 1% error in the shuffle frequency and can be used for representing the vehicle

driveline model in locked TCC and for 5th gear with lower order as compared to the

spilt backlash 3DOF-ROM model.
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Figure 2.15: Validation of 3DOF ROM with split backlash with FOM
model
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2.2.3 Assessment of model order reduction

Table 2.7 shows the system configuration which was used to evaluate the run time

for the various models that have been discussed in this chapter. Table 2.8 shows a

summary of the number of AMESim® explicit states, the run time and the ratio of

run time to simulation time for the two ROM models well as the FOM model. It can

be seen that with model order reduction, the number of explicit states in the driveline

model reduces from 47 for FOM to 10 for 3DOF ROM and the simulation time also

reduces from 37.54 to 15.42 seconds which is 59% reduction in time. It is also evident

from table 2.8 the reduction in states, as well as run time, is more for the ROM with

2DOF as compared with that of the 3DOF model, but as the 2DOF model is not able

to satisfactorily represent the dynamics of the system it cannot be used.

Table 2.7
System configuration used for model performance assessment

System details Description

Processor Intel® CoreTM i7-7700K CPU @4.20GHz

RAM 32 GB

System type 64 - bit Operating System - x64 based processor
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Table 2.8
Comparison of simulation time and number of AMESim® explicit states

for the ROM and FOM models

Description ROM-2DOF ROM-3DOF FOM Units

AMESim Explicit states 8 10 47 -

Run time 13.64 15.42 37.54 s

run/sim time ratio 3.41 3.85 9.38 -
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Chapter 3

Backlash State Estimator

State of a dynamic system is considered as the memory of the system (refer [38] and

[39]). It is a critical resource as the system’s current state and the future inputs define

the future output/state of the system. Thus, knowing the current state provides an

opportunity to manipulate the future input to the dynamic system such that a desired

future output/state can be achieved, which is the control objective for a feedback

control system.

One approach towards knowing the states of a physical system is to measure them

continuously using sensors. With the available measurement of the states and knowing

the input to be given, the physical system can be controlled to achieve the desired

behavior. But, all the states of interest cannot be always measured. This can be
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because of the physical limitations of the measuring sensors or due to the inherent

nature of the model. Another approach towards knowing the states of a system is

via developing a mathematical model representing the physical system using a set of

ordinay differential equations. These equations represent the dynamics of the system.

The limitation of this approach lies in the fact that the actual physical system is never

known completely due to model uncertainty. Thus, the model developed can deviate

from the actual physical system, resulting in the controller receiving information of

the system which is not true and affecting the performance of the controller.

A third approach can be referred to as a combination of the above two approaches,

wherein a few of the system states are measured and the dynamic model of the

system is also developed. This dynamic model uses those measurements to correct

the predictions made by the dynamic model by analyzing the error in the predicted

states and the measured states. Various methods have been developed in the controls

theory to develop such a system, refer [40] and [41].

The current goal of mitigating clunk and shuffle poses a similar problem, wherein the

engine torque needs to be cautiously shaped so that the desired driveline response

can be achieved. In this case, certain measurements of the vehicle such as the speeds

of the engine and the wheels are available but the position of the shaft within the

lash cannot be measured. This is primarily because the backlash inside the driveline

is distributed at multiple locations of gear and spline mesh interfaces within the
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driveline. If it is aimed to measure the overall backlash, from one end of the driveline

to the another end, two position sensors would be required to determine the exact

position of the shafts, which is expensive in terms of a commercially saleable vehicle.

Thus, a state observer/estimator needs to be developed which can use the available

measurements and can estimate the backlash position state of the driveline.

The rest of the chapter is categorized into three sections. The first section discusses

the development of a state estimator model which builds upon the 3DOF model

validated in the previous chapter and uses the available measurements of the engine

and the wheel speeds to estimate the backlash position. The second section discusses

the validation of the state estimator with respect to the 3DOF plant model as well as

the FOM. The third section of this chapter discusses the robustness of the developed

state estimator to various changes in the system inputs and measurements.

3.1 Model development

As discussed, the estimator design is a two-step process. The first step involves the

development of a state space model, representative of the dynamic system, having

some of its states that are available measurements. The second step involves using

an estimation method on the state space model and the measurements to estimate

the rest of the states of the system. As a result, the estimator model development
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is divided into 2 sections where the first section discusses the state space model

development and the second section discusses the application of estimation strategy

on the state space model. Furthermore, the state space model development section

discusses two state space models - one with shaft angular positions as the states of

the system and its drawbacks and the other with shaft twist angles as the states to

overcome those drawbacks.

3.1.1 State Space models

The state space model to be developed for the estimation of the backlash position is

based on the 3DOF ROM that has been developed and validated in the previous chap-

ter and represented using Equation 2.13 to Equation 2.22. An analysis of Equation

2.15 for the derivative of the backlash position suggests a non-linear behavior where

the derivative of the backlash angle is zero when the lash is at either positive contact

or at negative contact (|θb| = α) and non-zero (|θb| < α) during the lash traversal.

As a result of the non-linear nature of the backlash, the shaft torque, represented by

Equation 2.14, also has a non-linear behavior where the shaft torque is zero during

the backlash traversal and non-zero during either the positive contact or the negative

contact. This can be seen via substituting, the value of θ̇b for the case of |θb| < α

from Equation 2.15 in Equation 2.14. If Tsbl is the shaft torque in the backlash mode,
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then it is given by:

Tsbl = 0 (3.1)

and the shaft torque during the contact mode, Tscm , is given by:

Tscm = ks(θd − θb) + cs(θ̇d − θ̇b) (3.2)

Thus, the model of the backlash and consequently the driveline model, by the nature

of this dynamics, can be divided into two modes of operation - the contact mode and

the backlash mode. This implies that the 3DOF ROM non-linear driveline model

can be categorized into two linear state space models representing the dynamics in

contact mode and backlash mode.

A general state space representation of a dynamic system is given by:

ẋ = Ax + Bu (3.3)

y = Cx + Du (3.4)

where, x ∈ Rn is the state vector

u ∈ Rm is the input or control vector

y ∈ Rp is the output vector.

A ∈ Rnxn is the dynamic matrix
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B ∈ Rnxm is input matrix

C ∈ Rpxn is the output matrix

D ∈ Rpxm is the feedthrough matrix.

3.1.1.1 State Space Model I

Equation 2.13 to Equation 2.22 represent the dynamics of the system. To develop a

state space representation of form Equation 3.3 and Equation 3.4, the states of the

model need to be decided. Below are the rationales for choosing some of the states:

† Since the speed of the engine (θ̇e) and the wheels (θ̇w) are the measurements

and are required to compare the error with estimates, they are considered as a

part of the state vector.

† As the primary intention of the estimator is to determine the position of the

backlash (θb) thus it is also considered as a state.

† In order to consider the speeds as the states and based on the reference [16]

and [21], it can be seen that the positions of the inertia elements (Figure 2.14)

also need to be considered as states of the state space model, thus the angular

positions of the engine (θe), final drive (θfdr) and the wheel (θw), and their

respective speeds (θ̇e, θ̇fdr and θ̇w) are considered as the states of the model.
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The resulting state vector is given by:

x =

[
θe θ̇e θfdr θ̇fdr θw θ̇w θb

]ᵀ
(3.5)

The inputs in this case are the engine torque Te,inst,base and the road load to the

system Tload. Thus, the inputs can be defined as:

u =

[
Te,inst,brake Fload

]
(3.6)

Based on the above x and u and the discussion of two modes of driveline operation,

the dynamic matrix, the input matrix, and the output matrix are given by:

Acm =



0 1 0 0 0 0 0

− ks
J1itr2

− cs
J1i2tr

ksifdr
J1itr

csifdr
J1itr

0 0 ks
J1itr

0 0 0 1 0 0 0

ksifdr
J2itr

csifdr
J2itr

−ksifdr
2+kw

J2
− csifdr

2+cw
J2

kw
J2

cw
J2

−ksifdr
J2

0 0 0 0 0 1 0

0 0 kw
Mrw2+J3

cw
Mrw2+J3

− kw
Mrw2+J3

− cw
Mrw2+J3

0

0 0 0 0 0 0 0


(3.7)
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Abl =



0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 −kw
J2

− cw
J2

kw
J2

cw
J2

0

0 0 0 0 0 1 0

0 0 kw
Mrw2+J3

cw
Mrw2+J3

− kw
Mrw2+J3

− cw
Mrw2+J3

0

ks
csitr

1
itr
−ksifdr

cs
−ifdr 0 0 −ks

cs


(3.8)

B = Bcm = Bbl =

0 1
J1

0 0 0 0 0

0 0 0 0 0 rw
Mrw2+J3

0


ᵀ

(3.9)

C = Ccm = Cbl =

0 1 0 0 0 0 0

0 0 0 0 0 1 0

 (3.10)

D = Dcm = Dbl = [0] (3.11)

An important property of a state space system is its observability. Observability

has to do with the interconnection between the states and the outputs. If a state

space model is observable, this implies that using finite observations of the output,

the initial state of the system can be identified. As for our case, since we need to

identify the backlash position of the system based on the measurements of the engine

and the wheel speeds, if the state space model developed is not observable, then the

estimator will not be able to estimate the states of the system. References in [42],

[40] and [43] discuss various methods to determine the observability of a state space

78



Table 3.1
Observability for the State Space model I

Mode Matrix Pair
Number
of states

Rank of
Observability
matrix

Observable

Contact mode (Acm,C) 7 5 No
Backlash mode (Abl,C) 7 4 No

model. For this work, we have calculated the observability matrix for the state space

model which is given by:

O =

[
C CA CA2 . . . CAn−1

]ᵀ
(3.12)

A system is said to be completely observable if the rank of O is equal to n i.e. the

number of states of the system. Since we have both the contact mode and the backlash

mode, to determine the position of backlash, both the modes should be observable.

This can be seen in Table 3.1, where both the contact mode as well as the backlash

mode state space models are not observable. Thus, the state space models need to

be modified so that the states can be observed.

3.1.1.2 State Space model II

The test of observability for the contact and the backlash modes of the state space

model suggests that using the measurements of the engine and wheel speeds, we

cannot determine the backlash position of the system, thus the model needs to be
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modified.

