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Abstract

Vehicle drivability is an important factor which more and more customers have started
assessing before buying a vehicle. Customers carry out this assessment based on both
vehicle reviews /ratings and based on the test drives. One of common maneuver which
a customers perform during the test drive is sudden accelerator pedal tip-in or tip-out
to accelerate or coast the vehicle. Clunk and shuffle are the phenomena that usually
occur during this scenario causing driver discomfort. The clunk and shuffle are caused
by the backlash and compliance physical properties of the driveline. Consequently,
control strategy needs to be developed which can provide a fast driveline response
without clunk and shuffle. One major input to develop a control strategy is the
knowledge of the vehicle states and parameters based on the available measurements,

which is the major focus of this work.

This work begins with a discussion of various existing estimation strategies that have
been used to estimate the states of vehicle along with their merits and demerits.
Then a full order model, developed in the previous works, is validated for a locked
torque converter case along with its reduced order model which is used for estimator
development. The error in the simulated shuffle frequency for the full order model
and reduced order model is less than 1%. The reduced order model is then used

to develop an observable state space model to estimate the backlash state and size

XX1X



of the model. The estimators developed are validated and the robustness analysis
is done for different scenarios of torque inputs, delays and sampling times. It is
found that the sampling time of the estimators and measurement inputs significantly
effect the estimates of lash traversal time and backlash size with a mean error of
9% in lash traversal time estimate and 2% error in lash size for 10ms sampling time.
Furthermore, the estimators are found to be more robust to the variations in the wheel

speed measurements as compared to variations in the engine speed measurements.

XXX



Chapter 1

Introduction

1.1 Motivation

In the modern era, the value proposition of an automobile is not just to provide
a means of transportation from one location to another, but to provide a unique
experience to the customer. This unique experience is a combination of varying
proportions of certain aspects of an automobile. The proportion of these aspects
can be defined as the voice of the customer who are the potential buyer. Figure
, refer [0, shows a list of some of the prominent aspects which a potential vehicle
buyer considers. As a result of this, an automobile Original Equipment Manufacturer

(OEM) also has to develop vehicles with attributes such that they can meet the



Drivabilit,
Safety

Perfol"l'\']a“ce

Figure 1.1: Customer’s vehicle purchase criteria or Voice of customer
voice of the customer. Most of the OEMs, before the concept stage of the vehicle
development, conduct market survey to gather data and also conduct bench-marking
studies with vehicles of other OEMs. This is done so that they can define their targets

(proportions) of these aspects the vehicle specifications can be derived.



The vehicle aspects shown in Figure [I.1] can be classified into 2 categories, quantita-
tive and qualitative. Price and size aspects are straight forward quantitative aspects.
For aspects such as fuel economy, emissions and safety, there exists standards and/or
regulations which help provide quantitative assessment of these aspects for both the
OEMs as well as the customers. But the other aspects are qualitative in nature, re-
quiring subjective assessments in order to compare these aspects of different vehicles.
The OEMs carry out jury trails or develop their internal standards to define criterion
to assess these qualitative aspects. While the customers have to rely on test drives,
word to mouth reviews or more recently on online reviews or ratings. Figure (1.2

shows one such overall ratings developed by the Edmunds [I] for a few of the vehicles.

Studies show these ratings are gaining traction among potential vehicle buyers. This
can be seen in Figure which shows the data collected by Deloitte [2] suggesting
that 70% of the Gen Y (ref [6]) population are influenced by the independent reviews
whereas 55% of the Gen X population are influenced by similar ratings. Thus, these

ratings play a significant influence on the customer buying decisions

From the different aspects of the vehicle shown in Figure|l.1, one important aspect is
the drivability of the vehicle. Drivability can be defined as driver’s perception of how
smoothly and consistently a vehicle’s powertrain drives the vehicle in different oper-
ating conditions. Some of the operating conditions are discussed in references [5] and

[7]. These scenarios are also shown in Figure which are taken into consideration
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Utility Interior

—Hyundai Kona MINI Countryman— Maxdla O3
—Honda RV —Mada -5 — Subaru Forester

Figure 1.2: Edmunds overall ratings for a few vehicles, [I]

to assess the drivability of the vehicle. Study in [8] was one of the earliest papers to
define drivability and effect of emission control strategies on the drivability of vehicle.
The paper discusses measuring vehicle surge to objectively define drivability. More
recent works such as [9], [5], [7], and [I0] also aim to develop objective methods to
assess drivability and its co-relation to subjective assessments. While a lot of work
is going on in this field, it is mostly headed towards assisting the automotive devel-
opment engineers to provide them with objective metrics to assess the drivability.
This is important as they can thrive for continuous improvement in the drivability

without the human error in subjective evaluation. Furthermore, these metrics also
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decisions

mGenY mGenX

80

70

60

[$)]
o

Percent (%)
=Y
o

30
20
10
0
Car reviews on Media reviews/ News Social networking sites
independent websites articles

Figure 1.3: Results for the study conducted by Deloitte, [2]
provide them to objectively compare the performance of their vehicle with others.
But from the customer point of view, online reviews provide ratings for drivability
assessment based on their own developed criterion. This can be seen in Figure [1.5

were drivability ratings for a few of the vehicles is shown.

Thus, it can be seen that the drivability of the vehicle is an important voice of
customer factor which needs to be considered while developing a vehicle. Out of the
different scenarios which constitute the overall drivability assessment of a vehicle,

Figure this work focuses on vehicle driveline torque response during tip-in and



Figure 1.4: Criterion under drivability assessment of a vehicle

tip-out events. Next section of this chapter provides the background of tip-in/tip-out

as well as how it affects the drivability as perceived by the customer.
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Figure 1.5: Edmunds overall ratings for a few vehicles, [I]

1.2 Technical terms used in this work

Some of the technical terms that have been frequently used in this work are discussed
in this section and a background is provided to the reader to assist in understanding

the objectives and findings of the this work.

An automotive driveline consists of a number of systems/components which makes

the transfer of torque from the engine/propulsion device to the wheels possible. These



systems/components can be further classified into launch devices, gearbox and the
axles/shafts. The launch devices decouple the propulsion system from the driveline
via using either clutches or the torque converters. The gearbox is a set of gears,
shafts and bearings (to name a few) constrained inside a housing with the purpose of
reducing the speed and increasing the torque from the propulsion system. They can
be further classified into transmission, transfer cases and differential for (North-South
powertrain configuration) and, transaxles and Power Transfer units for (East-West
powertrain configurations). The shafts/axles are defined as torsional interconnections
among gears of the gearbox, among the gearbox and launch devices and among the

differentials and the wheels.

All these systems and their constituting components have certain physical properties
and certain constraints from the manufacturing, assembly or operation point of view.
For example, the gear box has different mating gears to provide required gear reduc-
tion. But in order to make the assembly of those gears inside the gearbox possible
certain amount of clearance needs to be provided between the mating gear teeth.
The clearance also needs to be provided to avoid the gear biting into each other.
The clearance also helps provide lubrication to the gear while transferring torque
and finally, the clearance also occurs due to the limitation of manufacturing of the
gear tooth profiles. Furthermore, the amount of clearance also depends of the type
of gear geometry. For spur gears the clearance to be provided is lesser as compared

to for gears with helical tooth profile. While the clearance is maximum for hypoid
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Figure 1.6: Backlash between mating gear teeth and change of tooth face
from drive to coast

Vehicle coasting

gear tooth profiles. This clearance is know as backlash. Even for shafts and axles
to interface with the gears, splines are provided on the mating gear-shaft, gear-axle
interface. These interfaces can also have a backlash associated with them which are
typically smaller than the gear teeth meshing interface. Thus, the backlash inside the
powertrain is distributed across the driveline. Figure|1.6|shows the clearance between

the mating gear teeth i.e. the backlash.

Apart from backlash, the shaft and axles of the driveline have stiffness and damping
physical properties associated with them. The stiffness causes the deflection of shaft

when subjected to a torque input, and can lead to oscillation in the driveline. The



damping opposes the oscillation and tries to damp them out.

A combination of the two, the backlash and the compliance (stiffness and damping) of
the driveline causes a response within the driveline when it is subjected to a sudden
torque reversal, tip-in or tip-out. This is shown in Figure A sudden torque
reversal occurs when the magnitude of torque delivered by the engine/propulsion
device suddenly changes its sign. This can be seen in subplot (a) where the delivered
torque is initially negative and it suddenly changes to a positive torque value. This
is referred to as the tip-in scenario in this work. The inverse of it can be referred to
as the tip-out scenario where the torque suddenly changes from a positive value to a
negative value. In the tip-in case, the vehicle is initially in coasting condition when
the torque is negative. The coasting condition can be further defined as the wheels
driving the engine because of vehicle’s momentum. The vehicle driving/accelerating
condition is when the engine delivered torque is positive. As it can be seen from
Figure [1.6] if the vehicle transitions from coasting to driving or vice a verse, mating
gears have to overcome backlash and the side of tooth face in contact changes. While
traversing the backlash there is no torque transfer between the gears and thus the
driver gear can accelerate during the lash traversal, causing an impact when it hits
contact on the other side of lash. The impact can cause an audible noise which is
referred to as clunk. Referring back to figure|1.7]the subplot (c¢) shows the traversal of
the backlash from contact on the coast side, referred to as negative contact to contact

towards the drive side, referred to as positive contact and the subplot (b) showing

10



the time of clunk in the propeller shaft torque. Finally, because of this impact an
oscillation is caused in the propeller shaft trajectory because of its compliance. This
is experienced by the driver in the form of longitudinal fore and aft oscillation with

frequency between 2-10 Hz depending the current engaged gear of the vehicle.

The clunk and shuffle phenomena described above are critical as they affect the drive
feel of the vehicle. Clunk affects in the form of audible noise generally causing irri-
tation to the driver and the shuffle causes driver discomfort as the natural frequency

of human organ lies within the frequency range of shuffle [I1].

Jerk is defined as a sudden change in the acceleration. As can be seen that the
shuffle causes fore and aft oscillation this gets reflected as longitudinal jerking of
the vehicle. Furthermore, as both the backlash and the compliance are unavoidable,
control strategies need to be developed which can shape the torque input to the
driveline to mitigate the effects of clunk and shuffle. Such control strategies are

known as Anti-Jerk control strategies.

11
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Figure 1.7: Representative output of driveline delivered torque indicat-
ing tip-in, propeller shaft torque indicating clunk and shuffle and driveline
lumped backlash indicating backlash traversal
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1.3 Literature review

Figure [1.§] shows the time-line of research in the field of driveline clunk and shuffle
simulation, estimation and development of AJC control strategies to mitigate the

effect of clunk and shuffle.

Estimating the response of vehicle during tip-in and tip-out scenarios and using that
information to develop strategies to investigate and improve the vehicle performance
started with simulating the driveline response during the tip-in and tip-out scenarios.
The study in [I2] was one of the earliest attempts to investigate the low frequency
torsional oscillation of the driveline. The emphasis of the work is to simulate the
low frequency (<30 Hz) driveline torsional oscillations during, tip-in/tip-out, due to

engine firing pulsation and due to the self excited driveline oscillation.

The authors systematically define the tip-in jerk as clunk, which is defined as the
abrupt change in the acceleration of the vehicle, the leading fore and aft oscillation of
the driveline as shuffle and the characteristics of oscillation as frequency, amplitude
and the tip-in overshoot. A simplified rear wheel drive driveline model is considered
with engine torque input to the driveline, a torque converter with hydraulically or
centrifugally controlled by-pass clutch, a one way clutch and a torsional damper, an

option for a coast-unlock one way clutch, a lumped transmission inertia, stiffness and

13
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damping, a lumped backlash for transmission and final drive gears, the axle shaft and
tire stiffness and damping. The authors, as a part of their analysis, compared the
clunk and shuffle observed in the driveline under various conditions such as a driveline
with and without backlash, the effect of open and locked torque converter by-pass
clutch, the effect of torsional damper properties on the response. An important study
which was done as a part of this paper was the analysis of the driveline response
with and without the coast down one way clutch. The authors also experimentally
validated the model via vehicle level measurements and found the accuracy of the

simulated frequency to be within 10%.