A closer look at the physics of the contact mode model, i.e. when the backlash is

either at the positive contact or at the negative contact and the entire driveline is

rigidly connected, suggests that the measurements available are the speeds of either

end of the driveline. These are the speeds of the engine lumped inertia and the wheel

lumped inertia. With only the measurements of the speeds of the lumped inertia and

not the positions, determining the actual position of the engine and wheels are not

possible. This is because the initial conditions of the positions of either of the inertias

are not known. Thus, if the difference of the positions of the engine, final drive and

wheels are considered as the states of the system, then the initial conditions of the

positions of the engine, final drive and wheels are not required as they get canceled

out, making the system observable. Based on this rationale, the states of both the

contact mode and backlash mode models were updated to:

x =

[
θe
itr
− θfdrifdr θ̇e θfdr − θw θ̇fdr θ̇w θb

]ᵀ
(3.13)

where, ( θe
itr
− θfdrifdr) represents the twist angle of the lumped propeller shaft and

(θfdr − θw) represents the twist angle of lumped axle shaft, refer Figure 2.14 for the

layout of the model. The inputs and the outputs remain the same and based on this,

the modified state space model for the contact and the backlash mode is given by:
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Acm =



0 1
itr

0 −ifdr 0 0

− ks
J1itr

− cs
J1itr2

0
csifdr
J1itr

0 ks
J1itr

0 0 0 1 −1 0

ksifdr
J2

csifdr
J2itr

−kw
J2

− csifdr
2+cw

J2
cw
J2

−ksifdr
J2

0 0 kw
Mrtr2+J3

cw
Mrtr2+J3

− cw
Mrtr2+J3

0

0 0 0 0 0 0



(3.14)

Abl =



0 1
itr

0 −ifdr 0 0

0 0 0 0 0 0

0 0 0 1 −1 0

0 0 −kw
J2

− cw
J2

cw
J2

0

0 0 kw
Mrtr2+J3

cw
Mrtr2+J3

− cw
Mrtr2+J3

0

ks
cs

1
itr

0 −ifdr 0 −ks
cs



(3.15)

B =

0 1
J1

0 0 0 0

0 0 0 0 rw
Mrw2+J3

0


ᵀ

(3.16)

C =

0 1 0 0 0 0

0 0 0 0 1 0

 (3.17)

The analysis of observability for the modified state space model and the results are

shown in Table 3.2.
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Table 3.2
Observability for the State Space model II

Mode Matrix Pair
Number of
states

rank of
Observability
matrix

Observable

Contact mode (Acm,C) 6 6 Yes
Backlash mode (Abl,C) 6 4 No

From the results of Table 3.2, it can be seen that the state space model is observable

in contact mode but not in the backlash mode. Looking at the physics of the backlash

mode, it can be seen that, the driveline in the backlash mode is disconnected at the

backlash element i.e. the input engine torque goes into accelerating the propeller shaft

inside the lash zone without any torque being transferred to the wheels. Furthermore,

since there is no resistance torque on the propeller shaft, the twisting of the shaft does

not take place. Similarly, due to the coasting behavior of the vehicle, the momentum

of the vehicle keeps driving the wheels and reducing the vehicle speed based on the

road load acting on the wheels. Thus, the backlash mode system can be reduced to

two smaller subsystems. The first subsystem is from the engine lumped mass to the

backlash element and the second subsystem is from the final drive lumped mass to

the wheels. The engine subsystem can be modeled as a shaft accelerating due to the

input torque. The wheel subsystem can be modeled as two inertia elements connected

via a compliant element, with the wheel inertia subjected to the road load. In this

scenario, with the measurements of the engine and wheel speed, all the states of both

the subsystems can be determined. The equations of the backlash subsystem (engine
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subsystem and wheel subsystem) are given by:

xred =

[
θ̇e θfdr − θw θ̇fdr θ̇w

]ᵀ
(3.18)

Ablred =



0 0 0 0

0 0 1 −1

0 −kw
J2

− cw
J2

cw
J2

0 kw
Mrtr2+J3

cw
Mr2tr+J3

− cw
Mr2tr+J3


(3.19)

Bblred =



1
J1

0

0 0

0 0

0 rw
Mrw2+J3


(3.20)

Cblred =

1 0 0 0

0 0 0 1

 (3.21)

The test of observability for the reduced backlash model suggests that the rank of

the observability matrix is 4 which is equal to the number of states of the reduced

subsystem, as a result, all the states in Equation 3.18 are observable. It can be

seen that the reduced system developed for the backlash mode does not contain the

backlash position state, i.e. the backlash position cannot be estimated during the

backlash traversal using the engine and wheel speed measurements. Whereas in the

contact mode, all the states are observable and can be estimated.
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3.1.2 Estimator design

As discussed, the model that has been developed is always an approximation of the

actual physical system. So, to estimate the states of the system, some of the states

need to be measured. With the help of the measured state and the approximate plant

model, an estimation method needs to be used so that the rest of the states of the

model can be determined. The estimation method should be capable of handling the

errors caused by the approximation of the system, the noises in the measurements -

measurement noise, as well as the noise due to the propagation of the uncertainty in

estimated states - known as the process noise. Furthermore, the estimation method

should also be able to weigh the accuracy of the measurements to the accuracy of the

plant model to rely on either the measurement or the plant model to estimate the

states of the system.

One such method for estimation for a linear dynamical model is known as the Kalman

filter estimation method, refer [40] and [41]. This method uses the measurements,

the plant model dynamics and the error co-variances of the process as well as the

measurements to output an optimal estimate of the states of the system. Optimal

results are obtained when the plant model perfectly matches the real physical system,

the process and the measurement noises are uncorrelated and Gaussian in nature with

zero-means (white noise) and the co-variances of the noise are exactly known. The
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Kalman filter is optimal as it tries to minimize the square of the error between the

prediction and the measurements and uses this information to estimate the states of

the system, ref [40].

With an assumption that the process noise and the measurement noise co-variances

of the driveline are zero-mean Gaussian in nature, a switched Kalman state estimator

is designed based on the contact mode and the backlash mode state space models.

(Refer 3.1.1.2, Equation 3.13 to Equation 3.21). Figure 3.1 shows the layout of the

Switched Kalman State Estimator (SKSE) that has been developed to estimate the

states of the model, with an interface to the plant model. The SKSE, developed in

Simulink®, uses the measurements of the engine speed and the wheel speed from the

FOM (plant model), developed in Simulink® and AMESim®. The engine speed (θ̇e)

and wheel speeds (θ̇w) are the output of the FOM for a tip-in torque input, Te,inst,brake.

Te,inst,brake is also an input to the SKSE along with road load, Fload. The Fload is

calculated based on the measured wheel speed and the parameters of the vehicle. The

SKSE has two modes of operation, the contact mode and the backlash mode, defined

by their respective state space models, (Acm, Bcm, Ccm, Dcm) and (Abl, Bbl, Cbl, Dbl)

and their respective Kalman gains (Kcm and Kbl) used to estimate the states of the

model. An initial condition, x0, is also given to the SKSE. The switching between the

two modes takes place when the conditions for switching between the two modes are

met, i.e. when TCbl−→cm is met, the SKSE switches from the backlash mode to the

contact mode and when TCcm−→bl is met, the SKSE switches to the backlash mode
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from the contact mode. The output of the SKSE are the estimated states of the

driveline, x̂.

Based on the layout shown in Figure 3.1, the SKSE is discussed in further details in

the next sections.
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Figure 3.1: Layout of the designed backlash state estimator
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3.1.2.1 Kalman estimator

The steps taken for the development of Kalman state estimator are listed below:

† As the FOM model was in the continuous time domain, to facilitate the in-

tegration of Simulink® and AMESim®, and as the estimator needs to be im-

plemented in the vehicle ECU, a Discrete Switched Kalman State Estimator

(DSKSE) was required.

† In order to implement the DSKES, both the contact mode and the backlash

mode dynamics were discretized based on the sampling time of the engine and

the wheel speeds available, Ts.

† The Kalman filter estimation is a two-step method, the prediction step, and the

measurement-update or the innovation step. In the prediction step, the States

and the Error co-variance of the system (either the contact mode or the backlash

mode based on the current mode of driveline operation) are propagated based on

the state dynamics, input dynamics, and output dynamics. This propagation

predicts the states as well as the error co-variances. In the innovation step,

the propagated error co-variance is used to evaluate the Kalman gains. This is

based on the process noise and the measurement noise. The Kalman gains are

then used to estimate the States as well as the Error co-variance. In addition,

this cycle is repeated at every time step.
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† Prediction step - Let, x be the States of the system, P the Error co-variance

matrix, A the State dynamics matrix, B the input matrix, C the output matrix,

Q the process noise co-variance matrix, R the measurement noise co-variance

matrix, Z represents the measurements and k is the current time step, then the

a-priori state and error co-variance estimates are given by:

A-priori state estimate:

x̂−
k+1 = Ax̂k + Buk (3.22)

A-priori error co-variance estimate:

P−
k+1 = APkA

ᵀ + Q (3.23)

† The above estimates are then compared with the measurement data to calculate

the Kalman gain:

Kk+1 = (P−
k+1C

ᵀ)(CP−
k+1C

ᵀ + R)
−1

(3.24)

† Measurement-update step - Using the Kalman gain, Equation 3.24, the

errors between the predicted and the measured states are propagated to the

estimates of the states and the error co-variance.

A-posteriori state estimate:

x̂k+1 = x̂−
k+1 + Kk+1(Zk+1 −Cx̂−

k+1) (3.25)
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A-posteriori error co-variance:

Pk+1 = (I−Kk+1C)P−
k+1 (3.26)

Depending on the mode of operation of the dynamics of the system, the A, B and C

take the values of the contact mode dynamic or the backlash mode dynamics.

3.1.2.2 Backlash mode - Prediction and estimation updates

As discussed in the previous section, the Kalman filter estimates the states of the

dynamical system via switching between the two modes of operation of the model,

propagating the states based on the state equations of that model and finally updating

the predictions based on the measurements. Referring to Section 3.1.1.2, it can be

seen that for the backlash model, only the reduced backlash model is observable. The

reduced backlash model can only update the θ̇e, (θfdr − θw), θ̇fdr and the θ̇w states

and not the ( θe
itr
− θfdrifdr) and the θb states of the backlash model. This problem

is mitigated via only carrying out the a-priori step of the Kalman filter for the

( θe
itr
−θfdrifdr) and θb states. This is done with the assumption that the measurement-

based update of the remaining states would provide some information to drive these

states to the actual outputs of the plant. Figure 3.2 shows the difference between the

a-priori and a-posteriori estimates along with the states which are estimated, and

are only predicted for both the contact mode as well as the backlash mode.
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Figure 3.2: Discrete Switched Kalman State Estimator prediction and
estimation steps for contact mode and backlash mode
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3.1.2.3 DSKSE Transition conditions

Since the operation of the driveline model has been divided into the contact mode

operation and backlash mode operation, the estimator needs to switch between those

modes. One obvious choice for transition condition is, if the absolute value of backlash

angle is less than the half lash size, |θ̂b| < α then we know for a certainty that

the driveline is in backlash mode. Another set of conditions to decide the mode of

operation can be determined based on the derivative of the backlash angle.

From Equation 2.15 for the derivative of backlash angle, it can be seen that for

negative contact

θ̇b < 0 for θb = −α (3.27)

this implies:

θbθ̇b > 0 (3.28)

Similarly, for positive contact,

θ̇b > 0 for θb = α (3.29)

which also implies

θbθ̇b > 0 (3.30)
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Consequently, for backlash mode:

θbθ̇b 6 0 (3.31)

Thus, the transition from the contact mode to the backlash mode will take place

when:

θ̂b
ˆ̇θb 6 0 || |θ̂b| < α (3.32)

The transition from the backlash mode to the contact mode will take place when:

θ̂b
ˆ̇θb > 0 & |θ̂b| = α (3.33)

3.1.2.4 Process noise and Measurement noise co-variance matrices

The DSKSE uses a Process noise co-variance matrix, Q in Equation 3.23 and the

Measurement noise co-variance matrix, R, in Equation 3.24 to evaluate the Kalman

gains to propagate the error in the predictions with respect to the measurements to

the states of the system. Here, Q ∈ Rnxn, represents the noise in the states due to the

imperfect model of the system. The diagonal elements of Q represent the variance of

each state variable, while the non-diagonal elements represent the co-variance between

different states with respect to each other. On the other hand, R ∈ Rmxm represents

the noise in the measurements i.e. the sensor noise which needs to be considered to

evaluate the Kalman gains. For the current estimator design, the diagonal elements
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of Q were chosen as a calibration parameter to tune the estimator while the values

of elements of R were decided based on the respective sensor accuracy data.

Figure 3.3 (b), (c) and (d) shows the estimates of DSKSE when subjected to an input

ramp torque shown in Figure 3.3 (a). The DSKSE, in this case, is discretized at a

sampling time of 10 ms and the engine and the wheel speed inputs to the DSKSE

are also sampled at 10 ms. Figure 3.3 (b) shows the variation of the engine-side and

the wheel-side twist angles. Both the twist angles are negative when the input engine

torque is negative and as the torque reversal takes place, the twist angles become

positive. The maximum change in twist angles takes place in the engine side twist

angle. This is because the backlash has been modeled at the engine side (ref. Figure

2.8) so when the torque reversal takes place, the traversal of backlash also takes place

and gets accounted in the engine side twist angle. Once the lash traversal has been

completed, the positive torque deflects the shaft and twisting-untwisting take place

due to the stiffness and the damping of the propeller shaft. This twisting-untwisting

manifest in the form of shuffle oscillations. On the contrary, as the wheel side does

not have a backlash element, the wheel side twist angle only represents the twisting

and untwisting of the axle shaft.

Figure 3.3 (c) shows the estimates of the engine and the wheel speeds in the engine

domain. The shuffle oscillations are significant in the engine speed and less significant

in the wheel speed as discussed in the FOM validation section of this work. Finally,
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Figure 3.3: DSKSE estimated states
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Figure 3.3 (d) shows the estimate of the lumped backlash traversal. It can be seen

that the estimated lumped backlash traversal aligns with the twisting of the engine

side twist angle.

3.2 Discrete Switched Kalman State Estimator -

Validation

The DSKSE designed in the previous section is validated with respect to the FOM

which has been discussed in Section. 2.1.3.3.

The DSKSE uses the engine and the wheel speeds as measurements to update the

predictions of the model. Thus, the error between the estimated and measured engine

and wheel speeds are considered as one of the primary assessment parameters for the

DSKSE. Furthermore, one of the major inputs to the torque shaping controller is

the backlash position of the driveline. As a result, the comparison of the lumped

backlash position of the FOM and the estimated backlash position is also considered

as a parameter to assess the performance of the DSKSE. Refer Figure 3.1 to see the

interface of the FOM and the DSKSE.

Figure 3.4 shows the comparison of the outputs of the DSKSE and the FOM when

the DSKSE is discretized at 10 ms sampling time and the engine and the wheel speeds
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Figure 3.4: Validation of DSKSE with respect to FOM
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are also sampled every 10 ms. Figure 3.4 (a) shows the input torque to the DSKSE

and the FOM. Figure 3.4 (b) shows the comparison of the estimated engine speed

with respect to the measured engine speed input to the estimator (output of the

FOM). Similarly, Figure 3.4 (c) shows the comparison of the estimated wheel speed

and the measured wheel speed input. It can be seen from Figure 3.4 (b) and (c) that

the estimates overlap the measured inputs. Table 3.3 shows the maximum absolute

errors in estimation of the engine and the wheel speeds. It can be seen that the errors

in the speed estimates are significantly small. Figure 3.4 (d) shows the comparison

of the FOM lumped lash traversal with respect to the estimated lash traversal. For

the current torque ramp rate, the DSKSE starts to estimate the lash traversal later

than the FOM lumped backlash traversal and the lash traversal ends close to the

end of lash traversal of the FOM. This can be further seen in Figure 3.5 where the

magnified view of the start of backlash traversal for the plant and the estimator are

shown. It can be seen that the plant backlash slowly starts to traverse, and it takes

the estimator 1-time-step (10 ms) to detect the change in the lash traversal. The error

in the lash traversal time is 14.3%, refer Table 3.3, which is significantly higher than

the errors in the estimates of the engine and the wheel speeds. The major reasons

contributing to the difference in the estimation errors of the speeds and the backlash

position are highlighted below:

† As has been discussed in the Section 3.1.2.2 the engine side twist angle and

the backlash position in the backlash mode are not updated with the Kalman
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Figure 3.5: Comparison of start of backlash traversal for the FOM and the
DSKSE

Table 3.3
Validation of DSKSE with FOM for a sampling time of 10 ms

Description
Error
(%)

Engine speed estimate 2.50E-08
Wheel speed estimate 1.00E-05
Lash traversal time 14.29

gains based measurement correction and are only calculated using the prediction

equations of the system. This limits the capability of the DSKSE to optimally

estimate the backlash position leading to increased error as compared to the

errors in the engine and the wheel speeds.

† The lash traversal time for the current torque input is 130 ms and the sampling

time for the estimator is 10 ms. Even if the estimator takes 1 sample data to
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detect the change in backlash position, this will lead to an error in the lash size

estimate of approximately 7.5%. Thus, the sampling time of the estimator also

affects the error in the estimated backlash position.

† It is important to note that the accuracy of the lash traversal time estimate

would keep varying with the change in torque amplitude to which the estimator

is subjected to. This is because, as the rate of change of the torque input

increases, it reduces the lash traversal time. This would further amplify the

effect of sampling time on the error in the estimated lash traversal time.

The current discretization time for the DSKSE and the sampling time for engine and

wheel speeds were based on the sponsor organizations feedback of the sampling time

for the engine speed and the wheel speed in the current production vehicles. Figure

3.6 shows the state estimates if the DSKSE is discretized at 1 ms and the engine and

wheel speed samples are available every 1 ms. Figure 3.7 shows the comparison of the

start of lash traversal with a sampling time of 10 ms and 1 ms. It can be seen that

with 1ms sampling the DSKSE is able to estimate the start of lash traversal closer to

the actual FOM’s lash traversal when compared to the output with 10 ms sampling.

This is in line with the effect of the sampling time on the percentage error in the lash

traversal time estimate.

Table 3.4 shows a quantitative summary of the effect of sampling time on the errors in

the estimates. It can be clearly seen that the error in the lash traversal time reduces
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Figure 3.6: Validation of DSKSE with respect to FOM for a sampling time
of 1 ms.
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Figure 3.7: Comparison of start of backlash traversal for the FOM and the
DSKSE

Table 3.4
Comparison of errors in the estimates with 10 ms and 1 ms sampling

discretization times

Description % Error - 10 ms % Error - 1 ms

Engine speed estimate 2.50E-08 5.00E-09
Wheel speed estimate 1.00E-05 5.00E-06
Lash traversal time 14.29 5.59

from 14.3% to 5.6% via a change in sampling time from 10 ms to 1 ms.
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3.3 Robustness analysis - DSKSE

The validation of the estimator discussed in the previous section has only been done

for a fixed torque ramp rate and in an ideal simulation environment. But, the DSKSE

should be able to estimate the states of the system for varying input torque rates,

torque magnitudes, delays in the measurement inputs and the jitter in the CAN/-

clock signals with a considerable amount of accuracy. This section thus discusses

the robustness of the DSKSE to all those varying parameters which will lead to the

assessment of limitations of the DSKSE.

3.3.1 Robustness to varying step torque inputs

As a first analysis, the robustness of the state estimator to varying magnitude of

step input torque is done. These scenarios are representative of very sharp torque

transients that can take place in the driveline. Figure 3.8 (a) shows the different step

torque inputs to the estimator. These step torque inputs have a first order behavior

due to the engine dynamics. Figure 3.8 (b) shows the variation in the lash estimation

error with varying magnitudes of step inputs and at different sampling times.

A few important observations that can be made with the results of varying step inputs
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Figure 3.8: Error in the estimation of lash traversal time for different step
torque inputs and sampling times

are listed below:

† The error in the lash traversal time estimate decreases with a decrease in sam-

pling time of the engine and the wheel speed measurement inputs and the

sampling time of the estimator.

† There is no general trend on the basis of increasing the magnitude of the step
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torque inputs with respect to the resulting errors in the lash traversal time

estimates.

3.3.2 Robustness to varying torque ramp rates

Figure 3.9 (a) shows the various torque ramp rates that have been used to estimate

the backlash traversal. Figure 3.9 (b) shows the variation of the percentage error in

the estimated lash traversal time with a change in torque ramp rates for different

sampling times. Below are the observations that can be made -

† The DSKSE is sensitive to a very low torque input ramp rate of 200 Nm/s where

the maximum error is observed for all sampling times.

† For torque ramp rates with 10 ms sampling time, the estimation errors, in

general, increases with an increase in torque ramp rates. This is because, as the

torque ramp rate increases the lash traversal time decreases and the impact of

each sample time becomes more prominent.
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Figure 3.9: Error in the estimation of lash traversal time for different
torque ramp rates and sampling speeds
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3.3.3 Robustness to constant measurement delay

The DSKSE assumes that the measurements from the plant, i.e. FOM are available

a without any delay. But in the vehicle application, the sensor signal needs to be sent

to the ECU over CAN which can cause a delay in the signal when it is received by the

estimator. Additionally, in case of wheel speed sensors, the speeds are first received

by the ABS-ECU and then broadcasted to the powertrain ECU. This can also cause

a constant delay in the signal when it is received by the estimator. To simulate this

situation, a constant delay was added to the engine speed measurement input and the

wheel speed measurement input to understand the effect on the DSKSE’s estimates.

3.3.3.1 Effect of constant delay in engine speed

Figure 3.10 shows the comparison of estimates of the DSKSE with and without delay

in the engine speed measurement input when sampling time is 10 ms. From 3.10 (b),

the delay in the input engine speed can be seen. This causes a delay of 10 ms (1

sample time) in the estimate of start and end time of the lash traversal. This can be

seen more clearly in Figure 3.11 were the backlash traversal ends after one sample

time.

It is important to note here that the engine speed is one of the signals with the highest
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Figure 3.10: Effect of constant delay of 10 ms in engine speed measurement
input on backlash position estimate
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Figure 3.11: Effect of constant delay of 10 ms in engine speed measurement
input on backlash position estimate

priority on the CAN bus. Furthermore, the engine speed is directly broadcasted to

the Powertrain CAN. Because of these two reasons the constant delay in the engine

speed can be assumed to be less than 10 ms.
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3.3.3.2 Effect of constant delay in wheel speed

As compared to a constant delay in the engine speed, a constant delay in wheel speed

is more likely. One of the major reasons for this is the multiple ECUs involved in the

broadcast of wheel speed signals to the powertrain ECU. During a discussion with

the sponsor organization, it was suggested that a constant delay of 30 ms is observed

in the wheel speeds. Thus, the effect of a constant delay of 30 ms was checked on

the estimator. From Figure 3.12 (c), it can be seen that the wheel speed estimate

with delay is shifted with respect to the input wheel speed measurement as well as

the wheel speed estimate without any delay. Even with this delay, the estimator is

able to estimate the position of backlash without any change in traversal time or the

traversal start and end time. This can be seen in Figure 3.13 where the backlash

position estimate with and without delay has the same lash traversal time as well as

the start and the end times.
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Figure 3.12: Effect of constant delay of 30 ms in wheel speed measurement
input on backlash position estimate
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Figure 3.13: Effect of constant delay of 30 ms in wheel speed measurement
input on backlash position estimate

3.3.4 Effect of combined delay in engine and wheel speed

The effect of combining the engine and wheel speed delays of 10 ms and 30 ms

respectively leads to a delay of 1 sample time in the estimated end of backlash position.