An experimental approach towards [12] is taken in [I3] where the authors specifically
focused on reduction of clunk and shuffle. Both clunk and shuffle have been described
in detail using experimental data. Furthermore, the authors highlighted the major
parameters affecting the clunk and shuffle as the engine torque rate, the driveline lash
and the driveline compliance. The authors also discussed the experimental method
to measure the lash in a driveline and highlighted major sources the driveline lash.
Although significant progress has been and is being made in developing detail models
capable of simulating the tip-in and tip-out response, works in the field of estimating
the driveline states to control the engine torque during such scenarios started after

the detailed models defining backlash were made.

Lagerberg in [14] discussed the various dynamical models which have been used to

15



represent the dynamics of the backlash in geared systems. All these models essentially
have a non-linear structure categorizing the behaviour of the driveline into contact
mode and backlash mode of operation which is based on the position of the shaft
within the lash. Lagerberg and Egart also evaluated the performance of a number
of control strategies in [I5] and suggested that the controller with different compen-
sations for contact mode and backlash mode provides better response as compared
to controller which do not account for backlash. Thus, in order to develop a control
strategy which can mitigate the effect of clunk and shuffle, the control input needs to
be commanded based on the status of the driveline. This in turn requires the posi-
tion of shaft within the lash needs to be known. Since the backlash in the driveline

is distributed knowing the backlash position becomes difficult.

Various estimation methods have been used to estimate the backlash position and
driveline parameters in the literature of anti-jerk control strategies. The need to
estimate the parameter arises from the fact that, the properties of the driveline com-
ponent changes over the life of vehicle because of usage. And in order for the controller

to be effective, they should be updated as well.

Estimation methods generally use a dynamic model of the physical system with some
of its states being measured via actual physical sensors. These measurements are used
to correct the prediction made by the dynamical model resulting in the estimates of

the system. The estimator developed so far can be classified into two categories.

16



The first classification can be made on the basis of the measurement signals that are
used for the estimation of the backlash position. The study in [I6] uses the actual
position of the engine and wheel to determine. Other works such as [17] and [18] used
the engine and the wheel speed measurements to estimate the position of backlash.
The constraint with using angular positions as the measurement is that the angular

position sensors are generally not used in production vehicles.

The other classification of estimator design can be made on the type of estimation
strategy used to estimate the backlash position. Studies in referenes [19] and [16]
uses two derivative of the Kalman filter estimation approach to estimate the size
of backlash and position of backlash. In these works, for size estimation, a Switched
Kalman Fiter (SKF) is developed while for backlash position estimation, an Extended

Kalman Filter (EKF) approach is used.

The Kalman filter approach is applicable for linear dynamical models only. But if the
non linear model of the dynamical system can be represented by a linear combination
of multiple linear models , a SKF approach can be used to estimate the states of the
system. The SKF applies the Kalman filter approach to the individual linear model or
any linear combination of the models and use a switching variable to select the model
to be used for estimation. As the backlash model of [19] and [16] can be represented
by linear models of contact and backlash mode, this approach can be used to estimate

the size of backlash. Apart from the contact and backlash modes a wait mode is also

17



used by the authors in [19] and [16].

The EKF approach uses the principle of linearization of a nonlinear state space model
to apply the Kalman filter approach and estimate the states of the dynamic system.
The model is linearized at each time step based on the mean value of last estimated
state of the system. This method is widely used to estimate the states of non-linear
models. The estimates of EKF are no longer optimal when compared to a Kalman
filter estimates because of the linearization of the model. In the works of [19], [20] and

[16], the non-linear backlash model is linearized and a switched EKF is developed.

When the driveline is in backlash mode, the engine and wheels are not directly con-
nected to each other. As a result, the backlash model dynamics of the system are
not observable. Consequently, the works in [21], [22] and [23] only estimate the states
of the driveline in the contact mode but use the system dynamics to calculate the
backlash position. The [21] and [23] used a standard Discrete Kalman filter approach
for the state estimation while [22] uses Loop transfer recovery to estimate the states

of the system.

A combined Simth Predictor and Luenberger based state observer approach is used to
estimate the states of the driveline in [24]. The Smith predictor approach is generally
used in control system with delay. In the case of driveline control, there is delay
between the time torque is commanded by the engine to the time the command

torque effects the wheel speeds and the wheel speed sensor data is received back by

18



the controller. The Luenberger observer is based on pole-placement to observe the
states of the plant and is used in [24] to reduce the error between the simulated and

measured engine speed.

These different estimation approaches that have been used in the literature to estimate
the states and parameters of the driveline have their inherent pros and cons. The
standard Kalman filter approach is optimal if the co-variances of the measurements
and states are Gaussian in nature with zero mean. Any deviation from this affects the
optimality. This same limitation is applicable to the case of SKF as well. The EKF
approach is sub-optimal because of the state space linearization and consequently
computationally demanding than the Luenberger Observer as well as the Kalman
fitler. Furthermore, the Luenberger observer are not robust to model uncertainties

and measurement noise.

Apart from the methods that have been discussed so far, a non-linear least square
optimization-based approach is used to estimate the parameters of the driveline of-
fline in [20]. It uses a cost function to minimize the error between the estimated
and measured states to estimate the parameters of the system. A summary of the

estimator used to estimate the states and the parameters of the driveline is shown in

figure
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1.4 Research scope and thesis organization

This work is in continuation to the work published in Prince [25] and Reddy [3] under
aegis of the alliance project between Ford Motor Company and Michigan Technolog-
ical University to develop estimation and control strategies for driveline jerk control.
The previous works presented the development of a full order vehicle driveline model.
This model is capable of simulating the driveline response of a vehicle during tip-in
and tip-out scenarios. This work augments the previous works via validating their
full order model (FOM). The validation is done for a use case of locked torque con-
verter during tip-in and tip-out scenarios. As an intermediate step, this work further
modifies the FOM to a control oriented reduced order model (ROM). The reason to
transform the FOM to ROM is to develop an estimation strategy for backlash state
and size, based on the ROM, so that necessary information about the state of the
vehicle driveline is available. This available information is critical to achieve the final

goal of controlling driveline jerk during tip-in and tip-out scenarios.

To estimate the backlash position of the driveline, [I9] and [16] uses the angular
position sensors to make the backlash model observable, while [22], [21] and [23]
uses backlash mode simulation to predict the backlash position using the production
speed measurements. This work uses a combination of the prediction and estimation

to predict the backlash position of the driveline using production speed measurements
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so that the error in the predicted backlash position can be reduced. Furthermore, the
size estimation approach developed in this work uses commanded torque based trigger
to estimate the backlash size as compared to backlash position based switching, as
used [19] and [I6], to estimate the size of the backlash. Finally, the performance of
the estimators to production vehicle based measurement delays and signal jitters is

also assessed this work.

Figure [1.10] shows the organizational layout of this thesis. The second chapter of the
thesis discusses the validation of the full model, developed in the previous works, and
the development of a reduced order model as well as its validation. The third chapter
discusses the development of the backlash state estimator, its validation and the
robustness analysis. Next, the fourth chapter discusses the development of backlash
size estimator, its validation and its robustness analysis. Finally, the fifth chapter
discusses the conclusion and future works that are planned based on the works of this

thesis.
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Figure 1.10: Thesis organization
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Chapter 2

Control Oriented Driveline Model

Development and Validation

This chapter starts with a brief discussion of the full order model (FOM) that has
been developed by Lakhani [25] and Reddy [3]. An overview of the components of
the model is discussed without the equations of the dynamics of these components.
The model overview is followed by the discussion of the validation of the FOM based
on the vehicle measurements data provided by the sponsor organization. Then, this
chapter progresses towards the development and the validation of the reduced order
model which will lay the ground for the development of state and size estimators

discussed in the subsequent chapters.
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2.1 Full order model (FOM)

2.1.1 Overview of Full order model

The FOM developed for this work is for a rear wheel driven vehicle with longitudi-
nally mounted powertrain configuration. The model consists of a mean value engine
model, a torque converter, a 10-speed automatic transmission, a propeller shaft, a
final drive reduction, the axle shafts, and the tires. The engine is modeled to include
the dynamics of the base path (air path) and the instantaneous path (spark path),
refer [26]. The base path dynamics take into account the first order dynamics with
a time delay. The instantaneous path dynamics take into account the effect of spark
modulation to evaluate the torque delivered to the driveline. Uncertainty in the en-
gine torque is also modeled to account for the error in the ECU estimated crankshaft
torque as well as the error due to variation in production engines. The model for the

engine dynamics, as a torque source, is developed in Simulink®.

The rest of the vehicle driveline is modeled in AMESim®. This is done so that the
readily available driveline model library of AMESim® can be used with only changes
in the value of model parameters. Refer [3] for the interface between Simulink® and

AMESIim®:. In the driveline model, the torque converter is modeled using torque ratio
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versus speed ratio, and capacity factor versus speed ratio look-up tables, a torsional
damper and a torque converter clutch (TCC) is also considered in the model. When
the TCC is engaged it locks up the impeller to the turbine establishing a mechanical
connection between them. This leads to the torque flowing through the clutch path
and not through the hydraulic path. As a result, the torque at the impeller and the
torque at the turbine are the same. The 10-speed automatic transmission is modeled
using 4 planetary gear sets with the node inertia for each of the planetary gear set
and a lumped backlash for the transmission. The powertrain gear losses, which are a
function of the currently engaged gear and the speed of the engine, are also modeled
at the input to the transmission. The output of the transmission is connected to a
propeller shaft which is modeled via a stiffness, and a damping element. The output
of the propeller shaft is then connected to the differential via a backlash element
to represent the backlash between the hypoid gear pair inside the differential. This
hypoid accounts for the maximum backlash, in the wheel domain, for the powertrain.
The differential is modeled as a gear reduction and its output is connected to the two
axle shafts. The axle shafts, similar to propeller shaft are modeled via stiffness and
the damping elements. The axle shafts finally drive the tires through the wheel hubs
and the suspension stiffness elements modeled to account for the effect of suspension
on the torsional oscillation. The wheel hubs, tires and vehicle longitudinal forces
(aerodynamic and rolling resistance) are modeled via a simple vehicle model in the

AMESIim® using the inertia of wheels, the stiffness and damping of the tires. The
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values of the parameters used in the model were provided by the sponsor organization.
Figure shows the AMESim® model that has been developed to represent the
driveline model. Similarly, Figure shows the layout and interactions between the

different components involved in the full order driveline model.
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Figure 2.1: AMESim® Full Order Plant Model
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2.1.2 Assumptions of full-order model

Certain assumptions have been made while developing the full order model of the
vehicle to simulate the clunk and shuffle response. One of the major assumptions is
that the model has been developed only to simulate straight line vehicle driving i.e.
the affect of cornering is not considered. This assumption is valid as the longitudinal
acceleration experienced by the driver during straight-line driving would be maximum.
During cornering, the lateral acceleration will also affect the magnitude of shuffle as
perceived by the driver. The second assumption is that the clunk and shuffle are
simulated for a constant gear torque reversal scenario and not during the gear shift
transients. This assumption is made because the control action to mitigate clunk
and shuffle during constant gear tip-ins and tip-outs are managed via the torque
actuators, while in the case of gear shifts, the transmission clutch pack actuators will
also influence the resulting clunk and shuffle. Finally, a locked torque converter case
is considered as this will lead to the maximum amount of clunk and shuffle as studied
in [12] show that with open and slipping torque converter, the fluid path would act

as a damper reducing the observed clunk and shuffle.
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2.1.3 Validation of full order model

The primary motivation for the development of the full order model is to capture the
dynamics of the driveline during the torque reversal (tip-in and tip-out) scenarios,
thus vehicle level measurements were done by the sponsor organization to simulate
torque reversal scenarios in the vehicle and data was provided to validate the full

order model.

2.1.3.1 Vehicle measurements

In order to provide the data which can be used to validate the model, the sponsor
organization conducted vehicle level measurements.A test vehicle was instrumented
with a torque measurement sensor (torque meter) on the propeller shaft, a driver
seat track accelerometer, and a differential case accelerometer. Although, the effect
of shuffle is maximum on the axle shaft, because of the highest torque value due to
the gear reduction and the compliance of the axle shaft, it is difficult to measure the
torque on the axle shaft as it is enclosed inside the Banjo beam or the Salisbury axle
(based on the construction of the rear axle). Consequently, the propeller shaft, which
is easily accessible, was instrumented to measure the torque delivered to the vehicle.

Furthermore, jerk is defined as a change in acceleration, thus in order to measure the
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shuffle response as perceived by the driver, an accelerometer was placed at the driver
seat track. Finally, since the maximum lash traversal takes place in the final drive,
an accelerometer was placed on the differential housing to measure the acceleration
response during the clunk event. Figure 2.3 shows a layout of the locations of sensors

in the vehicle.

Apart from these additionally placed sensors, vehicle data on CAN such as the engine
speed, the wheel speed, the vehicle speed, the ECU estimated crankshaft torque, the
slip across the torque converter, the current gear position and the accelerator pedal
position were also recorded in sync with the measured data. This was done to simulate
the full order model with the same conditions as that of the test vehicle. Finally, the
existing control strategy to shape the torque during torque reversal scenarios was also
calibrated off so that the driveline can be excited and the clunk and shuffle response

can be generated in the driveline and measured via instrumented sensors.

The vehicle data measured and provided by the sponsor organization was analyzed
to identify intercepts of the data which can be used to validate the FOM. It was
observed that the vehicle tip-in and tip-out trails were done in 5™ and 6" gears. Out
of this data, an intercept of 5" gear data was taken out to validate the model which
had sufficient steady state time before and after the tip-in maneuver. Additionally,
feedback was received from the sponsor organization that even though the torque

shaping strategy was calibrated off during the tip-in and tip-out scenarios, torque

33



@ Speed sensor

o Torgque
sensor

* Acceleration
sensor

Figure 2.3: Layout of sensors on the instrumented vehicle
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shaping still shaped during the tip-out event because of other controllers. Thus,

model validation has been carried out only for tip-in scenarios.

Figure [2.4] shows the intercept of the vehicle measured data that is used to validate
the FOM. Figure (a) shows the CAN estimated crankshaft torque input to the
driveline. The sudden rise in the crankshaft torque can be seen as an indicator of the
tip-in scenario. Figure (b), the left axis shows the variation of the engine speed
caused by the sudden change in the crankshaft torque. It can be seen that the RPM
of the engine has an oscillatory behavior which is representative of shuffle. The right-
hand axis of the Figure 2.4] (b) shows the variation of vehicle speed during the event.
It can be seen that the vehicle speed increases with slight oscillation in its trajectory.
The reduced nature of oscillation in the vehicle speed can be explained by higher tire
damping. Figure (c) shows the variation of propeller shaft (alternatively referred
to as driveshaft) torque during the event. It can be seen that before the tip-in, the
torque at the propeller shaft is negative an indicative of the coasting torque due to
the engine friction. As the crankshaft torque increases, the propeller shaft torque
rises to a near-zero value, stays there for some time and shoots up with an oscillatory
response. The zero torque is held by the propeller shaft until the backlash traversal
in the driveline takes place as during lash traversal there is no resistance from the
wheels on the shaft. This also leads to the acceleration of the propeller shaft leading
to an impact at the end of backlash traversal. This impact causes a sudden rise in the

propeller shaft torque twisting it to the drive side followed by untwisting and twisting
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shuffle oscillations. The frequency of this shuffle oscillation, based on the measured
propeller shaft, is found to be 5.84 Hz. Finally, Figure (d) shows the variation of
seat track acceleration in the longitudinal direction. The jerk i.e. a sudden change
in the magnitude of the acceleration can be seen in the trajectory of the acceleration
during the event. As all the signals plotted in Figure [2.4], except the ECU calculated
crankshaft torque are actual measured data, these signals are considered from here

on to validate the FOM as well as the ROM.
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Figure 2.4: Sample vehicle measured data
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2.1.3.2 Model validation results with baseline parameters

The FOM developed in Section was simulated with ECU estimated crankshaft
torque along with torque uncertainty as an input to the AMESIim® driveline model.
This was done so that the powertrain losses and the accessory load, which were not
modeled in the engine dynamics, can be taken into account. Figure 2.5 shows the
response of the FOM with the baseline model parameters. Figure (a) shows
the effect of the engine torque uncertainty causing a difference between the input
crankshaft torque and the simulated crankshaft torque. Figure (b) shows the
variation of the simulated engine and vehicle speed with respect to the measured
engine and vehicle speeds. The comparison of engine speeds suggest that although
the plant model is capable of simulating the driveline dynamics, there is a significant
error in the amplitude as well as the frequency of the simulated engine speed. In
contrast to the engine speed, the error in the vehicle speed is less, this can be seen
on the right axis of Figure (b). This is because during the tip-in scenario, the
vehicle speed does not change significantly due to the higher vehicle inertia as well
as the higher damping of the tires. From Table it can be seen that the error
in the frequency of the shuffle oscillation is 22.26% while the maximum and average
error in the simulated engine is 13.90% and 1.25%), respectively. Figure (c) shows
the comparison of the simulated and measured propeller shaft torque. It can be seen

that the simulated frequency of the shuffle oscillation as well as the magnitude of the
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Table 2.1
Summary of simulation results with baseline vehicle parameters

Description Value Unit

Measured frequency of shuffle 5.84 Hz
Simulated frequency of shuffle 7.14 Hz

Error in shuffle frequency 2226 %
Max error in engine speed 13.90 %
Average error in engine speed 1.25 %
Max error in propeller torque 3524 %
Average error in propeller torque 8.41 %

propeller shaft torque are different as compared to the measured shuffie frequency and
torque amplitudes. The maximum and average errors in the simulated value of the
propeller torque, from Table 2.1] are 35.24% and 8.41% respectively. Apart from the
differences in amplitude and frequency, it can be seen that there is a phase lag in the
measured propeller shaft torque as compared to the simulated propeller shaft torque.
Finally, Figure [2.5| (d) shows the comparison of the simulated and the measured seat
track acceleration were the effect of measurement noise can be seen in the measured
acceleration. Ignoring the measurement noise in the seat track acceleration and taking
into account the consistent difference in the frequency of oscillation, as observed in
the engine and the propeller shaft trajectories, the simulated vehicle acceleration is

higher than the mean values of the measured acceleration.
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(a) CAN estimated Crankshaft torque
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2.1.3.3 Full order plant model with modified parameters

The differences in the simulated and the measured engine speeds, wheel speeds, pro-
peller shaft torques, and vehicle accelerations, refer Section [2.1.3.2] can be attributed
to different sources in the vehicle FOM. A step by step approach to eliminate those
differences, via updating the vehicle parameters, based on discussions with sponsor

organization has been discussed in this section.

For a shaft with moment of inertia J, subjected to an input torque 77 at one end and

a load torque T, at the other end, the rate of change of angular speed of the shaft,

dw

< 1s given by :-

T —Ty=J— (2.1)

For a shaft with stiffness K and polar moment of inertia J, the natural frequency of
oscillation, w,, is given by:

(2.2)

T From Equation [2.1] it can be seen that the speed as well as the acceleration of the
shaft, for a given input torque, is a function of the load torque. The load torque,
for the FOM, is the sum of the aerodynamic drag and the rolling resistance force.

The rolling resistance of the vehicle is a function of the coefficient of the rolling
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resistance and the vertical load on the wheels which is a function of the mass
of the vehicle. For the baseline model, the vehicle weight was taken as the
un-loaded mass of the vehicle. This was changed to take into consideration the
weight of passengers and the instrumentation when the vehicle test was carried
out. Apart from the vehicle weight, the coefficient of rolling resistance was
also modified. The coefficient of rolling resistance depends on factors such as
the tire temperature, tire inflation pressure, vehicle velocity, tire material and
design and tire slip, and based on studies in references [27], [2§], [29], the value

of the coefficient of rolling resistance was also modified from 0.02 to 0.01.

From Equation 2.1 and Equation [2.2] it can be seen that the moment of iner-
tia of the driveline components also plays a major role in the determination
of the engine speed, vehicle speeds and the frequency of the driveline oscilla-
tions. Thus, in order to reduce the simulation error in speeds and the frequency,
the values of driveline inertia should be a representative of the actual vehicle.
Based on the discussion with the sponsor organization, it was found that the
test vehicle had a 4WD configuration i.e. it was installed with a transfer case.
Adding the transfer case would increase the inertia of the vehicle reducing the
frequency of shuffle oscillation (refer Equation inline with the desired fre-
quency change (refer Table . Additionally, the engine was also equipped
with a dual mass flywheel, which would increase the inertia at the crankshaft.

Since the exact values of inertia were not available for the transfer case and the
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dual mass flywheel, it was decided that a 25% increase in the inertia of engine,
torque converter and the transmission would account for the effect of the dual

mass flywheel and the transfer case.

1 Equation also suggests that the natural frequency of oscillation of the driv-
eline is directly proportional to the square root of the stiffness of the driveline.
Since the suspension was modeled to be a stiff element in the FOM, based on
the discussions with sponsor organization the suspension element was elimi-
nated and after a number of iteration to tune the model, the stiffness of the

axle and propeller shaft were reduced by 25%.

1 Finally, based on the discussion with the sponsor organization, it was identified
that the supplier for the torque meter i.e. propeller torque measurement sensor,
has installed a low pass filter with stopband frequency of 30 Hz to attenuate
the high-frequency noise in the torque measurement of the propeller shaft. This
can cause a phase lag between the measured and the simulated values of the
propeller shaft torque. Thus, a Chebyshev low pass filter was designed based
on the parameters shown in Table and applied to the simulated propeller

shaft torque to understand the effect of the low pass filter.

The changes discussed in the model parameters for the FOM are summarized in
Table [2.3] and the result of the simulation is shown in Figure 2.6l A summary and

comparison of results with baseline plant parameters and modified parameters for the
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Table 2.2
propeller torque meter low pass filter design parameters

Description Value

Filter Response type  Low pass

Filter Design method IIR - Chebyshev Type II
Sampling Frequency 1000 Hz

Pass band frequency 27 Hz

Stop band frequency 30 Hz

Pass band ripple 1dB
Stop band ripple 80 dB
Table 2.3

Comparison of baseline and modified full order plant parameters

Baseline Modified

Description

parameter parameter
Mass of vehicle M kg M + 334 kg
Coefficient of rolling resistance 0.02 0.01
Engine inertia Je 1.25.J,
Torque conveter inertia Jio 1.25J;
Transmission inertia Jy 1.25J,
Axle shaft stiffness K, 0.75K,
propeller stiffness Ky 0.75Ky
propeller torque meter low pass filter No Yes

full order model in Table 2.4]

It is evident from the comparison of Table that error in the maximum as well as
the average values of the simulated engine speed and the propeller shaft torque with
respect to the measured values has significantly reduced with modified parameters
as compared to the baseline parameters. It can also be seen that the frequency of
shuffle oscillation with the modified parameters has less than 1% error with the vehicle

measured frequency (refer Table and . This can also be seen in Figure
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Table 2.4
Validation summary results with baseline and modified plant parameters

Baseline Modified

Description Units
parameter parameter
Simulated frequency of shuffle 7.14 5.88 Hz
Error in frequency of shuffle 22.26 0.68 %
Max error in engine speed 13.9 6.92 %
Average error in engine speed 1.25 0.86 %
Max error in propeller torque 35.24 32.4 %
Average error in propeller torque 8.41 0.6 %

(c) where the period of shuffle oscillation for the measured and simulated propeller
shaft torques are significantly close as compared to the period of shuffle oscillation in
Figure 2.5 (¢). A comparison of of Figure [2.5| (¢) and Figure [2.6] (c) also reveals that
due to the implementation of the low pass filter (refer Table there is no lag in
the measured propeller torque with respect to the simulated propeller shaft torque.

This can be further explained with the help of Figure 2.7] and Equation [2.3}

¢ =2m fAt (2.3)

where ¢ represents the phase delay in radians, f represent the frequency of oscillation

in Hz and A t represents the time delay in seconds.