This is because the engine speed delay of 10 ms leads to a delay of 1 sample time in

the estimated end of backlash position as discussed in Section 3.3.3.1 while the wheel

speed delay of 30 ms does not affect the estimated end of backlash position, Section

3.3.3.2.
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Figure 3.14: Effect of combined constant delay of 10 ms in engine speed
and 30 ms in wheel speed measurement inputs on backlash position estimate

3.3.5 Effect of CAN jitter in engine and wheel speed mea-

surements

To collect more data on the actual vehicle’s behavior during tip-in and tip-out sce-

narios, the sponsor organization had shared a production vehicle with Michigan Tech.

This was done so that the hardware team at MTU can instrument the vehicle and

perform different tests to quantify clunk and shuffle. From the measurements taken

by the hardware team, when the measurements of engine and wheel speeds of the

vehicle were analyzed, it was found that the CAN updates in the engine and wheel
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speeds had variations with respect to the ideal sampling time. This implies that the

updates in speeds arrived in advance to or delayed with respect to the ideal sampling

time. The distribution of this variation of the measurement updates in engine and

the wheel speeds are plotted in Figure 3.15 and 3.16 respectively. Since the current

DSKSE validation was carried out assuming that the measured data updates were

received as per the ideal sampling time, the effect of this jitter in measurement up-

dates and on the performance of the DSKSE needs to be checked and is discussed in

this section of the robustness analysis.

Figures 3.15 and 3.16 (a), (b) and (c) represent the different measurement data sets

taken by the hardware team. These data sets are named as “Data set 2”, “Data set

3” and “Data set 4”. The name “Data set 1” is used for the ideal sampling time data

i.e. “No delay”. This naming convention is used for both the engine and the wheel

speeds. The positive values of time on the x-axis of this plot represent the delay in

the update of the new measured sample data with respect to ideal time, while the

negative values represent that the data are received in advance of the ideal sampling

time. The “Measured data” bars on the histogram represent the distribution of the

jitter in the measured data. It can be seen that the distribution of the jitter for all

3 data sets are different and are not normally distributed. As a result, a “Kernel

Probability Density Function” was calculated and plotted for each of the measured

data set. This kernel probability density function was used to generate jitter data that

can be injected into the FOM outputs, of engine and wheel speeds, to understand the
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performance of the DSKSE. This is represented as the “Generated data” bars on the

histogram. The subplot (d) of 3.15 and 3.16 shows the comparison of the probability

density functions of different data sets.

From Figures 3.15 and 3.16 it can be seen that the maximum amplitude of the jitter

in engine and wheel speeds are 5ms. The Simulink®- AMESIM® plant model is

operating in the continuous domain, thus the output engine and wheel speeds are

also in the continuous domain. In order to analyze the response of the DSKSE to

the engine and wheel speed CAN jitter for a sampling time of 10 ms, the measured

engine and wheel speeds were sampled twice. From Figure 3.17 it can be seen that

the continuous speed outputs of the plant are sampled first at 1ms. This makes it

possible to add subtle variations due to the CAN jitter. After the jitter has been

added to the measurements, they are sampled again at various sampling times (10

ms, 5 ms, and 1 ms) to assess the performance of the controller at those sampling

times.

Figures 3.18 and 3.19 shows the results of delay in the estimation of lash traversal

when the DSKSE is subjected to the jitter in the engine and the wheel speeds. The

major observations from the plots are discussed below:

† For sampling time of 10 ms, there is no delay in the estimated lash traversal

time. This can be explained by the fact that the maximum delay in the jitter
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Figure 3.15: Distribution of CAN jitter in engine speed for different mea-
sured data set
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Figure 3.16: Distribution of CAN jitter in wheel speed for different mea-
sured data set
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Figure 3.17: Layout for implementing CAN jitter in engine and wheel
speeds

118



is of the order 5ms. With this delay and 10 ms sampling of engine and wheel

speeds, the effect of delay would average out significantly over the simulation

duration. Furthermore, the effect of 5ms delay on lash traversal would be max-

imum if it is encountered during the lash traversal, which can vary because of

the probabilistic nature of the distribution.

† The data set 3 of the engine jitter has a bi-modol distribution with one peak

around 5 ms, Figure 3.15. For sampling speed of 5 ms and 1 ms, this distribution

causes a delay of 1 sample time, i.e. 5 ms and 1 ms respectively with all wheel

jitter data sets.

† With wheel data set 4, 1 sample time delay (5 ms) is found for with and without

the engine jitter, Figure 3.19 for DSKSE’s sampling time of 5 ms. A closer

inspection of the Figure 3.16 reveals that although the nature of distribution

for data set 3 and 4 are similar, the number of samples in case of data set 4,

with delay around 4-5 ms, are more than that in case of data set 3. This can

also be seen in Figure 3.16 (d) where the area under the curve for data set 4 is

more than that for data set 3 for the positive side of the delays.

To summarize, DSKSE with 10 ms sampling time is not able to identify the change

in the engine and wheel speed signals because of the jitter, while the DSKSE with

5 ms sampling time is very sensitive to the jitter in engine and wheel speed and the

DSKSE with 1 ms is most robust to the engine and wheel CAN jitters.
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3.3.6 Effect of sampling time

Figure 3.20 shows a box plot of errors in the lash traversal time for various torque

inputs (step as well as a ramp) to the DSKSE. The observations that can be made

with the help of this figure are -

† With the decrease in the sampling time and estimator’s time of discretization,

the error in the lash traversal time (mean and mode) decreases.

† For a sampling time of 10ms, the distribution of the error in lash traversal is

wide as compared to that with 5 ms and 1 ms.

† The average and the mode error in the lash traversal time estimation with 10

ms sampling time is around 15%.

† With 5 ms sampling time, the maximum error in lash traversal time estimate

is less than the average or the mode error with 10 ms sampling time. Thus,

5 ms sampling time provides a significant improvement in the estimates. Fur-

thermore, with 5 ms sampling time, the average and the mode of error in lash

traversal time estimation is about 9%.

† A sampling time of 1 ms provides the best result in the lash traversal time

estimation with maximum error being 8% and mode around 4%.
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Figure 3.20: Box plot for error in lash traversal time with sampling time
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† As the sampling time and the estimator’s discretization time decreases, the

range of error in the lash traversal time also decreases, barring an outlier for

the 1 ms sampling time at 23%

Along with the effect of estimator’s discretization time and sensor’s sampling time on

the accuracy of lash traversal time, other factors also need to be taken into account to

decide the sampling time for the estimator. This includes the hardware to be used in

the actual vehicle as well as the design of the controller. For instance, if the controller

is robust to errors in lash estimation time then a larger sampling time can be used

with less cost of the hardware.

To summarize, table 3.5 shows the various robustness analysis done for the backlash

state estimator. All these robustness assessments provide an effective data summary

of the performance and limitations of the estimator and finishes the development of

the Discrete Switched Kalman State estimator.
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Table 3.5
Summary of Discrete Switched Kalman State Estimator robustness analysis

Description Status

Effect of varying torque step inputs

Effect of varying torque ramp rates

Effect of constant delay

- Engine speed

- Wheel speed

- Combined engine and wheel speed

Effect of CAN jitter in

- Engine speed

- Wheel speed

- Combined engine and wheel speed

Effect of sampling time

This finishes the Discrete Switched Kalman State Estimator’s model development,

validation and robustness analysis.
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3.4 Sensitivity analysis for DSKSE

3.4.1 Sensitivity to varying estimator model parameters

The parameters of the model that have been used to estimate the states of the driveline

during tip-in and tip-out events can change due to (i) the part to part variation of the

components of the driveline and (ii) the usage of the vehicle. For example, the mass

of the vehicle varies with the number of passengers sitting in the vehicle as well as

based on the luggage in the vehicle. Thus, the parameters of the model are varied to

evaluate the performance of the estimator. The parameters that have been changed

are listed below:

† Mass of the vehicle (M)

† Engine lumped inertia (J1)

† Propeller shaft lumped stiffness (ks)

† Wheel lumped stiffness (kw)

† Propeller shaft lumped damping (cs)

† Wheel lumped damping (cw)
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† Wheel lumped inertia (J3)

These parameters are increased by 1.2, 1.3, and 1.5 times the baseline parameters

and the error in lash traversal time as well as the delay in the start of lash traversal

with respect to the baseline estimator outputs are shown in Figure 3.21 and Figure

3.22 respectively. An assumption has been made to consider a deviation of 1% in

estimated value of lash, to be acceptable. This assumption is made to ignore very

small value of error in the estimated backlash. The observations from the variation

of error in lash traversal time in Figure 3.21 are discussed below:

† It is evident from Figure 3.21 (a), (b), and (c) for different increase in the

values of baseline parameters that the estimator is most sensitive to the lumped

propeller shaft stiffness. The error in the lash traversal is up to 40% for the

three cases which occurs at 500 Nm/s of input torque ramp rate.

† The second most sensitive parameter is the mass of the vehicle with error ranging

up to 18% in cases for torque ramp rates more than 500 Nm/s.

† For other parameters the error in lash traversal time is less than 10% even with

an increase of up to 30% from the baseline value of the parameter.

† For wheel lumped stiffness and the wheel lumped damping, with an increase of

50% from the baseline values, the error increases to 18% as compared to 9% for

30% increase in the value from baseline values.
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the parameter by 1.2 times
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(c) Effect on error by changing

the parameter by 1.5 times

Figure 3.21: Plot showing the variation of error in lash traversal time with
changing the estimator baseline parameters by 1.2, 1.3, and 1.5 times on the
error for different input torque ramp rates at 10 ms sampling time
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It was observed that the end of lash traversal time was same for all the scenarios, thus

the error in the lash traversal time is because of the error in the start of lash traversal.

This is shown in Figure 3.22 for varying different parameters of the estimator. The

additional information Figure 3.22 provides with respect to observations made from

the results of Figure 3.21 is, whether the lash traversal time increases or decreases

when a particular parameter is changed. A positive value of delay suggests that

the lash traversal time increases, while a negative value of delay suggests that the

lash traversal time decreases. Thus, increasing the propeller shaft stiffness and mass

of the vehicle increases the lash traversal time. This can be seen in Figure 3.23

which shows the comparison of estimated backlash position with baseline and 50%

increased lumped propeller shaft stiffness. It can be seen for the torque ramp rates

such as 200 Nm/s and 300 Nm/s that the estimated backlash position with modified

propeller shaft stiffness slowly starts to traverse before the estimated backlash with

ideal (baseline) propeller shaft stiffness. This causes the increase in error of the lash

traversal time with changing the stiffness of the propeller shaft.
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Figure 3.22: Plot showing the variation of error in start of lash traversal
with changing estimator baseline parameters by 1.2, 1.3, and 1.5 times on
the error for different input torque ramp rates at 10 ms sampling time
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ramp rates at 10 ms sampling time
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3.4.2 Sensitivity to different operating gear

To understand the performance of DSKSE to operating gear other than 5th, an anal-

ysis was carried out in 6th gear and result is shown in Figure 3.24. It can seen that

the start and end of lash traversal for different ramp rate are similar to the simulated

via the full order plant model. The modifications made to the estimator to adapt to

6th condition are:

† The lumped engine inertia is changed (J1) as it consists of the engine as well as

the transmission inertia.