Figure shows the frequency response of the low pass filter represented by param-
eters in Table 2.2l From the phase response curve, shown by the dashed line, it can

be seen that at approximately a frequency of 5.88 Hz, the phase delay caused by the
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response

filter would be -1.28 radians. Using Equation with a phase value of 1.28 radi-
ans and frequency of 5.88 Hz, we get a time advance of 34.67 ms. A closer look to
Figure (c) reveals that the simulated values of shaft torque is approximately 37
ms advance of the measured value which is close to the advance calculated based on
the frequency response of the low pass filter validating our filter design. The is also
evident from the comparison of the simulated and measured propeller shaft torques in
Figure [2.6] where the peaks and valleys of the trajectories are aligned with almost no
delay. With these changes and discussions with the sponsor organization, the FOM

was considered to be validated.
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2.2 Reduced order model

Model order reduction is a process of representing a detailed dynamic model in a way
that it is capable of capturing the important features of the full order model quickly,
with a reasonable amount of accuracy and reliability. Usually, model order reduction
involves simplifying a dynamic model so that either the number of equations or the
number of variables or both can be reduced. This can be useful either via reducing
the amount of calculations to be done or via reducing the number of variables to be
stored. This is applicable for both offline or online systems were behavioral predictions
are made. Refer [30] for further details. For instance, the current offline full order
driveline model developed for this project, discussed in section and Reddy [3],
involves 47 AMESim® explicit states and 3 Simulink® states, 4 1-D tables and 10
2-D tables. Solving these requires considerable computation power in terms of solving
the resulting state equations, carrying out the numerical iterations, as well as storing
the output results, [31]. If such a computationally expensive model is used to control
a real-time dynamic model of the system, there is a significant probability that the
dynamics of interest would over by the time the detailed model is able to predict the
behavior of the system. Thus, model order reduction becomes necessary in order to
develop a control system which, with reasonable accuracy and within an acceptable
time frame, can predict/estimate the behavior of the system to be controlled. Thus,

for the FOM developed for this project, a reduced order model was developed so that
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a backlash state estimator can be designed which can provide state information to the
anti-jerk controller to mitigate clunk and shuffle with a reduced amount of complexity

and acceptable accuracy.

As discussed in [32] and [33], a dynamic system with backlash is modeled using two
inertia connected via a shaft and a nonlinear backlash element. The two inertia rep-
resent the driver and the driven components of the system while the shaft represents
the stiffness and damping within the system. The shaft traverses the backlash with
no torque transmission to the driven components while the traversal takes place. As
a result of this model representation, in a significant number of literary studies of au-
tomotive driveline modeling with backlash, the driveline is modeled via 2 mass model
along with the gear reduction of the transmission and the final drive. This is shown
in [34], [14], [15], [16], [18], [35] and [23]. In this model type for the driveline, the first
mass or the driver components represents the lumped inertia of the engine/propul-
sion system, the torque converters/clutch, the transmission and the propeller shaft,
whereas the second mass or the driven components represents the lumped inertia of
the final drive, the axle shafts, wheels and the vehicle inertia. The shaft represents the
lumped stiffness and damping of the propeller shaft, the axle shafts, and the tires.
Finally, the backlash represents the lumped backlash of the transmission assembly

and the final drive assembly.

The validation of the full order driveline model has been discussed in [21] and [36].
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[36] also discusses the development of a two mass and a three mass reduced order
model referred to as 2 degrees of freedom (2DOF) and 3 degrees of freedom model
(3DOF) respectively, based on the number of inertia elements present in the model.
Their findings suggest that the errors in the simulated acceleration of the vehicle
are lower for a 3DOF model as compared to that of 2DOF model. An important
assumption of their model is that the backlash has been traversed. A similar study
with a 3 inertia and 4 inertia model of the driveline was also done in [37] for a front
wheel drive vehicle. Their simulations suggest that better results are obtained for
a 4 mass model and a specific set of vehicle conditions, while performing tip-in and
tip-out in 3'¢ and 4* gears. Thus, it was considered essential to evaluate both the
configurations 2DOF model (2 mass model) and the 3DOF model (3 mass model)

and increase the complexity based on the results of simulations, if required.

2.2.1 ROMI - 2DOF

In this section of the chapter, the development of the 2DOF ROM model is discussed
along with the equations representing the dynamics of the model. The simulation
results of the ROM model are then compared to that of the FOM to see if the model

is able to capture the dynamics with acceptable accuracy.
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Figure 2.8: 2DOF reduced order model

2.2.1.1 Model development

This section discusses the 2DOF ROM model that has been developed based on the
full order model developed in [3]. Figure shows the layout of the reduced order

model. The elements of the model are discussed below:

T Teinstbrake and Tjpeq [Nm] represent the input torque from the engine to the
driveline model and the road load torque experienced by the vehicle respectively.
The T inst brake for the 2DOF model is the crankshaft torque with the gear losses
taken into account. While the 7T;,,4 is the result of the aerodynamic force, the
rolling resistance, road gradient force, and toe load force, if any, acting on the

wheels of the vehicle.

T Ji [kgm?] represents in the lumped inertia of the engine, the torque converter,

the transmission, and the propeller shaft.
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T 0. and 6, [radians| represent the angular position of the engine crankshaft and

the wheels respectively.

T it and ipq, represent the transmission gear ratio and the final drive ratio re-

spectively. For our study, the transmission gear is fixed as 5" gear.

T 61, 0 and 05 [radians| represent respectively the angular position of the compli-
ant shaft at the output of the transmission, at the input to the backlash element

and at the output of backlash element.

T ks Nm/rad and c; [Nm/(rads/s)| represent respectively the lumped stiffness

and the lumped damping of the propeller, axle shafts and the tires.

T Jo [kem?| represents the lumped inertia of the axle shafts, the wheel hubs, and

the tires.

T 2« [radians| represents the total driveline lumped backlash.

The governing equations for the 2DOF ROM model are -

. TS
Jlee = Te,inst,brake + — (24)

tr

here, T represents the shaft torque (torque on the compliant element)

0, = 0, — 0 (2.5)
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(91, = 02 - 93 (26)
here, 6; and 6, represent the shaft deflection angle and the backlash angle respectively
and the derivative of the backlash angle is given by:

’

IIlaX{O, éd + i—:(@d - Gb)} if Qb = —

Ob =\ 04+ = (02— 0,) if 16,] < o (2.7)

min{O, 0+ %(Qd — 05)} if 0, =«
\ s

Ty = ks(0a — 0b) + c5(04 — 03) (2.8)

Refer [I5] for details of backlash element modeling.

JQGw = Tsifdr - Czjloatd (29)
.. Tioa
Mbyry == _ D, — R,, (2.10)
Tt

where M [Kg| represents the mass of the vehicle, r, [m] represents the radius of the
tires, D, [N] represents the acrodynamic drag force at the tires and R, [N] represents

the rolling resistance force at the tires.
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2.2.1.2 Model Validation

Based on the equations developed in section for 2DOF ROM model, an
AMESIim® model of the ROM was developed and the input to the AMESim® model
was given based on the measured crankshaft torque input. An additional modification
was required to be made to account for the gear-train losses which were considered
in the FOM at the input to the transmission [3]. This was done via subtracting the
gear-train losses directly from the crankshaft torque in the Simulink® environment

and then sending it to the AMESim®.

A comparison of the outputs of the 2DOF ROM with the outputs of the FOM (refer
Section is shown in Figure 2.9 Figure (a) shows a comparison of the
crankshaft torque for both the FOM and the ROM and it can be seen that the
input to both the models is the same. Figure (b) shows the comparison of the
engine and the wheel speeds brought in the engine domain. Although the mean
of the engine speed simulated by the ROM model is close to the mean of engine
speed simulated by the FOM, the ROM model response is significantly under-damped.
This is evident from the sustained oscillation in the ROM simulated engine speed.
Another observation which can be made from the simulated engine speeds of the
ROM and FOM is that the frequency of shuffle oscillation is also different for the

ROM. Similar observations, i.e. an under-damped system with a lower frequency of
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Table 2.5
Comparison of error in shuffle frequency for 2DOF-ROM with FOM and
measured vehicle data

Error with vehicle

Model type Shuffle frequency measurement Error with FOM
(HZ) (%)
(%)
Measured 5.84 - _
FOM 5.88 0.68 -

shuffle oscillations, can be made from the trajectories of the propeller shaft torque as
well as the vehicle acceleration which are plotted in Figure [2.9|(c) and Figure [2.9] (d).

Table 2.5] shows the error in the shuffle frequency for the ROM with 2DOF.
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Figure 2.9: Validation result for 2DOF ROM model with FOM model
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2.2.2 ROM II - 3DOF lumped backlash

Based on the observations made in the validation section of 2DOF ROM (section
2.2.1.2| it can be seen that the 2DOF model is not able to capture the dynamics of
the driveline. Thus, 3DOF ROM was developed as shown in Figure[2.10} The changes
in the model based on Figure [2.10] and the system dynamics are discussed in the next

section.

2.2.2.1 Model development

J,0, k. 2a S04 J3,0,

e,inst ,brake

—>

Figure 2.10: 3DOF reduced order model with lumped backlash element

For the 3DOF ROM, the axle shaft and the wheel inertia were lumped together in an
intermediate inertia. The tire stiffness and compliance were modeled separately with
a compliant element instead of lumping them inside the vehicle dynamics model. The

modified dynamic equations are given below:
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T Teinstbrake and Tjpeq [Nm] represent the input torque from the engine to the
driveline model and the road load torque experienced by the vehicle at the

wheels respectively.

T J1 [kgm?] represents the lumped inertia of the engine, the torque converter, the
transmission and the propeller, whereas Jo [kgm?] represents the inertia of the
axle shaft and the wheel assembly and Js [kgm?] represents the inertia of the

tires.

T 0., 074, and 0, [radians| represent the angular positions of the engine, the final

drive and the wheel respectively.

T 44 and ipq, represent the gear ratios of the transmission and the final drive

reduction respectively.

T 01, 6, and 05 [radians] represent the angular positions of the transmission output
shaft, the angular position of the propeller shaft before backlash and the angular

position at the input to the final drive reduction respectively.

T ks and k,, [Nm/rads] respectively represent the stiffness of the propeller and the

lumped stiffness of the axle shafts and the wheels.

T ¢s and ¢, [Nm/(rad/s)] represent the damping of the propeller shaft and the

lumped axle shafts and the wheels respectively.

T 2« [radians|represents the total driveline lumped backlash.
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The system dynamics are represented by below equations:

. T,
Jlge = Te,inst,brake + — (211)

L

here, T represents the shaft torque (torque on the compliant element)
Oy = 0, — 05 (2.12)

0 = 0y — 0 (2.13)

here, 6; and 6, represents the shaft deflection angle and the backlash angle respec-
tively.

TS = kS(Qd — Qb) + Cs(éd — Qb) (214)
where the derivative of backlash angle 6, if given by: -

7

maX{O, 04+ ﬁ—:(@d — 91,)} if 0, = —«

O = éd + ’j—z(@d — Gb) if ’(91,‘ < o (2'15)

min{O, 0+ %(Qd — 05)} if 0, =«
\ s

6, = O (2.16)
Uy
0
Ofar = — (2.17)
Lfdr
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Tiar = Tyl far (2.18)

Jo0 tar = Trar — Toy (2.19)

T = kuw(0rar — Ow) + cu(Orar — ) (2.20)
T30 = Ty = Tioad (2.21)

MG,r, = T;?:d — D, — Ry, (2.22)

where M [Kg] represents the mass of the vehicle, r, [m] represents the radius of the
tires, D, [N] represents the aerodynamic drag force at the tires and R, [N] represents

the rolling resistance force at the tires.

Based on the equations developed for the 3DOF ROM system, an AMESim® model
was developed with similar input torque, the difference of the crankshaft torque and

the gear-train losses, from Simulink® sent to the AMESim® model.

2.2.2.2 Model Validation

This section compares the simulation results of the 3DOF ROM model, namely the
engine speed, the wheel speed, the propeller shaft torque and the vehicle acceleration,
with that of the FOM model. A comparison of the transmission and the final drive

lash traversal of the FOM is also made with the lumped lash traversal of the 3DOF
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Table 2.6
Comparison of error in shuffle frequency for 2DOF-ROM and 3DOF-ROM
with FOM and measured vehicle data

Error with vehicle

Model type Shuffle frequency meastrement Error with FOM
(Hz) (%)
(%)
Measured 5.84 - -
FOM 5.88 0.68 -
ROM - 2DOF 4.39 24.83 25.34
ROM - 3DOF 5.85 0.14 0.54

ROM. Finally, a comparison of the 3DOF ROM simulated output is made with the

vehicle measurements to validate the model with respect to vehicle measurements.

Figure [2.11| shows the comparison of the simulated FOM and 3DOF ROM. Figure
2.11| (a) shows the comparison of the input torque to the driveline. This same for both
the cases so that the model can be validated. Figure 2.11] (b) compares the engine
and wheel speeds for the FOM and the 3DOF ROM when brought in the engine
domain. When compared to the outputs of the 2DOF ROM, refer Figure 2.9 it can
be seen that the outputs with 3DOF ROM overlaps with the FOM. The error in the
frequency of shuffle has reduced from 25% to 0.5% with respect to the FOM, refer
Table 2.6] Similar trends can be seen in Figure (c) and Figure (d) for the
propeller shaft torque and the vehicle acceleration were the amplitude of oscillation
as well as the shuffle frequency is close to the FOM simulated amplitude and the

frequency.

A critical parameter for the ROM is the simulated lumped backlash traversal. Error
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(a) Comparison of input torque
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Figure 2.11: Validation of 3DOF with lumped backlash ROM with FOM
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in the simulation of backlash traversal would affect the estimator’s accuracy which is
based on the ROM model developed. This would consequently affect the controller
performance as backlash state estimation is an important aspect of controlling jerk
during lash traversal scenarios (refer [16]). Figure shows the comparison of lash
traversal for the FOM and the 3DOF ROM. Figure (a) shows the comparison of
the FOM’s final drive reduction and the transmission backlash traversal, brought at
the input to the final drive domain, with the lumped backlash traversal of the 3DOF
ROM. It can be seen that the ROM lash traversal starts when the FOM transmission
backlash starts to traverse and ends when the final drive lash traversal ends. Figure
2.12| (b) shows the comparison of ROM lash traversal and the lash traversal of FOM
when the final drive and the transmission lash are lumped together. It can be seen

that the ROM is able to track the FOM lash traversal closely.

A comparison of the 3DOF ROM simulation outputs is also made with the vehicle
measurements which is shown in Figure An overview of Figure for the
ROM’s comparison with vehicle measurements shows similarities with Figure for
the FOM’s comparison with the vehicle measurements. There is a difference in the
input torque for the vehicle and the ROM, Figure (a), which is because of the
gear-train losses being accounted at the input to the ROM as compared to the input
to transmission in case of the FOM. The engine speeds and the wheel speeds have

the same frequency of shuffle oscillation with a difference in the magnitude of the

oscillations which can be seen in Figure (b). We also see a delay in the vehicle
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(a) Comparison of full order model &
reduced order model backlash traversal
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Figure 2.12: Comparison of backlash traversal for 3DOF lumped backlash
ROM with FOM

measured propeller shaft torque as compared to the ROM simulated torque in Figure
2.13] (c) as the low pass filter was not modeled for the ROM. Finally, Figure (d)
shows the comparison of the vehicle acceleration and the ROM simulated acceleration

and it can be seen that they align with each other.

As a final step in the development of ROM, the effect of lumping the backlash was
also studied via having two backlash elements in the 3DOF-ROM. A layout of the
3DOF ROM with two backlash elements is shown in Figure where the lumped
backlash 2« in 2DOF ROM and 3DOF-ROM is split into two backlashes, one at the
input to the transmission, 2a; and one at the input to the final drive reduction,2as.

Rest of the structure of the ROM is similar to 3DOF model. With the inclusion of the
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(a) Comparison of input torque
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Figure 2.13: Validation of 3DOF lumped backlash ROM with vehicle mea-

surements
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Figure 2.14: 3DOF reduced order model with 2 backlash elements

2 backlashes, the response of the ROM with respect to the FOM is shown in Figure

2,19

If Figure for the 3DOF lumped backlash validation results is compared with
Figure for the 3DOF split backlash validation results, it can be seen that the
results are similar and there no significant difference in outputs. Thus, a 3SDOF-ROM
model with lumped backlash is able to simulate the dynamics of the system with less
than 1% error in the shuffle frequency and can be used for representing the vehicle

driveline model in locked TCC and for 5 gear with lower order as compared to the

spilt backlash 3DOF-ROM model.
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(a) Comparison of input torque
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Figure 2.15: Validation of 3DOF ROM with split backlash with FOM

model
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2.2.3 Assessment of model order reduction

Table shows the system configuration which was used to evaluate the run time
for the various models that have been discussed in this chapter. Table shows a
summary of the number of AMESim® explicit states, the run time and the ratio of
run time to simulation time for the two ROM models well as the FOM model. It can
be seen that with model order reduction, the number of explicit states in the driveline
model reduces from 47 for FOM to 10 for 3SDOF ROM and the simulation time also
reduces from 37.54 to 15.42 seconds which is 59% reduction in time. It is also evident
from table the reduction in states, as well as run time, is more for the ROM with
2DOF as compared with that of the 3DOF model, but as the 2DOF model is not able
to satisfactorily represent the dynamics of the system it cannot be used.

Table 2.7
System configuration used for model performance assessment

System details Description

Processor Intel® Core™ i7-7700K CPU @4.20GHz
RAM 32 GB

System type 64 - bit Operating System - x64 based processor
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Table 2.8
Comparison of simulation time and number of AMESim® explicit states
for the ROM and FOM models

Description ROM-2DOF ROM-3DOF FOM Units
AMESim Explicit states 8 10 A7 -
Run time 13.64 15.42 3754 s
run/sim time ratio 3.41 3.85 9.38 -
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Chapter 3

Backlash State Estimator

State of a dynamic system is considered as the memory of the system (refer [38] and
[39]). It is a critical resource as the system’s current state and the future inputs define
the future output/state of the system. Thus, knowing the current state provides an
opportunity to manipulate the future input to the dynamic system such that a desired
future output/state can be achieved, which is the control objective for a feedback

control system.

One approach towards knowing the states of a physical system is to measure them
continuously using sensors. With the available measurement of the states and knowing
the input to be given, the physical system can be controlled to achieve the desired

behavior. But, all the states of interest cannot be always measured. This can be
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because of the physical limitations of the measuring sensors or due to the inherent
nature of the model. Another approach towards knowing the states of a system is
via developing a mathematical model representing the physical system using a set of
ordinay differential equations. These equations represent the dynamics of the system.
The limitation of this approach lies in the fact that the actual physical system is never
known completely due to model uncertainty. Thus, the model developed can deviate
from the actual physical system, resulting in the controller receiving information of

the system which is not true and affecting the performance of the controller.

A third approach can be referred to as a combination of the above two approaches,
wherein a few of the system states are measured and the dynamic model of the
system is also developed. This dynamic model uses those measurements to correct
the predictions made by the dynamic model by analyzing the error in the predicted
states and the measured states. Various methods have been developed in the controls

theory to develop such a system, refer [40] and [41].

The current goal of mitigating clunk and shuffle poses a similar problem, wherein the
engine torque needs to be cautiously shaped so that the desired driveline response
can be achieved. In this case, certain measurements of the vehicle such as the speeds
of the engine and the wheels are available but the position of the shaft within the
lash cannot be measured. This is primarily because the backlash inside the driveline

is distributed at multiple locations of gear and spline mesh interfaces within the
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driveline. If it is aimed to measure the overall backlash, from one end of the driveline
to the another end, two position sensors would be required to determine the exact
position of the shafts, which is expensive in terms of a commercially saleable vehicle.
Thus, a state observer/estimator needs to be developed which can use the available

measurements and can estimate the backlash position state of the driveline.

The rest of the chapter is categorized into three sections. The first section discusses
the development of a state estimator model which builds upon the 3DOF model
validated in the previous chapter and uses the available measurements of the engine
and the wheel speeds to estimate the backlash position. The second section discusses
the validation of the state estimator with respect to the 3DOF plant model as well as
the FOM. The third section of this chapter discusses the robustness of the developed

state estimator to various changes in the system inputs and measurements.

3.1 Model development

As discussed, the estimator design is a two-step process. The first step involves the
development of a state space model, representative of the dynamic system, having
some of its states that are available measurements. The second step involves using
an estimation method on the state space model and the measurements to estimate

the rest of the states of the system. As a result, the estimator model development

73



is divided into 2 sections where the first section discusses the state space model
development and the second section discusses the application of estimation strategy
on the state space model. Furthermore, the state space model development section
discusses two state space models - one with shaft angular positions as the states of
the system and its drawbacks and the other with shaft twist angles as the states to

overcome those drawbacks.

3.1.1 State Space models

The state space model to be developed for the estimation of the backlash position is
based on the 3DOF ROM that has been developed and validated in the previous chap-
ter and represented using Equation to Equation [2.22] An analysis of Equation
for the derivative of the backlash position suggests a non-linear behavior where
the derivative of the backlash angle is zero when the lash is at either positive contact
or at negative contact (|0y] = «) and non-zero (|0,| < «) during the lash traversal.
As a result of the non-linear nature of the backlash, the shaft torque, represented by
Equation [2.14] also has a non-linear behavior where the shaft torque is zero during
the backlash traversal and non-zero during either the positive contact or the negative
contact. This can be seen via substituting, the value of 8, for the case of ;| < a

from Equation in Equation [2.14] If Tj,, is the shaft torque in the backlash mode,
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then it is given by:

stl =0 (3].)
and the shaft torque during the contact mode, Ty, , is given by:
T\, = ks(0a — 0) + co(6a — 6)) (3.2)

Thus, the model of the backlash and consequently the driveline model, by the nature
of this dynamics, can be divided into two modes of operation - the contact mode and
the backlash mode. This implies that the 3DOF ROM non-linear driveline model
can be categorized into two linear state space models representing the dynamics in

contact mode and backlash mode.

A general state space representation of a dynamic system is given by:

x = Ax + Bu (3.3)

y = Cx+Du (3.4)

where, x € R" is the state vector
u € R™ is the input or control vector

y € RP is the output vector.

A € R™" is the dynamic matrix
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B € R™ is input matrix
C € RP*" is the output matrix

D € R™" is the feedthrough matrix.

3.1.1.1 State Space Model 1

Equation to Equation [2.22 represent the dynamics of the system. To develop a
state space representation of form Equation [3.3] and Equation [3.4] the states of the

model need to be decided. Below are the rationales for choosing some of the states:

t Since the speed of the engine (6.) and the wheels (6,,) are the measurements
and are required to compare the error with estimates, they are considered as a

part of the state vector.

1 As the primary intention of the estimator is to determine the position of the

backlash (6,) thus it is also considered as a state.

T In order to consider the speeds as the states and based on the reference [10]
and [21], it can be seen that the positions of the inertia elements (Figure
also need to be considered as states of the state space model, thus the angular
positions of the engine (6.), final drive (ff4-) and the wheel (6,,), and their

respective speeds (96, 0 far and 9w) are considered as the states of the model.
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The resulting state vector is given by:

' (3.5)

X = 9@ 96 Hfdr éfdr ew éw eb

The inputs in this case are the engine torque T ;nspase and the road load to the

system Tj,,4. Thus, the inputs can be defined as:

and (36)

u= Te,inst,brake

Based on the above x and u and the discussion of two modes of driveline operation,

the dynamic matrix, the input matrix, and the output matrix are given by:

0 1 0 0 0 0 0
ks _cs ksifar Cslfdr 0 0 ks
Jritr? Jiiz, Jrigr Jrier Jritr
0 0 0 1 0 0 0
Acm — ksifd'r csifdr _ksifdr2+kw _Csifd'r2+cw k/'_w Cuw _ksifdv‘ (37)
Joitr Joitr J2 Jo2 Ja2 Jo Ja
0 0 0 0 0 1 0
0 0 kyw Cw o kw o Cw
MT’w2+J3 M?"w2+J3 MT’w2+J3 MT’w2+J3
0 0 0 0 0 0 0
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(001 0 0 0 0 0|
0 0 0 0 0 0 0
0 0 0 1 0 0 0
I kaw Cw kw Cw
0 0 0 0 0 1 0
ka Cw k‘w Cw
0 0 Mrw2+Js Mro2+Js  Mro2+ds  Mre2+Js 0
Bl e 0 -l
.
0 % 0 0 0 0 0
B =Bem =Bpn = (39)

0O 0 0 0 0 0

Tw
M"'w2+J3

01 00 0 0 0
C = Cem = Cp = (3.10)

0O 0 0 0 0 1 0

D = Doy, = Dpy = [0] (3.11)

An important property of a state space system is its observability. Observability
has to do with the interconnection between the states and the outputs. If a state
space model is observable, this implies that using finite observations of the output,
the initial state of the system can be identified. As for our case, since we need to
identify the backlash position of the system based on the measurements of the engine
and the wheel speeds, if the state space model developed is not observable, then the
estimator will not be able to estimate the states of the system. References in [42],

[40] and [43] discuss various methods to determine the observability of a state space
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Table 3.1
Observability for the State Space model 1

Number Rank of
Mode Matrix Pair o 0¢ Observability  Observable
of states :
matrix
Contact mode (A, C) 7 5 No
Backlash mode (A, C) 7 4 No

model. For this work, we have calculated the observability matrix for the state space

model which is given by:

O=|C CA CA?2 ... CAr1 (3.12)

A system is said to be completely observable if the rank of O is equal to n i.e. the
number of states of the system. Since we have both the contact mode and the backlash
mode, to determine the position of backlash, both the modes should be observable.
This can be seen in Table [3.1, where both the contact mode as well as the backlash
mode state space models are not observable. Thus, the state space models need to

be modified so that the states can be observed.