† The transmission gear ratio (itr) is changed to a value of 6th gear.

† As the value of lumped backlash is dependent on the transmission gear ratio,

the backlash angle was also modified.
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Chapter 4

Backlash Size Estimator

The previous chapter discussed the estimation of backlash position when the size of

the backlash is known. As discussed, the backlash size of the driveline is cumulative of

individual backlashes distributed at various gear and spline mesh interfaces. Over the

life the vehicle, there will be plastic deformation of the components of the driveline

due to various loads the driveline is subjected to. This include the deformation of the

gear and the spline geometries which will increase the size of the backlash over the life

of the vehicle. In this scenario, where the backlash size is increased, if the backlash

position estimator (DSKSE) estimates the position of backlash on the basis of an old

value of the lash size, it can significantly hamper the performance of the anti-jerk

controller. Thus, in order to have a sustained performance of the anti-jerk controller

over the life of the vehicle, it is necessary that the size of the backlash can also be
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estimated. This estimated lash size will update the lash size used by the DSKSE,

ensuring that the backlash position estimate from the DSKSE to the controller is

representative of the vehicle lash size.

This chapter discusses the development of a backlash size estimator using the state

space model of the driveline model that has been developed for this work (refer

Section 3.1.1.2). Post the development of the size estimator, the validation of the size

estimator is discussed along with its capability to estimate the size of backlash for

varying plant backlash sizes. Finally, this chapter discusses the robustness analysis

of the developed size estimator to various scenarios.

4.1 Estimator model development

The size estimator development section of this chapter is subdivided into three sec-

tions. The first section discusses the rationale that has been used to develop the size

estimator. The second section discusses the Kalman filter estimator approach and the

layout of the estimator used to estimate the backlash size. The third section discusses

the results of the size estimator and the final section discusses the modification that

has been made to the representation of estimated lash size.

136



4.1.1 P for size estimator

Let the vehicle driveline be represented by only the contact mode dynamics of the

driveline (Equations 3.13, 3.16 and 3.17) and let a Kalman filter is designed to esti-

mate the states of the driveline with only contact mode dynamics. Now if the driveline

is in contact mode, i.e. no change in the position of the lash, the lash estimate using

contact mode dynamics should not change. But if the driveline is traversing through

the lash, i.e. backlash mode, the estimator will accumulate some error in the lash

position and would start estimating the lash angle. Finally, when the driveline has

reached contact mode again, there will be no further change in the lash angle estimate

and a steady offset in the lash angle would be achieved. This steady value will be the

size of the driveline backlash.

4.1.2 Kalman backlash size estimator

Based on the rationale discussed in Section 4.1.1, a Triggered Kalman Backlash Size

Estimator is designed (TKBSE) to estimate the size of the backlash while the driveline

traverses from the negative contact to positive contact. The trigger to estimate the

size of backlash is based on the commanded torque value by the engine (Te,inst,brake).
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If the engine commanded torque is greater than zero and the change in engine com-

manded torque is more than a small calibration value (6 Nm/s), this implies that

the driveline is being forced to traverse backlash and achieve positive contact. This

scenario provides important information to the estimator to estimate the backlash

size.

Based on the above discussion, modified state variables for the size estimator can be

given by:

x̂ =

[
θ̂e
itr
− θ̂fdrifdr ˆ̇θe θ̂fdr − θ̂w ˆ̇θfdr

ˆ̇θw 2α̂

]
(4.1)

Here 2α̂ represents the backlash size estimate. The A, B and C matrices for the size

estimator are given by Equation 3.13, Equation 3.16 and Equation 3.17 respectively.

If the Kalman gain is given by Kcm, then the estimates can be given by:

ˆ̇x = Acmx̂ + Bcmu + Kcm[Z−Ccmx̂] (4.2)

where, Z represents the measurement inputs to the Kalman estimator.

Fixed Kalman gains were calculated for the above state space model using a process

noise co-variance (Q), a measurement noise co-variance (R) in Matlab®. The values

of the measurement noise co-variance have been kept the same as the one used in the

DSKSE as they depend on the accuracy of the sensors used to measure the engine

and the wheel speeds. The process noise co-variance matrix was used as a calibration
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to reduce the error between the estimated and actual backlash size.

Figure 4.1 shows the layout of TKBSE. A torque command, Te,inst,brake is sent to

the vehicle model and the TKBSE. The resulting engine and wheel speeds from the

vehicle model are sent to the estimator through a sample and hold block to discretize

the continuous plant outputs. The vehicle road load is also calculated based on the

measured wheel speed and sent to the TKBSE as an input. The torque command

to the TKBSE is also sent to the trigger block. This block checks if the derivative

of the torque is more than a calibration value (6 Nm/s) and compares the torque to

a set value (0 Nm, in this case). If both the conditions are met, a trigger is sent

to the TKBSE to start the lash size estimation. The trigger block also sends the

initial conditions of the engine and wheel speeds based on the current measurements

each time the TKBSE is triggered. The outputs of the TKBSE are the twist angles,

speeds, and the size estimate.
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Figure 4.1: Layout of Triggered Kalman Backlash Size Estimator
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4.1.3 TKBSE outputs

Figure 4.2 shows the output of the TKBSE. Figure 4.2 (a) shows the engine torque

input to the estimator for two consecutive tip-ins and tip-outs. Figure 4.2 (b) shows

the triggers which are used to trigger the size estimation. The solid line shows the

trigger that the driveline torque is positive and the dashed line shows that the torque is

increasing which implies a tip-in event. The size estimation is triggered when both the

triggers are active. Figure 4.2 (c) shows the comparison of input and estimated engine

and wheel speeds in the engine domain. It can be seen that the engine and wheel

speeds are estimated only when both the triggers are active and the estimates are

held constant to the last estimated value otherwise, indicating that the size estimator

is not triggered anymore and thus not updating the size. Figure 4.2 (d) shows the

size estimate which starts at zero and when the estimator is triggered for the first

time, it experiences a transient to estimate the backlash size based on the error in

the engine and the wheel speeds and then finally arrives at a value of size estimate

which becomes constant when the estimator is triggered off. For the second tip-in,

the size estimate re-corrects itself and again arrives at a value of the backlash size.

The current analysis is done when the engine and wheel speeds are sampled at every

10 ms.

Figure 4.3 shows the size estimate of the TKBSE for multiple tip-in scenarios. Figure
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Figure 4.2: TKBSE outputs with input engine torque and triggers
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4.3 (a) shows the input torque profile to the estimator. The only difference with

respect to the analysis of Figure 4.2 is this analysis is done for a longer time duration.

Figure 4.3 (b) shows the comparison of the estimated and the plant engine speeds.

It can be seen that the estimator is triggered only during the tip-in scenarios where

the backlash of the driveline is traversing. Rest of the time, the estimates are held

constant while the plant engine speed varies. This can also be seen in Figure 4.3 (c)

which shows the comparison of the estimated and plant wheel speeds where the esti-

mated wheel speed deviates from the plant wheel speed (estimated speed is constant

while the plant speed increases) when the estimator is not triggered. Figure 4.3 (d)

shows the backlash size estimate with the transients during the start of each trisgger

and the estimate converging to a final value of the lash size as the trigger continuous

and eventually holding the last estimate until a new tip-in cycle starts.
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Figure 4.3: Comparison of TKBSE size estimate and actual backlash size
for multiple tip-in events
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4.1.4 Modified backlash size estimate for TKBSE

It can be seen from Figure 4.2 and Figure 4.3 that the backlash size estimate has an

initial transient each time the estimator is triggered which settles down after some

time to a final value. This final value represents the size of the backlash. Thus, the

representation of the size estimate can be modified to show the final value of the

estimate as shown in Figure 4.4 (d), where the modified lash signal takes the final

value of the size estimate after each trigger cycle or when there is no change in the

lash size estimate.

This representation for the backlash size will be used from here on to represent the

estimated backlash size of the driveline.

145



Figure 4.4: TKBSE outputs with modified representation of the backlash
size
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4.2 Validation of TKBSE

In order to validate the TKBSE, a torque profile is selected as an input to the plant

model for different backlash sizes of the plant. Three backlash sizes have been chosen.

Given the half backlash size is represented by α, the three chosen plant backlash sizes

are represented as 2α, 4α, and 6α. The torque input and the outputs of plant model,

i.e. the engine and wheel speeds, for different backlash sizes are then fed to the

TKBSE to estimate the size of backlash based on the inputs and the measurements,

refer Figure 4.1 for inputs, measurements and estimates of the TKBSE and for the

interface between the plant model and the TKBSE.

Figure 4.4 shows the result of size estimate for the baseline driveline backlash size (2α)

with engine and wheel speeds sampled every 10 ms. Table 4.1 shows the comparison

of error in the estimated lash size for different plant lash angles for a fixed torque

input shown in Figure 4.4 (a) and with engine and wheel speeds sampled every 10

ms. Below are observations from the error in the estimated lash size:

† The maximum error for this torque profile with ramp inputs is less than 1%.

† As the plant lash size increases, the error in the estimated lash size decreases.

This is because, as the lash size increases, for a given value of torque ramp

rate and the magnitude of torque, the lash traversal time increases. With the
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Table 4.1
Variation in error in TKBSE’s size estimate with change in plant backlash

size and 10 ms sampling time for the estimator and speeds

Actual backlash size % Error in lash size estimate

2α 0.81
4α 0.25
6α 0.23

increased lash traversal time and a given discretization time of the estimator,

more data samples are available to estimate the size of the backlash, reducing

the error in the estimates.

With these values of error in the lash estimates, it can be said that the TKBSE is

validated for a given torque ramp rate. A more detailed analysis of the estimator’s

performance to varying torque inputs and delays is done in the next section.

4.3 Robustness analysis of TKBSE

Similar to robustness analysis of the Discrete Switched Kalman State Estimator, the

robustness analysis of Triggered Kalman Backlash Size Estimator is also done to

assess the performance of the estimator to various torque inputs, ramp rates, delays,

and sampling times. This is done so that the limitations of the TKBSE can also be

identified as well as certain hardware level decision can be made.
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4.3.1 Robustness to varying step torque inputs

The most severe clunk and shuffle are observed in the driveline with step torque

inputs. Figure 4.5 shows a set of three step inputs which have been used to estimate

the lash size with varying plant backlash sizes. It is important to notice that there is

a first order shape to the torque inputs. This is due to the first order dynamics of the

engine and because the step input is given to the base and the instantaneous torque

commands. Figure 4.6 shows the simulation result for “Step 1” torque profile with 2α

plant backlash size and 10 ms sampling time. It can be clearly seen in Figure 4.6 (b)

and (c) of engine and wheel speeds respectively that the size estimator is triggered

for a limited time and holds the value at the end of trigger for the rest of the time.

Figure 4.6 (d) also shows the size estimate with (w) and without (wo) constraint.

The without constraint signal shows the settling of backlash size estimate while the

with constraint signal takes the final value of each trigger cycle.