3.1.1.2 State Space model II

The test of observability for the contact and the backlash modes of the state space
model suggests that using the measurements of the engine and wheel speeds, we

cannot determine the backlash position of the system, thus the model needs to be
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modified.

A closer look at the physics of the contact mode model, i.e. when the backlash is
either at the positive contact or at the negative contact and the entire driveline is
rigidly connected, suggests that the measurements available are the speeds of either
end of the driveline. These are the speeds of the engine lumped inertia and the wheel
lumped inertia. With only the measurements of the speeds of the lumped inertia and
not the positions, determining the actual position of the engine and wheels are not
possible. This is because the initial conditions of the positions of either of the inertias
are not known. Thus, if the difference of the positions of the engine, final drive and
wheels are considered as the states of the system, then the initial conditions of the
positions of the engine, final drive and wheels are not required as they get canceled
out, making the system observable. Based on this rationale, the states of both the

contact mode and backlash mode models were updated to:

(3.13)

X = |0 _
itr

Otarigar  Oc Otar — 0w  Oar  Ouw Oy

where, (z—r — Otarisar) represents the twist angle of the lumped propeller shaft and
(Of4r — 0.) represents the twist angle of lumped axle shaft, refer Figure for the

layout of the model. The inputs and the outputs remain the same and based on this,

the modified state space model for the contact and the backlash mode is given by:
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0 o 0 —ifar 0 0
ks Cs Csi T ks
T Jhitr T Jpig2 0 Jl'{i' 0 Jritr
0 0 0 1 -1 0
Aoy = (3.14)
ksifdr Cslfdr _kw _Csifdr2+cw cw _ksifdr
Ja Joitr Jo Ja Jo Jo
kaw Cw Cw
0 0 Mre2+J3 Mr2+J3 T Mre2+J3 0
0 0 0 0 0 0
0 0 —ifar 0 0
0 O 0 0 0 0
0 O 0 1 -1 0
Ay = (3.15)
kw Cw Cw
o0 = i i 0
kw Cw Cw
0 0 Mre2+Js  Mre2+Js  Mre2+Js 0
T
0 5+ 0 0 0 0
B = (3.16)
00 0 0 s 0
0O 1 0 0 0 O
C= (3.17)

0O 0 0 0 1 O

The analysis of observability for the modified state space model and the results are

shown in Table 3.2
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Table 3.2
Observability for the State Space model 11

Number of rank of
Mode Matrix Pair 00 Observability  Observable
states .
matrix
Contact mode  (Agpm, C) 6 6 Yes
Backlash mode (A4, C) 6 4 No

From the results of Table [3.2], it can be seen that the state space model is observable
in contact mode but not in the backlash mode. Looking at the physics of the backlash
mode, it can be seen that, the driveline in the backlash mode is disconnected at the
backlash element i.e. the input engine torque goes into accelerating the propeller shaft
inside the lash zone without any torque being transferred to the wheels. Furthermore,
since there is no resistance torque on the propeller shaft, the twisting of the shaft does
not take place. Similarly, due to the coasting behavior of the vehicle, the momentum
of the vehicle keeps driving the wheels and reducing the vehicle speed based on the
road load acting on the wheels. Thus, the backlash mode system can be reduced to
two smaller subsystems. The first subsystem is from the engine lumped mass to the
backlash element and the second subsystem is from the final drive lumped mass to
the wheels. The engine subsystem can be modeled as a shaft accelerating due to the
input torque. The wheel subsystem can be modeled as two inertia elements connected
via a compliant element, with the wheel inertia subjected to the road load. In this
scenario, with the measurements of the engine and wheel speed, all the states of both

the subsystems can be determined. The equations of the backlash subsystem (engine
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subsystem and wheel subsystem) are given by:

Xred = ée gfdr - ew 9fdr éw (318>
0 0 0 0
0 0 1 -1
Ay, = (3.19)
kw Cw Cw
0 =% % T
0 kw Cw _ Cw
i Mrey2+J3 Mr2 +J3 Mr2 +J3 i
1
I 0
0 0
Bui, ., (3.20)
0 0
|0
1 0 0 O
Cuy,,, = (3.21)
0O 0 0 1

The test of observability for the reduced backlash model suggests that the rank of
the observability matrix is 4 which is equal to the number of states of the reduced
subsystem, as a result, all the states in Equation |[3.18| are observable. It can be
seen that the reduced system developed for the backlash mode does not contain the
backlash position state, i.e. the backlash position cannot be estimated during the
backlash traversal using the engine and wheel speed measurements. Whereas in the

contact mode, all the states are observable and can be estimated.
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3.1.2 Estimator design

As discussed, the model that has been developed is always an approximation of the
actual physical system. So, to estimate the states of the system, some of the states
need to be measured. With the help of the measured state and the approximate plant
model, an estimation method needs to be used so that the rest of the states of the
model can be determined. The estimation method should be capable of handling the
errors caused by the approximation of the system, the noises in the measurements -
measurement noise, as well as the noise due to the propagation of the uncertainty in
estimated states - known as the process noise. Furthermore, the estimation method
should also be able to weigh the accuracy of the measurements to the accuracy of the
plant model to rely on either the measurement or the plant model to estimate the

states of the system.

One such method for estimation for a linear dynamical model is known as the Kalman
filter estimation method, refer [40] and [41]. This method uses the measurements,
the plant model dynamics and the error co-variances of the process as well as the
measurements to output an optimal estimate of the states of the system. Optimal
results are obtained when the plant model perfectly matches the real physical system,
the process and the measurement noises are uncorrelated and Gaussian in nature with

zero-means (white noise) and the co-variances of the noise are exactly known. The
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Kalman filter is optimal as it tries to minimize the square of the error between the
prediction and the measurements and uses this information to estimate the states of

the system, ref [40].

With an assumption that the process noise and the measurement noise co-variances
of the driveline are zero-mean Gaussian in nature, a switched Kalman state estimator
is designed based on the contact mode and the backlash mode state space models.
(Refer , Equation to Equation . Figure shows the layout of the
Switched Kalman State Estimator (SKSE) that has been developed to estimate the
states of the model, with an interface to the plant model. The SKSE, developed in
Simulink®, uses the measurements of the engine speed and the wheel speed from the

FOM (plant model), developed in Simulink® and AMESim®. The engine speed (6,)
and wheel speeds (Ow) are the output of the FOM for a tip-in torque input, T jnst prake-
T instbrake 15 also an input to the SKSE along with road load, Fjseq. The Fjpuq is
calculated based on the measured wheel speed and the parameters of the vehicle. The
SKSE has two modes of operation, the contact mode and the backlash mode, defined
by their respective state space models, (Aen, Bems Cemy, Dem) and (Ap, By, Chiy D)
and their respective Kalman gains (K., and Kj) used to estimate the states of the
model. An initial condition, xg, is also given to the SKSE. The switching between the
two modes takes place when the conditions for switching between the two modes are

met, i.e. when T'Cy—s., is met, the SKSE switches from the backlash mode to the

contact mode and when T'C.,,— is met, the SKSE switches to the backlash mode
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from the contact mode. The output of the SKSE are the estimated states of the

driveline, Xx.

Based on the layout shown in Figure [3.1] the SKSE is discussed in further details in

the next sections.
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Figure 3.1: Layout of the designed backlash state estimator
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3.1.2.1 Kalman estimator

The steps taken for the development of Kalman state estimator are listed below:

T As the FOM model was in the continuous time domain, to facilitate the in-
tegration of Simulink® and AMESim®, and as the estimator needs to be im-
plemented in the vehicle ECU, a Discrete Switched Kalman State Estimator

(DSKSE) was required.

T In order to implement the DSKES, both the contact mode and the backlash
mode dynamics were discretized based on the sampling time of the engine and

the wheel speeds available, Tj.

1 The Kalman filter estimation is a two-step method, the prediction step, and the
measurement-update or the innovation step. In the prediction step, the States
and the Error co-variance of the system (either the contact mode or the backlash
mode based on the current mode of driveline operation) are propagated based on
the state dynamics, input dynamics, and output dynamics. This propagation
predicts the states as well as the error co-variances. In the innovation step,
the propagated error co-variance is used to evaluate the Kalman gains. This is
based on the process noise and the measurement noise. The Kalman gains are
then used to estimate the States as well as the Error co-variance. In addition,

this cycle is repeated at every time step.
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1 Prediction step - Let, x be the States of the system, P the Error co-variance
matrix, A the State dynamics matrix, B the input matrix, C the output matrix,
Q the process noise co-variance matrix, R the measurement noise co-variance
matrix, Z represents the measurements and k is the current time step, then the

a-priori state and error co-variance estimates are given by:

A-priori state estimate:

A-priori error co-variance estimate:

P,,, = AP,AT+Q (3.23)

1 The above estimates are then compared with the measurement data to calculate

the Kalman gain:

Ky = (Py,,C")(CP,,,CT+R)" (3.24)

1 Measurement-update step - Using the Kalman gain, Equation [3.24] the
errors between the predicted and the measured states are propagated to the
estimates of the states and the error co-variance.

A-posteriori state estimate:

fik—s—l = )A(I;Jrl + Kk+1(Zl<:+1 - C)ACI;H) (3-25)

89



A-posteriori error co-variance:

Pry=I-KpuC)P,, (3.26)

Depending on the mode of operation of the dynamics of the system, the A, B and C

take the values of the contact mode dynamic or the backlash mode dynamics.

3.1.2.2 Backlash mode - Prediction and estimation updates

As discussed in the previous section, the Kalman filter estimates the states of the
dynamical system via switching between the two modes of operation of the model,
propagating the states based on the state equations of that model and finally updating
the predictions based on the measurements. Referring to Section [3.1.1.2] it can be
seen that for the backlash model, only the reduced backlash model is observable. The
reduced backlash model can only update the 96, (Ofar — ), éde and the éw states
and not the (Z—i — Orarisar) and the 6, states of the backlash model. This problem
is mitigated via only carrying out the a-priori step of the Kalman filter for the
(Z—“; —0Orarifar) and 6, states. This is done with the assumption that the measurement-
based update of the remaining states would provide some information to drive these
states to the actual outputs of the plant. Figure shows the difference between the
a-priori and a-posteriori estimates along with the states which are estimated, and

are only predicted for both the contact mode as well as the backlash mode.
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3.1.2.3 DSKSE Transition conditions

Since the operation of the driveline model has been divided into the contact mode
operation and backlash mode operation, the estimator needs to switch between those
modes. One obvious choice for transition condition is, if the absolute value of backlash
angle is less than the half lash size, |éb| < o then we know for a certainty that
the driveline is in backlash mode. Another set of conditions to decide the mode of

operation can be determined based on the derivative of the backlash angle.

From Equation for the derivative of backlash angle, it can be seen that for

negative contact

0, < 0 for 6, = —a (3.27)
this implies:
0,0, > 0 (3.28)
Similarly, for positive contact,
6, > 0 for 6, = a (3.29)
which also implies
0,0, > 0 (3.30)
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Consequently, for backlash mode:

0,0, < 0 (3.31)

Thus, the transition from the contact mode to the backlash mode will take place

when:

0,6y <0 || 165] < (3.32)

The transition from the backlash mode to the contact mode will take place when:

By > 0 & |6y] = (3.33)

3.1.2.4 Process noise and Measurement noise co-variance matrices

The DSKSE uses a Process noise co-variance matrix, Q in Equation and the
Measurement noise co-variance matrix, R, in Equation to evaluate the Kalman
gains to propagate the error in the predictions with respect to the measurements to
the states of the system. Here, Q € R™", represents the noise in the states due to the
imperfect model of the system. The diagonal elements of Q represent the variance of
each state variable, while the non-diagonal elements represent the co-variance between
different states with respect to each other. On the other hand, R € R™" represents
the noise in the measurements i.e. the sensor noise which needs to be considered to

evaluate the Kalman gains. For the current estimator design, the diagonal elements

93



of Q were chosen as a calibration parameter to tune the estimator while the values

of elements of R were decided based on the respective sensor accuracy data.

Figure3.3|(b), (c¢) and (d) shows the estimates of DSKSE when subjected to an input
ramp torque shown in Figure (a). The DSKSE, in this case, is discretized at a
sampling time of 10 ms and the engine and the wheel speed inputs to the DSKSE
are also sampled at 10 ms. Figure (b) shows the variation of the engine-side and
the wheel-side twist angles. Both the twist angles are negative when the input engine
torque is negative and as the torque reversal takes place, the twist angles become
positive. The maximum change in twist angles takes place in the engine side twist
angle. This is because the backlash has been modeled at the engine side (ref. Figure
so when the torque reversal takes place, the traversal of backlash also takes place
and gets accounted in the engine side twist angle. Once the lash traversal has been
completed, the positive torque deflects the shaft and twisting-untwisting take place
due to the stiffness and the damping of the propeller shaft. This twisting-untwisting
manifest in the form of shuffle oscillations. On the contrary, as the wheel side does
not have a backlash element, the wheel side twist angle only represents the twisting

and untwisting of the axle shaft.

Figure (c) shows the estimates of the engine and the wheel speeds in the engine
domain. The shuffle oscillations are significant in the engine speed and less significant

in the wheel speed as discussed in the FOM validation section of this work. Finally,
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Figure 3.3: DSKSE estimated states
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Figure (d) shows the estimate of the lumped backlash traversal. It can be seen
that the estimated lumped backlash traversal aligns with the twisting of the engine

side twist angle.

3.2 Discrete Switched Kalman State Estimator -

Validation

The DSKSE designed in the previous section is validated with respect to the FOM

which has been discussed in Section. 2.1.3.3l

The DSKSE uses the engine and the wheel speeds as measurements to update the
predictions of the model. Thus, the error between the estimated and measured engine
and wheel speeds are considered as one of the primary assessment parameters for the
DSKSE. Furthermore, one of the major inputs to the torque shaping controller is
the backlash position of the driveline. As a result, the comparison of the lumped
backlash position of the FOM and the estimated backlash position is also considered
as a parameter to assess the performance of the DSKSE. Refer Figure to see the

interface of the FOM and the DSKSE.

Figure [3.4] shows the comparison of the outputs of the DSKSE and the FOM when

the DSKSE is discretized at 10 ms sampling time and the engine and the wheel speeds
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Figure 3.4: Validation of DSKSE with respect to FOM
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are also sampled every 10 ms. Figure (a) shows the input torque to the DSKSE
and the FOM. Figure (b) shows the comparison of the estimated engine speed
with respect to the measured engine speed input to the estimator (output of the
FOM). Similarly, Figure (c) shows the comparison of the estimated wheel speed
and the measured wheel speed input. It can be seen from Figure (b) and (c) that
the estimates overlap the measured inputs. Table |3.3| shows the maximum absolute
errors in estimation of the engine and the wheel speeds. It can be seen that the errors
in the speed estimates are significantly small. Figure (d) shows the comparison
of the FOM lumped lash traversal with respect to the estimated lash traversal. For
the current torque ramp rate, the DSKSE starts to estimate the lash traversal later
than the FOM lumped backlash traversal and the lash traversal ends close to the
end of lash traversal of the FOM. This can be further seen in Figure [3.5] where the
magnified view of the start of backlash traversal for the plant and the estimator are
shown. It can be seen that the plant backlash slowly starts to traverse, and it takes
the estimator 1-time-step (10 ms) to detect the change in the lash traversal. The error
in the lash traversal time is 14.3%, refer Table 3.3 which is significantly higher than
the errors in the estimates of the engine and the wheel speeds. The major reasons
contributing to the difference in the estimation errors of the speeds and the backlash

position are highlighted below:

T As has been discussed in the Section [3.1.2.2] the engine side twist angle and

the backlash position in the backlash mode are not updated with the Kalman
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Figure 3.5: Comparison of start of backlash traversal for the FOM and the
DSKSE

Table 3.3
Validation of DSKSE with FOM for a sampling time of 10 ms

Error

(%)

Engine speed estimate 2.50E-08
Wheel speed estimate 1.00E-05
Lash traversal time 14.29

Description

gains based measurement correction and are only calculated using the prediction
equations of the system. This limits the capability of the DSKSE to optimally
estimate the backlash position leading to increased error as compared to the

errors in the engine and the wheel speeds.

1 The lash traversal time for the current torque input is 130 ms and the sampling

time for the estimator is 10 ms. Even if the estimator takes 1 sample data to
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detect the change in backlash position, this will lead to an error in the lash size
estimate of approximately 7.5%. Thus, the sampling time of the estimator also

affects the error in the estimated backlash position.

T It is important to note that the accuracy of the lash traversal time estimate
would keep varying with the change in torque amplitude to which the estimator
is subjected to. This is because, as the rate of change of the torque input
increases, it reduces the lash traversal time. This would further amplify the

effect of sampling time on the error in the estimated lash traversal time.

The current discretization time for the DSKSE and the sampling time for engine and
wheel speeds were based on the sponsor organizations feedback of the sampling time
for the engine speed and the wheel speed in the current production vehicles. Figure
3.0/ shows the state estimates if the DSKSE is discretized at 1 ms and the engine and
wheel speed samples are available every 1 ms. Figure|3.7|shows the comparison of the
start of lash traversal with a sampling time of 10 ms and 1 ms. It can be seen that
with 1ms sampling the DSKSE is able to estimate the start of lash traversal closer to
the actual FOM’s lash traversal when compared to the output with 10 ms sampling.
This is in line with the effect of the sampling time on the percentage error in the lash

traversal time estimate.

Table|3.4]shows a quantitative summary of the effect of sampling time on the errors in

the estimates. It can be clearly seen that the error in the lash traversal time reduces
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Figure 3.6: Validation of DSKSE with respect to FOM for a sampling time
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Figure 3.7: Comparison of start of backlash traversal for the FOM and the
DSKSE

Table 3.4
Comparison of errors in the estimates with 10 ms and 1 ms sampling
discretization times

Description % Error - 10 ms % Error - 1 ms
Engine speed estimate 2.50E-08 5.00E-09

Wheel speed estimate 1.00E-05 5.00E-06

Lash traversal time 14.29 5.59

from 14.3% to 5.6% via a change in sampling time from 10 ms to 1 ms.
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3.3 Robustness analysis - DSKSE

The validation of the estimator discussed in the previous section has only been done
for a fixed torque ramp rate and in an ideal simulation environment. But, the DSKSE
should be able to estimate the states of the system for varying input torque rates,
torque magnitudes, delays in the measurement inputs and the jitter in the CAN/-
clock signals with a considerable amount of accuracy. This section thus discusses
the robustness of the DSKSE to all those varying parameters which will lead to the

assessment of limitations of the DSKSE.

3.3.1 Robustness to varying step torque inputs

As a first analysis, the robustness of the state estimator to varying magnitude of
step input torque is done. These scenarios are representative of very sharp torque
transients that can take place in the driveline. Figure (a) shows the different step
torque inputs to the estimator. These step torque inputs have a first order behavior
due to the engine dynamics. Figure (b) shows the variation in the lash estimation

error with varying magnitudes of step inputs and at different sampling times.

A few important observations that can be made with the results of varying step inputs
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Figure 3.8: Error in the estimation of lash traversal time for different step
torque inputs and sampling times

are listed below:

T The error in the lash traversal time estimate decreases with a decrease in sam-
pling time of the engine and the wheel speed measurement inputs and the

sampling time of the estimator.

1 There is no general trend on the basis of increasing the magnitude of the step
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torque inputs with respect to the resulting errors in the lash traversal time

estimates.

3.3.2 Robustness to varying torque ramp rates

Figure (a) shows the various torque ramp rates that have been used to estimate
the backlash traversal. Figure (b) shows the variation of the percentage error in
the estimated lash traversal time with a change in torque ramp rates for different

sampling times. Below are the observations that can be made -

T The DSKSE is sensitive to a very low torque input ramp rate of 200 Nm/s where

the maximum error is observed for all sampling times.

1 For torque ramp rates with 10 ms sampling time, the estimation errors, in
general, increases with an increase in torque ramp rates. This is because, as the
torque ramp rate increases the lash traversal time decreases and the impact of

each sample time becomes more prominent.
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3.3.3 Robustness to constant measurement delay

The DSKSE assumes that the measurements from the plant, i.e. FOM are available
a without any delay. But in the vehicle application, the sensor signal needs to be sent
to the ECU over CAN which can cause a delay in the signal when it is received by the
estimator. Additionally, in case of wheel speed sensors, the speeds are first received
by the ABS-ECU and then broadcasted to the powertrain ECU. This can also cause
a constant delay in the signal when it is received by the estimator. To simulate this
situation, a constant delay was added to the engine speed measurement input and the

wheel speed measurement input to understand the effect on the DSKSE’s estimates.

3.3.3.1 Effect of constant delay in engine speed

Figure[3.10] shows the comparison of estimates of the DSKSE with and without delay
in the engine speed measurement input when sampling time is 10 ms. From m (b),
the delay in the input engine speed can be seen. This causes a delay of 10 ms (1
sample time) in the estimate of start and end time of the lash traversal. This can be
seen more clearly in Figure [3.11] were the backlash traversal ends after one sample

time.

It is important to note here that the engine speed is one of the signals with the highest
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Figure 3.10: Effect of constant delay of 10 ms in engine speed measurement
input on backlash position estimate
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Figure 3.11: Effect of constant delay of 10 ms in engine speed measurement
input on backlash position estimate

priority on the CAN bus. Furthermore, the engine speed is directly broadcasted to
the Powertrain CAN. Because of these two reasons the constant delay in the engine

speed can be assumed to be less than 10 ms.
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3.3.3.2 Effect of constant delay in wheel speed

As compared to a constant delay in the engine speed, a constant delay in wheel speed
is more likely. One of the major reasons for this is the multiple ECUs involved in the
broadcast of wheel speed signals to the powertrain ECU. During a discussion with
the sponsor organization, it was suggested that a constant delay of 30 ms is observed
in the wheel speeds. Thus, the effect of a constant delay of 30 ms was checked on
the estimator. From Figure (¢), it can be seen that the wheel speed estimate
with delay is shifted with respect to the input wheel speed measurement as well as
the wheel speed estimate without any delay. Even with this delay, the estimator is
able to estimate the position of backlash without any change in traversal time or the
traversal start and end time. This can be seen in Figure [3.13] where the backlash
position estimate with and without delay has the same lash traversal time as well as

the start and the end times.
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Figure 3.12: Effect of constant delay of 30 ms in wheel speed measurement
input on backlash position estimate
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Figure 3.13: Effect of constant delay of 30 ms in wheel speed measurement
input on backlash position estimate

3.3.4 Effect of combined delay in engine and wheel speed

The effect of combining the engine and wheel speed delays of 10 ms and 30 ms
respectively leads to a delay of 1 sample time in the estimated end of backlash position.
This is because the engine speed delay of 10 ms leads to a delay of 1 sample time in
the estimated end of backlash position as discussed in Section while the wheel
speed delay of 30 ms does not affect the estimated end of backlash position, Section

2.0.0.2
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Figure 3.14: Effect of combined constant delay of 10 ms in engine speed
and 30 ms in wheel speed measurement inputs on backlash position estimate

3.3.5 Effect of CAN jitter in engine and wheel speed mea-

surements

To collect more data on the actual vehicle’s behavior during tip-in and tip-out sce-
narios, the sponsor organization had shared a production vehicle with Michigan Tech.
This was done so that the hardware team at MTU can instrument the vehicle and
perform different tests to quantify clunk and shuffle. From the measurements taken
by the hardware team, when the measurements of engine and wheel speeds of the

vehicle were analyzed, it was found that the CAN updates in the engine and wheel
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speeds had variations with respect to the ideal sampling time. This implies that the
updates in speeds arrived in advance to or delayed with respect to the ideal sampling
time. The distribution of this variation of the measurement updates in engine and
the wheel speeds are plotted in Figure and respectively. Since the current
DSKSE validation was carried out assuming that the measured data updates were
received as per the ideal sampling time, the effect of this jitter in measurement up-
dates and on the performance of the DSKSE needs to be checked and is discussed in

this section of the robustness analysis.