Figure 4.7 shows the results of error in size estimates for different torque step inputs

with the change in the plant backlash size and the sampling time of the TKBSE. Below

are the observations that can be made from the result of errors in size estimate.

† As the magnitude of step input torque increases (“Step 1” to “Step 3”), for

each sampling time, the error in the size estimate also increases. This can be
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Figure 4.5: Step inputs used to assess the robustness of TKBSE

explained by two reasons, (i) the Q of the TKBSE is tuned for the torque “Step

1” leading to a lesser error in the lash estimates with torque “Step 1”, (ii) with

the increase in torque step from profile 1 to 3, the lash traversal time decreases

because of the increasing final value of torque magnitude, thus the number of

data samples available to the estimator are less, leading to increased error in

the size estimate.

† For a given plant backlash size, as the sampling time decreases the error in the

size estimate also decreases. This is because more data samples are available

for a given lash traversal time for the estimator to estimate the backlash size
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Figure 4.6: Simulation result for “Step 1” torque profile with 2α plant
backlash size and 10 ms sampling time.
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Figure 4.7: Variation of percentage error in size estimate for various step
input torques at different sampling times and plant backlash sizes (2α, 4α
and 6α).

resulting in a decrease in the error.

† For a given sampling time and torque step, as the plant backlash size increases,

the error in the estimates of the backlash size decreases due to the longer back-

lash traversal time.

† For very large backlash size (6α) and for a given torque step input, the effect

of sampling time on the error in the estimates decreases. This can be seen by

comparing the error in lash estimation for plant lash size of 6α for torque “Step
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1” and all sampling times.

4.3.2 Robustness to varying torque ramp rates

Post the analysis of the effect of various step torque inputs to the TKBSE, the effect

of varying torque ramp rates were also studied. An intercept of the torque input (two

tip-in and tip-out cycles out of a total 10 cycles) of varying ramp rates to the TKBSE

is shown in Figure 4.8. A similar analysis, as done for the case of step input torque,

was done and the results with “Ramp 1” torque ramp rate with 2α plant backlash

size at 10 ms sampling time are shown in Figure 4.9. Figure 4.9 (d) of the simulation

result shows that the actual and the estimated lash size are very close to each other.

The quantitative summary of the error in lash size estimates with varying torque

ramp rates, plant lash sizes and sampling times is shown in Figure 4.10
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Figure 4.8: Ramp torque inputs used to assess the robustness of TKBSE
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Figure 4.9: Simulation result for “Ramp 1” torque profile with 2α plant
backlash size and 10 ms sampling time.
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The key highlights of the variation of error with varying ramp rates are discussed

below:

† As compared to the error in lash size estimation with step torque inputs, Figure

4.7, the error with ramp torque inputs has significantly reduced. This is due

to increased lash traversal time with ramp torque inputs as compared to step

torque inputs.

† As the magnitude of torque ramp rate increases, i.e. ramp converging to step,

the error in the lash size estimate also increases. This is similar to the higher

errors in the lash size estimates with ramp torque inputs as compared to step

torque inputs.

† With decreasing the sampling time, the error in the lash size estimate decreases

because more data samples are available to the estimator to estimate the lash

size for a given lash traversal time.

† The decrease in error of lash size estimate with an increase in lash size is also

evident throughout the different ramp rates as well as the sampling times.
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Figure 4.10: Variation of percentage error in size estimate for various ramp
input torque rates at different sampling times and plant backlash size (2α,
4α and 6α).

4.3.3 Robustness to torque inputs with varying duty cycle

and pulse width

For the discussions in Section 4.3.1 and Section 4.3.2, the duty cycle and pulse width

of the torque inputs were constant even though the torque rates were different. In

order to check whether the constant duty cycle and the pulse width are not causing
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Figure 4.11: Comparison of varying duty cycle and pulse width torque
input profiles with constant duty cycle and pulse width profiles

the size estimate to converge to a specific value, two torque input profiles with varying

duty cycle and pulse width were also developed to check the error in the size estimate.

A comparison of those varying duty cycle and pulse width torque inputs with constant

duty cycle torque inputs is shown in Figure 4.11.
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The result of the TKBSE for “Varying 1” torque profile, a plant backlash size of 2α

and the sampling time of 10 ms is shown in Figure 4.12. Figure 4.12 (d) shows a good

correlation between the estimated lash size and the actual plant backlash size.

Figure 4.13 shows the summary of variation of lash size estimate with the two varying

duty cycle and pulse width torque input profiles for different lash sizes and sampling

times. The observations are very similar to the previous two cases. The average errors

in size estimate with this case are similar to those with ramp torque inputs.
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Figure 4.12: Simulation result for “Varying 1” torque profile with 2α plant
backlash size and 10 ms sampling time.
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Figure 4.13: Variation of percentage error in size estimate for varying duty
cycle input torque rates at different sampling times and plant backlash size
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161



4.3.4 Robustness to variable torque input profile

Based on the results of the Section 4.3.1, Section 4.3.2 and 4.3.3, where one or the

other parameter of the input torque was fixed, in this scenario, a random torque

profile was generated to test the robustness of the size estimator. This is shown

in Figure 4.14 (a) where the torque ramp rate, the magnitude of the final value as

well as the duty cycle of the torque input, varies with time. The Figure 4.14 (b)

and (c) shows the comparison of estimated and the measured engine and the wheel

speeds. The estimates overlap with the measurements while the estimator is trigger

ON and are held to a constant value when triggered OFF. Figure 4.14 (d) shows the

comparison of the actual lash size, the estimated lash size without (wo) and with (w)

constraint. It can be seen that the final value of the lash size is kept as the one for

which the final torque value is maximum, i.e. the peak with 15t final value of torque.

Figure 4.15 shows the summary of variation in the error of lash size estimate for

different plant backlash angles as well as the sampling times. The general observations

from this plot are similar to previous robustness analyses. The order of error is similar

to the error with variable duty cycle and ramp torque inputs with decreasing error in

size estimate with increasing lash size as well as the sampling times.
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Figure 4.14: Simulation result for random torque profile with 2α plant
backlash size and 10 ms sampling time.
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Figure 4.15: Variation of percentage error in size estimate for random
input torque at different sampling times and plant backlash angles (2α, 4α
and 6α).

4.3.5 Robustness to constant delay in engine speed

As discussed in the robustness analysis of the state estimator, the measurement input

signals to the TKBSE can have a delay from the time it is measured at the crankshaft

to the time it is received by the estimator. Normally, the engine speed signals are

directly sent to the powertrain ECU and they have the highest priority in the CAN bus

as compared to other signals. As a result, the delay in the engine speed signal should
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Figure 4.16: Comparison of input measured engine speed with and without
delay.

be significantly less than other signals broadcasted over the CAN. An assumption is

made that a delay of 10 ms is significant for the engine speed signal and accordingly

simulation for delays of 5 ms,10 ms and 20 ms are done to understand the error in

the size estimate. A comparison of engine speed with and without delay is shown in

Figure 4.16 for engine speed sampled at 10 ms and with 10 ms of constant delay.

Figure 4.17 shows a plot of variation of error in size estimate with increasing constant

delay in the engine speed for different sampling times. The observations that can be

made from the distribution of error are:

† As the delay in the engine speed measurement increases, the error in the size
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Figure 4.17: Variation of error in size estimate with variation in engine
speed constant delay for different sampling times.

estimate also increases. This is because the trigger to estimate the lash size is

active for a fixed period of time and is based on the engine torque input and its

derivative values. As a result, a specific window of engine speeds measurement

data is available to the estimator to estimate the size of the backlash. With the

increasing delay in the engine speed measurement, the window of data with the

knowledge of lash traversal is reduced consequently increasing the error in the

lash size estimate.

† The variation of error also shows that as the sampling time decreases, the error
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caused by the constant engine speed delay increases. This is contrary to the

expected behavior where the error in size estimate decreases with a decrease in

the sampling time.

4.3.6 Robustness to constant wheel speed delay

As compared to engine speed, the wheel speed data can have a higher delay and the

discussions with the sponsor organization have indicated that a delay of maximum

30 ms is adequate. Accordingly, Figure 4.18 shows the comparison of input measured

wheel speed with and without delay of 30 ms for sampling time of 10 ms. The

summary of variation in size estimate is shown in Figure 4.19.
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Figure 4.18: Comparison of input measured wheel speed with and without
delay.

The observations from this analysis are listed below:

† Similar to the observation for variation of error in lash size estimate for a con-

stant delay in engine speed, with a constant delay in wheel speed, the error also

increases with an increase in the delay.

† On the contrary to the trend with a constant delay in engine speed, with a

constant delay in wheel speed, as the sampling time decreases, the error in size

estimate also decreases. This is more in line with observations that have been

made with the rest of the robustness analysis.
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Figure 4.19: Variation of error in size estimate with variation in wheel
speed constant delay for different sampling times.

4.3.7 Robustness to combined constant engine and wheel

speed delays

As in the real world scenario, both the engine and wheel speed constant delay would

be acting together, their combined effect on the lash size estimate for one backlash

angle and different sampling times with 10 ms sampling delay in engine speed and

30 ms sampling delay in wheel speed is shown in this section of robustness analysis.
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Figure 4.20 shows the TKBSE’s output when the constant delays in the engine and

wheel speeds for 10 ms sampling time are added. It is evident from Figure 4.20 (d)

where the estimated size converges to the actual plant backlash size. The quantitative

data for the analysis and the summary of the errors for different sampling times is

shown in Figure 4.21. The maximum error of 4% is observed for 10 ms sampling with

a decrease in error of lash size estimate with a decrease in sampling time.
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Figure 4.20: TKBSE’s output for 10ms sampling of engine and wheel speed
for 10 ms constant delay in the engine speed and 30 ms constant delay in
wheel speed.
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Figure 4.21: Summary of error in lash size estimate for different sampling
times with 10 ms constant engine speed delay and 30 ms constant wheel
speed delay.

4.3.8 Robustness to CAN jitter in engine and wheel speeds

Figure 3.15 and Figure 3.16 showed the distribution of jitter in the engine and the

wheel speed signals and section 3.3.5 discussed the effect of jitter on the robustness

of state estimator. The Kernel probability density functions derived for the engine

and wheel measured data sets were used to generate sampling data to be used for

robustness analysis of size estimator as well. As compared to the data generated for
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state estimator’s analysis, the number of samples were more for the analysis of size

estimator as the simulation is run for 50 seconds as compared to 7 seconds for state

estimator, leading to statistically close distribution of generated data. Furthermore,

multiple tip-in scenarios are being considered for size estimator so the distribution of

delay is also more uniform. The implementation of the jitter signal to the inputs of the

engine and the wheel speed measurements is similar to the way it was implemented

for the state estimator and can be seen in Figure 4.22. The summary of results with

these jitter data set for different sampling times is shown in Figure 4.23.

Below are some of the major observations with respect to the error in size estimate

with jitter in engine and wheel speed signals:

† The maximum error in the size estimate with combined engine and wheel speed

jitters is less than 4%.

† The maximum error in size estimate occurs for engine speed distribution which

has a high density at 4-5 ms delay for a 10 ms sampling time of the estimator

and the engine and wheel speeds.

† The various distribution of wheel speed jitter data does not affect the error in

lash size estimate for any given sampling time significantly. This is evident as

the different peaks for given sampling time and engine data sets of jitter are of

almost similar size.

173



Figure 4.22: Implementation of CAN jitter delay in engine and wheel speed
measurement data.
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Figure 4.23: Summary of error in lash size estimate for different sampling
times and CAN jitter in measured engine and wheel speed signals.

† Sampling time of 1 ms is most robust to the effect of jitter in engine and wheel

speeds.

4.3.9 Robustness to sampling time

Even though the effect of sampling time has been a consistent parameter in all the

robustness analysis so far, a cumulative plot for the error in lash size estimate for all

the analysis with respect to sampling time is plotted in this section to evaluate the
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overall performance of the TKBSE with different sampling times. Figure 4.24 shows

a box plot with variation of percentage error in lash size for different sampling times.

Below are the observations from the box plot:

† For 10 ms sampling time, 50% of the data, quartile Q1 to Q3, lies between 1%

to 4%. The mean and mode errors in the lash estimate are around 3%.

† For 5 ms sampling time, 50% of the data, quartile Q1 to Q3, lies between 0%

to 3%. The mean and mode are around 2%.

† For 1 ms sampling time, 50% of the data, quartile Q1 to Q3, lies between 0%

to 2%. The mean and mode are around 1.5%.

† With the decrease in sampling time, the span of distribution of error decreases.

† There are few outliers for all the sampling times.

As discussed in the state estimator chapter of this thesis, the decision to choose the

sampling time for implementation in vehicle would further depend on the hardware

available or to be used, cost of the hardware, and the allowable error in the size

estimate from state estimator’s point of view and its coupled effect on the control

algorithm’s performance, i.e. robustness of the controller to error in size estimate.

To summarize, Table 4.2 shows the various robustness analyses done for the backlash

size estimator. All these robustness assessments provide an effective data summary
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Figure 4.24: Box plot for error in lash size estimate with sampling time.
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Table 4.2
Summary of robustness analysis for the size estimator

Description Status

Effect of varying torque step inputs

Effect of varying torque ramp rates

Effect of varying duty cycle and pulse width of torque ramp inputs

Effect of variable torque input profile
Effect of constant delay in
- Engine speed
- Wheel speed
- Combined engine and wheel speed delay
Effect of CAN jitter in
- Engine speed
- Wheel speed
- Combined engine and wheel speed

Effect of sampling time

of the performance and limitations of the estimator and finish the development of the

Triggered Kalman Backlash Size estimator.
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Chapter 5

Conclusion and Future Work

5.1 Conclusions

The conclusions of this work are categorized into three sections (i) the validation of

the full order model and development of reduced order model, (ii) the backlash state

estimator and (iii) the backlash size estimator and are discussed below -

† Validation of full order model and development of reduced order

model -

– The full order vehicle model developed in [3] using Simulink® - AMESim®

interface was validated for the case of locked torque converter and 5th
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gear operation. Validation was done using the vehicle measurement data

provided by sponsor organization.

– The simulated frequency of shuffle oscillation of the validated model has

less than 1% error with respect to vehicle measurement.

– In order to eliminate the phase lag between the measured and simulated

values of propeller shaft torque, a low pass filter needs to be added to the

model.

– A two mass reduced order model, generally used in literature to repre-

sent the automotive driveline with backlash, was not able to capture the

dynamics of the full order model with sustained oscillations in simulated

outputs.

– A three mass model with separate tire stiffness and damping was developed

to simulate the driveline response which was able to capture the dynamics

of the full order model.

– The start and end of lash traversal with lumped backlash reduced order

model and split backlash reduced order model are same. Thus, the number

of equations and states representing the reduced order model can be further

reduced with lumping the backlash.

– The 3 degrees of freedom (3DOF) reduced order model simulated frequency

of shuffle has less than 1% error with respect to vehicle measured frequency

of oscillation.
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– With the 3DOF reduced order model, the simulation time has decreased

by 2.4 times and the number of states of the model has reduced from 47

to 10.

† Backlash state estimator

– Due to the backlash non-linearity, the driveline model needs to be divided

into two linear models, one for the contact mode and other for backlash

mode of operation.

– If the angular positions of the lumped inertia (engine, final drive and wheel)

are considered as the states of the system, then using the engine and wheel

speed as measurements, the system is not observable in the contact mode

or the backlash mode.

– The contact mode model is observable with engine and wheel speeds mea-

surements if the twist angles between the inertia are considered as the

states of the system.

– As the driveline is not rigidly connected in the backlash mode, it is not

observable with twist angles as the states of the system. Thus a reduced

order backlash model is developed without the backlash position state and

engine side twist angle. This reduced order backlash model is observable.

– The Kalman filter estimates all the positions in the contact mode, but

only estimates 4 states in the backlash mode. The rest of the states in the
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backlash mode are calculated/predicted using the state equations.

– The FOM developed for this work was used to validate the state estimator.

– Constant delays and CAN jitter delays in the engine and wheel speeds, used

to assess the performance of the backlash state estimator, were derived

from the measured data by the hardware group.

– The error in the estimated engine and wheel speeds is significantly less than

the error in the lash traversal time. This is because the lash traversal time

does not have the measurement based update during backlash traversal.

– The backlash state estimator’s (DSKSE) estimated lash traversal time er-

ror reduces with reduction in the sampling time of the engine speed, wheel

speed and the estimator.

– A delay of 1 step size in the estimation of end of lash traversal is seen for

some of the torque inputs. The effect of this on the percentage error in

lash traversal time changes with the sampling period.

– For a given constant delay in engine speed and wheel speed, the effect of

delay in engine speed is more as compared to that of wheel speed.

– With 10 ms sampling time, the CAN jitter does not cause any delay in the

end of lash traversal because the max delay due to jitter is 5 ms which the

sample data is not be to perceive.

– Sampling time of 5ms is the most sensitive to the effect of CAN jitter in

the engine and the wheel speeds.

182



– Sampling time of 1ms is most robust to the effect of CAN jitter in the

engine and the wheel speeds.

† Backlash size estimator

– The validation of backlash size estimator was done using the FOM plant

model developed for this work.

– Constant delays and CAN jitter based delays in the engine and wheel

speeds, used to assess the performance of the backlash size estimator, were

derived from the measured data by the hardware group.

– The error in lash size estimate is a function of the rate of torque input and

the final value of the torque. This is because, both the rate and final value

of torque input affect the number of data samples available to estimate the

size of the backlash lash during lash traversal.

– As the sampling time of the engine speed, the wheel speed and the esti-

mator decreases the error in size estimate also decreases because of the

increased number of data samples available to estimate the size of the

backlash.

– As the backlash size increases, the error in the lash size estimate also

decreases. This is due to the increased lash traversal time which leads to

increased number of sample data available to the size estimator to converge

to the final value.
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– A maximum error of 8% is observed in the estimated backlash size with

10 ms sampling time for estimator and the engine and wheel speed mea-

surements.

– The measured CAN jitter causes a maximum error in size estimate of 3.5%

for 10 ms sampling time.

5.2 Future Works

Below are some of the future work associated with this project -

† The full order plant model currently has been validated for 5th gear only. Con-

sequently, the reduced order model and the state and size estimators are also

validated for 5th condition. In order to implement the state and size estimator

for vehicle application, it needs to be validated for the rest of the gears as well.

This is because, the engine lumped inertia which contains the inertia of the

transmission and the transmission gear ratio used in the state space model will

change.

† Similarly, the model has been developed for only locked torque converter case.

In case of slipping and open torque converter, the full order model will change
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resulting in changes in the reduced order model and the state and size estima-

tors.

† As the sensitivity analysis was done for the full order model in [3], a similar

sensitivity analysis will also required to be done for the state and size estimator

in order to understand the performance of the estimators to incorrect plant

parameters.

† The estimator developed in this work have been validated in simulation envi-

ronment, a test rig based validation of the estimator also needs to be done to

understand the performance of the estimator in real vehicle environment.

† A control system needs to be developed which can shape the engine commanded

torque such that at the point of impact, the torque can be reduced to reduce

the clunk and shuffle.
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[42] Rowell, D., and Takahashi, S., 2004. Lecture notes in 2.151 advance system

dynamics and control, Fall.

[43] Ogata, K., 2010. Modern Control Engineering. Prentice Hall, Fifth Edition.

192



Appendix A

State Estimator Calibration

This section briefly discusses the calibration parameters that have been used to tune

the DSKSE. Refer to Section 3.1.2.4 for more details. The process noise co-variance

and the measurement noise co-variance coefficients that have been used for the DSKSE

are shown below:
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Q =



q1 0 0 0 0 0

0 q2 0 0 0 0

0 0 q3 0 0 0

0 0 0 q4 0 0

0 0 0 0 q5 0

0 0 0 0 0 q6



(A.1)

where, the values of the coefficients used are:

q1 = 1e− 2

q2 = 1e3

q3 = 5e− 3

q4 = 4e− 3

q5 = 1e− 1

q6 = 1e− 3

(A.2)

R =

r1 0

0 r2

 (A.3)

where, the values of the coefficients used are:
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r1 = 2e− 5

r2 = 3e− 5

(A.4)

From the values of the Q and R shown in the Equation A.2 and A.4 respectively, it

can be seen that the values of R matrix are smaller in magnitude as compared to the

values of Q. This implies that the speed measurements (engine and wheel speeds)

are trusted more, as compared to the model to estimate the states of the system.

To understand the effect of the individual process noise co-variance matrix coefficients

on the estimate of the backlash position, these coefficients are varied and the results

are shown Figure A.1 and Figure A.2. The observations made from the Figure A.1

and Figure A.2 are listed below:

† Changing the magnitudes of co-variances associated with the engine side twist

angle state ( θe
itr
− θfdrifdr), the final drive speed state (θ̇fdr), and the backlash

position state (θb) does not significantly affect the backlash position estimate.

† During the backlash traversal, since there is no load acting on the engine inertia,

the engine side shaft does not twist. As a result of this, changing the value of

the error co-variance associated with respect to engine side twist angle does not

significantly affect the estimated backlash traversal.

† Since one side of the final drive inertia is connected to the backlash element,
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(a) Variation with engine side twist angle state
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(b) Variation with engine speed state
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(c) Variation with wheel side twist angle state
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Figure A.1: Effect of varying the engine side twist angle state, engine speed
state, and the wheel side twist angle state on the backlash position estimate
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(a) Variation with final drive speed state
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(b) Variation with Wheel speed state
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(c) Variation with backlash position state
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Figure A.2: Effect of varying the final drive speed state, wheel speed state,
and the backlash position state on the backlash position estimate
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the engine side torque does not affect the final drive speed during the backlash

mode. This reduces the effect of changing the magnitude of error co-variance

associated with final drive speed on the estimated backlash position.

† Figure A.1 (b) shows the variation of backlash position estimate with changing

the engine speed measurement error co-variance. It can be seen that as the

error co-variance increases the deviation of estimated backlash traversal from

the plant backlash traversal increases. This happens because engine speed is

one of the primary source of information for the estimates and increasing its

error co-variance leads to reducing the trust on the engine speed estimate from

the driveline dynamics model. This increases the error in the backlash position

estimate.

† Changing the error co-variance associated with the wheel side twist angle does

not have any fixed impact on the estimated backlash position. This can be seen

from Figure A.1 (c).

† When the error co-variance associated with the wheel speed is increased for a

fixed value of the error co-variance associated the engine speed, it implies that

more trust is given to the engine speed as compared to the previous scenario.

This leads to decreasing the error in deviation of lash traversal with respect to

the plant lash traversal. This can also be seen in Figure A.2 (b).
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Appendix B

Publications from this thesis

B.1 Conference Paper

B.1.1 Published Conference Paper

1. P. Reddy, K. Darokar, D. Robinette, M. Shahbakhti, J. Blough, M. Ravichan-

dran, M. Farmer and J. Doering, ”Control-Oriented Modeling of a Vehicle Driv-

etrain Modeling for Shuffle and Clunk Mitigation”, SAE International WCX -

2019.
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B.2 Ford Internal Publication

1. M. Ravichandran, J. Doering, R. Johri, P. Reddy, K. Darokar, D. Robinette and

M. Shahbakhti, ”Introductory description of AJC feature and its performance

evaluation in MHT, Report No. SRR-2019-0024.
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Appendix C

Program and Data File Summary

Tables in this section lists the figures, model files, script files and data files that were

used to generate the results shown in this work.
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C.1 Chapter 1

Table C.1
Chapter 1 figure files

File Name File description

Fig 1 1.pdf Figure 1.1

Fig 1 2.pdf Figure 1.2

Fig 1 3.pdf Figure 1.3

Fig 1 4.pdf Figure 1.4

Fig 1 5.pdf Figure 1.5

Fig 1 6.vsdx Figure 1.6

Fig 1 7.vsdx Figure 1.7

Fig 1 8.vsdx Figure 1.8

Fig 1 9.vsdx Figure 1.9

Fig 1 10.vsdx Figure 1.10
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C.2 Chapter 2

Table C.2
Chapter 2 figure files

File name File description

Fig 2 1.pdf Figure 2.1

Fig 2 2.pdf Figure 2.2

Fig 2 3.vsdx Figure 2.3

Fig 2 4.fig Figure 2.4

Fig 2 5.fig Figure 2.5

Fig 2 6.fig Figure 2.6

Fig 2 7.jpg Figure 2.7

Fig 2 8.vsdx Figure 2.8

Fig 2 9.fig Figure 2.9

Fig 2 10.vsdx Figure 2.10

Fig 2 11.fig Figure 2.11

Fig 2 12.fig Figure 2.12

Fig 2 13.fig Figure 2.13

Fig 2 14.vsdx Figure 2.14

Fig 2 15.fig Figure 2.15
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Table C.3
Chapter 2 Simulink® and AMESim® model files

File name File description

ROM cosim Jul20 2DOF.ame
2DOF AMESim ROM
model

ROM cosim Jul20 3DOF modified.ame
3DOF lumped backlash
AMESim ROM model

ROM cosim Jul20 3DOF modified 2backlash.ame
3DOF Split backlash
AMESim ROM model

Vehicle Model trials mod.ame Full order AMESim model

AJC Torque Shaping TCC July23 new.slx
Simulink model file to run
all AMESim models

Table C.4
Chapter 2 data files required to run the Simulink® and AMESim® models

File name File description

wheel slip.data
AMESim

model data file

5th gear losses.data
AMESim

model data file

crankshaft torque locked 5th gear translosses removed.data
AMESim

model data file

Engine.torque.data
AMESim

model data file

Engine.torque.limits.data
AMESim

model data file
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Table C.4 continued from previous page

File name File description

engine speed 50%load.data
AMESim

model data file

lockedtcc.validation.data.gear.table.data
AMESim

model data file

opentcc.validation.gearshift.data
AMESim

model data file

ROM cosim Jul20 3DOF modified .data
AMESim

model data file

Torque.converter.data
AMESim

model data file

Torque.converter.kfactor.data
AMESim

model data file

Torque.converter.kfactordaNm.data
AMESim

model data file

Torque.converter.kfactordaNm.lbfconverted.data
AMESim

model data file

Torque.converter.kfactorNm.data
AMESim

model data file
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Table C.4 continued from previous page

File name File description

Vehicle Model with tyre dynamics 2 .data
AMESim

model data file

18-03-07 160337 P552 35 mfarmer5 lockedpressoverride

400.mat

Vehicle measured

data Mary Farmer

- locked TCC

C.3 Chapter 3

Table C.5
Chapter 3 figure files

File name File description

Fig 3 1.vsdx Figure 3.1

Fig 3 2.vsdx Figure 3.2

Fig 3 3.fig Figure 3.3

Fig 3 4.fig Figure 3.4

Fig 3 5.fig Figure 3.5

Fig 3 6.fig Figure 3.6

Fig 3 7.fig Figure 3.7
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Table C.5 continued from previous page

File name File description

Fig 3 8.fig Figure 3.8

Fig 3 9.fig Figure 3.9

Fig 3 10.fig Figure 3.10

Fig 3 11.eps Figure 3.11

Fig 3 12.fig Figure 3.12

Fig 3 13.fig Figure 3.13

Fig 3 14.fig Figure 3.14

Fig 3 15.fig Figure 3.15

Fig 3 16.vsdx Figure 3.16

Fig 3 17.fig Figure 3.17

Fig 3 18.fig Figure 3.18

Fig 3 19.fig Figure 3.19

Fig 3 20.fig Figure 3.20

Fig 3 21.fig Figure 3.21

Fig 3 22.fig Figure 3.22

Fig 3 23.fig Figure 3.23

Fig 3 24.fig Figure 3.24
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Table C.6
Chapter 3 Simulink® file for the estimator

File name File description

new estimator kalman inversion.slx State Estimator new

Table C.7
Chapter 3 Matlab® script files

File name File description

new kalman filter script.m Estimator initialization file

Robustness analysis plots.m Plot file

wheel speed sampling error Jons data.m
Plot file for CAN

jitter wheel speed

data dist engine speed Jons data.m
Plot file for CAN

jitter engine speed

Table C.8
Chapter 3 data files required to run Simulink® model

File name File description

Measured FOM for state estimator inputs step400Nm.mat
Step input

plant data

Measured FOM for state estimator inputs step200Nm.mat
Step input

plant data
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Table C.8 continued from previous page

File name File description

Measured FOM for state estimator inputs step300Nm.mat
Step input

plant data

Measured FOM for state estimator inputs step700Nm.mat
Step input

plant data

Measured FOM for state estimator inputs step600Nm.mat
Step input

plant data

Measured FOM for state estimator inputs step500Nm.mat
Step input

plant data

Measured FOM for state estimator inputs 1000Nm.mat
Ramp input

plant data

Measured FOM for state estimator inputs 200Nm.mat
Ramp input

plant data

Measured FOM for state estimator inputs 300Nm.mat
Ramp input

plant data

Measured FOM for state estimator inputs 400Nm.mat
Ramp input

plant data

Measured FOM for state estimator inputs 500Nm.mat
Ramp input

plant data
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Table C.8 continued from previous page

File name File description

Measured FOM for state estimator inputs 600Nm.mat
Ramp input

plant data

Measured FOM for state estimator inputs 700Nm.mat
Ramp input

plant data

Measured FOM for state estimator inputs 800Nm.mat
Ramp input

plant data

Measured FOM for state estimator inputs 900Nm.mat
Ramp input

plant data

r state estimator wheel.mat
wheel

jitter data

r state estimator.mat
engine

jitter data

new estimator kalman inversion.slx
State

Estimator new

new kalman filter script.m
intialization file

state estimator

Robustness analysis plots.m Plot file

wheel speed sampling error Jons data.m Plot file
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Table C.8 continued from previous page

File name File description

r eng and wheel speed with dataset delay state estimator.mat Plot file

data dist engine speed Jons data.m data can jitter

C.4 Chapter 4

Table C.9
Chapter 4 figure files

File name File description

Fig 4 1.vsdx Figure 4.1

Fig 4 2.fig Figure 4.2

Fig 4 3.fig Figure 4.3

Fig 4 4.fig Figure 4.4

Fig 4 5.fig Figure 4.5

Fig 4 6.fig Figure 4.6

Fig 4 7.pdf Figure 4.7

Fig 4 8.fig Figure 4.8

Fig 4 9.fig Figure 4.9

Fig 4 10.pdf Figure 4.10
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Table C.9 continued from previous page

File name File description

Fig 4 11.fig Figure 4.11

Fig 4 12.fig Figure 4.12

Fig 4 13.pdf Figure 4.13

Fig 4 14.fig Figure 4.14

Fig 4 15.pdf Figure 4.15

Fig 4 16.fig Figure 4.16

Fig 4 17.pdf Figure 4.17

Fig 4 18.fig Figure 4.18

Fig 4 19.pdf Figure 4.19

Fig 4 20.fig Figure 4.20

Fig 4 21.pdf Figure 4.21

Fig 4 22.vsdx Figure 4.22

Fig 4 23.pdf Figure 4.23

Fig 4 24.fig Figure 4.25
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Table C.10
Chapter 4 Simulink® estimator files

File name File description

Onlysizeestimator Amesim inputs discrete thesis correction.slx
Size Estimator

simulink file

Table C.11
Chapter 4 Matlab® script file

File name File description

ROM based size estimator discrete thesis correction.m
Size estimator

initialization file

Table C.12
Chapter 4 data files

File name File description

Size est uni.mat Data files

size est input step minus20to60Nm 1backlash.mat Data files

size est input step minus20to60Nm 2backlash.mat Data files

size est input step minus20to60Nm 3backlash.mat Data files

size est input step minus20to100Nm 1backlash.mat Data files

size est input step minus20to100Nm 2backlash.mat Data files

size est input step minus20to100Nm 3backlash.mat Data files
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Table C.12 continued from previous page

File name File description

size est input step minus20to150Nm 1backlash.mat Data files

size est input step minus20to150Nm 2backlash.mat Data files

size est input step minus20to150Nm 3backlash.mat Data files

size est inputs 1basebacklash minus20to60Nm.mat Data files

size est inputs 1basebacklash minus20to60Nm variable.mat Data files

size est inputs 1basebacklash minus20to100Nm.mat Data files

size est inputs 1basebacklash minus20to150Nm.mat Data files

size est inputs 1basebacklash minus20to150Nm variable.mat Data files

size est inputs 2basebacklash minus20to60Nm.mat Data files

size est inputs 2basebacklash minus20to60Nm variable.mat Data files

size est inputs 2basebacklash minus20to100Nm.mat Data files

size est inputs 2basebacklash minus20to150Nm.mat Data files

size est inputs 2basebacklash minus20to150Nm variable.mat Data files

size est inputs 3basebacklash minus20to60Nm.mat Data files

size est inputs 3basebacklash minus20to60Nm variable.mat Data files

size est inputs 3basebacklash minus20to100Nm.mat Data files

size est inputs 3basebacklash minus20to150Nm.mat Data files

size est inputs 3basebacklash minus20to150Nm variable.mat Data files
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Table C.12 continued from previous page

File name File description

Size est nor.mat Data files

size est random profile 1backlash.mat Data files

size est random profile 2backlash.mat Data files

size est random profile 3backlash.mat Data files

r size estimator.mat Data files

r size estimator wheel.mat Data files

C.5 Appendix A

Table C.13
Appendix A figure files

File name File description

Fig A 1.fig Figure A.1

Fig A 2.fig Figure A.2
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