Figures and (a), (b) and (c) represent the different measurement data sets
taken by the hardware team. These data sets are named as “Data set 2”7, “Data set
37 and “Data set 4”. The name “Data set 17 is used for the ideal sampling time data
i.,e. “No delay”. This naming convention is used for both the engine and the wheel
speeds. The positive values of time on the x-axis of this plot represent the delay in
the update of the new measured sample data with respect to ideal time, while the
negative values represent that the data are received in advance of the ideal sampling
time. The “Measured data” bars on the histogram represent the distribution of the
jitter in the measured data. It can be seen that the distribution of the jitter for all
3 data sets are different and are not normally distributed. As a result, a “Kernel
Probability Density Function” was calculated and plotted for each of the measured
data set. This kernel probability density function was used to generate jitter data that

can be injected into the FOM outputs, of engine and wheel speeds, to understand the

114



performance of the DSKSE. This is represented as the “Generated data” bars on the
histogram. The subplot (d) of and shows the comparison of the probability

density functions of different data sets.

From Figures and it can be seen that the maximum amplitude of the jitter
in engine and wheel speeds are 5ms. The Simulink®- AMESIM® plant model is
operating in the continuous domain, thus the output engine and wheel speeds are
also in the continuous domain. In order to analyze the response of the DSKSE to
the engine and wheel speed CAN jitter for a sampling time of 10 ms, the measured
engine and wheel speeds were sampled twice. From Figure [3.17] it can be seen that
the continuous speed outputs of the plant are sampled first at 1ms. This makes it
possible to add subtle variations due to the CAN jitter. After the jitter has been
added to the measurements, they are sampled again at various sampling times (10
ms, 5 ms, and 1 ms) to assess the performance of the controller at those sampling

times.

Figures and shows the results of delay in the estimation of lash traversal
when the DSKSE is subjected to the jitter in the engine and the wheel speeds. The

major observations from the plots are discussed below:

1 For sampling time of 10 ms, there is no delay in the estimated lash traversal

time. This can be explained by the fact that the maximum delay in the jitter
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is of the order hms. With this delay and 10 ms sampling of engine and wheel
speeds, the effect of delay would average out significantly over the simulation
duration. Furthermore, the effect of 5ms delay on lash traversal would be max-
imum if it is encountered during the lash traversal, which can vary because of

the probabilistic nature of the distribution.

The data set 3 of the engine jitter has a bi-modol distribution with one peak
around 5 ms, Figure|3.15| For sampling speed of 5 ms and 1 ms, this distribution
causes a delay of 1 sample time, i.e. 5 ms and 1 ms respectively with all wheel

jitter data sets.

With wheel data set 4, 1 sample time delay (5 ms) is found for with and without
the engine jitter, Figure for DSKSE’s sampling time of 5 ms. A closer
inspection of the Figure [3.16| reveals that although the nature of distribution
for data set 3 and 4 are similar, the number of samples in case of data set 4,
with delay around 4-5 ms, are more than that in case of data set 3. This can
also be seen in Figure [3.16] (d) where the area under the curve for data set 4 is

more than that for data set 3 for the positive side of the delays.

To summarize, DSKSE with 10 ms sampling time is not able to identify the change

in the engine and wheel speed signals because of the jitter, while the DSKSE with

5 ms sampling time is very sensitive to the jitter in engine and wheel speed and the

DSKSE with 1 ms is most robust to the engine and wheel CAN jitters.
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Figure 3.18: Effect of CAN jitter in engine and wheel speed - I
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(a) Delay with CAN jitter in wheel speed - Data set 3
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Figure 3.19: Effect of CAN jitter in engine and wheel speed - 11
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3.3.6 Effect of sampling time

Figure [3.20] shows a box plot of errors in the lash traversal time for various torque
inputs (step as well as a ramp) to the DSKSE. The observations that can be made

with the help of this figure are -

With the decrease in the sampling time and estimator’s time of discretization,
pling

the error in the lash traversal time (mean and mode) decreases.

1 For a sampling time of 10ms, the distribution of the error in lash traversal is

wide as compared to that with 5 ms and 1 ms.

1 The average and the mode error in the lash traversal time estimation with 10

ms sampling time is around 15%.

T With 5 ms sampling time, the maximum error in lash traversal time estimate
is less than the average or the mode error with 10 ms sampling time. Thus,
5 ms sampling time provides a significant improvement in the estimates. Fur-
thermore, with 5 ms sampling time, the average and the mode of error in lash

traversal time estimation is about 9%.

T A sampling time of 1 ms provides the best result in the lash traversal time

estimation with maximum error being 8% and mode around 4%.
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T As the sampling time and the estimator’s discretization time decreases, the
range of error in the lash traversal time also decreases, barring an outlier for

the 1 ms sampling time at 23%

Along with the effect of estimator’s discretization time and sensor’s sampling time on
the accuracy of lash traversal time, other factors also need to be taken into account to
decide the sampling time for the estimator. This includes the hardware to be used in
the actual vehicle as well as the design of the controller. For instance, if the controller
is robust to errors in lash estimation time then a larger sampling time can be used

with less cost of the hardware.

To summarize, table [3.5| shows the various robustness analysis done for the backlash
state estimator. All these robustness assessments provide an effective data summary
of the performance and limitations of the estimator and finishes the development of

the Discrete Switched Kalman State estimator.
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Table 3.5
Summary of Discrete Switched Kalman State Estimator robustness analysis

Description Status

Effect of varying torque step inputs \/
Effect of varying torque ramp rates \/
Effect of constant delay

- Engine speed \/
- Wheel speed

- Combined engine and wheel speed

Effect of CAN jitter in

- Engine speed \/
- Wheel speed

- Combined engine and wheel speed

Effect of sampling time \/

This finishes the Discrete Switched Kalman State Estimator’s model development,

validation and robustness analysis.
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3.4 Sensitivity analysis for DSKSE

3.4.1 Sensitivity to varying estimator model parameters

The parameters of the model that have been used to estimate the states of the driveline
during tip-in and tip-out events can change due to (i) the part to part variation of the
components of the driveline and (ii) the usage of the vehicle. For example, the mass
of the vehicle varies with the number of passengers sitting in the vehicle as well as
based on the luggage in the vehicle. Thus, the parameters of the model are varied to
evaluate the performance of the estimator. The parameters that have been changed

are listed below:

T Mass of the vehicle (M)

T Engine lumped inertia (J;)

T Propeller shaft lumped stiffness (k)
T Wheel lumped stiffness (k)

T Propeller shaft lumped damping (cs)

T Wheel lumped damping (c,,)
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T Wheel lumped inertia (J3)

These parameters are increased by 1.2, 1.3, and 1.5 times the baseline parameters
and the error in lash traversal time as well as the delay in the start of lash traversal
with respect to the baseline estimator outputs are shown in Figure and Figure
respectively. An assumption has been made to consider a deviation of 1% in
estimated value of lash, to be acceptable. This assumption is made to ignore very
small value of error in the estimated backlash. The observations from the variation

of error in lash traversal time in Figure |3.21] are discussed below:

T It is evident from Figure (a), (b), and (c) for different increase in the
values of baseline parameters that the estimator is most sensitive to the lumped
propeller shaft stiffness. The error in the lash traversal is up to 40% for the

three cases which occurs at 500 Nm/s of input torque ramp rate.

1 The second most sensitive parameter is the mass of the vehicle with error ranging

up to 18% in cases for torque ramp rates more than 500 Nm/s.

T For other parameters the error in lash traversal time is less than 10% even with

an increase of up to 30% from the baseline value of the parameter.

1 For wheel lumped stiffness and the wheel lumped damping, with an increase of
50% from the baseline values, the error increases to 18% as compared to 9% for

30% increase in the value from baseline values.
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Figure 3.21: Plot showing the variation of error in lash traversal time with
changing the estimator baseline parameters by 1.2, 1.3, and 1.5 times on the
error for different input torque ramp rates at 10 ms sampling time
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It was observed that the end of lash traversal time was same for all the scenarios, thus
the error in the lash traversal time is because of the error in the start of lash traversal.
This is shown in Figure for varying different parameters of the estimator. The
additional information Figure [3.22| provides with respect to observations made from
the results of Figure |3.21] is, whether the lash traversal time increases or decreases
when a particular parameter is changed. A positive value of delay suggests that
the lash traversal time increases, while a negative value of delay suggests that the
lash traversal time decreases. Thus, increasing the propeller shaft stiffness and mass
of the vehicle increases the lash traversal time. This can be seen in Figure |3.23
which shows the comparison of estimated backlash position with baseline and 50%
increased lumped propeller shaft stiffness. It can be seen for the torque ramp rates
such as 200 Nm/s and 300 Nm/s that the estimated backlash position with modified
propeller shaft stiffness slowly starts to traverse before the estimated backlash with
ideal (baseline) propeller shaft stiffness. This causes the increase in error of the lash

traversal time with changing the stiffness of the propeller shaft.
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Figure 3.22: Plot showing the variation of error in start of lash traversal
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ramp rates at 10 ms sampling time
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3.4.2 Sensitivity to different operating gear

To understand the performance of DSKSE to operating gear other than 5**, an anal-
ysis was carried out in 6" gear and result is shown in Figure . It can seen that
the start and end of lash traversal for different ramp rate are similar to the simulated
via the full order plant model. The modifications made to the estimator to adapt to

6t condition are:

T The lumped engine inertia is changed (.J;) as it consists of the engine as well as

the transmission inertia.
The transmission gear ratio (i;,.) is changed to a value of 6 gear.
T g g g

T As the value of lumped backlash is dependent on the transmission gear ratio,

the backlash angle was also modified.
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133







Chapter 4

Backlash Size Estimator

The previous chapter discussed the estimation of backlash position when the size of
the backlash is known. As discussed, the backlash size of the driveline is cumulative of
individual backlashes distributed at various gear and spline mesh interfaces. Over the
life the vehicle, there will be plastic deformation of the components of the driveline
due to various loads the driveline is subjected to. This include the deformation of the
gear and the spline geometries which will increase the size of the backlash over the life
of the vehicle. In this scenario, where the backlash size is increased, if the backlash
position estimator (DSKSE) estimates the position of backlash on the basis of an old
value of the lash size, it can significantly hamper the performance of the anti-jerk
controller. Thus, in order to have a sustained performance of the anti-jerk controller

over the life of the vehicle, it is necessary that the size of the backlash can also be
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estimated. This estimated lash size will update the lash size used by the DSKSE,
ensuring that the backlash position estimate from the DSKSE to the controller is

representative of the vehicle lash size.

This chapter discusses the development of a backlash size estimator using the state
space model of the driveline model that has been developed for this work (refer
Section . Post the development of the size estimator, the validation of the size
estimator is discussed along with its capability to estimate the size of backlash for
varying plant backlash sizes. Finally, this chapter discusses the robustness analysis

of the developed size estimator to various scenarios.

4.1 Estimator model development

The size estimator development section of this chapter is subdivided into three sec-
tions. The first section discusses the rationale that has been used to develop the size
estimator. The second section discusses the Kalman filter estimator approach and the
layout of the estimator used to estimate the backlash size. The third section discusses
the results of the size estimator and the final section discusses the modification that

has been made to the representation of estimated lash size.
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4.1.1 P for size estimator

Let the vehicle driveline be represented by only the contact mode dynamics of the

driveline (Equations [3.13] [3.16| and [3.17)) and let a Kalman filter is designed to esti-

mate the states of the driveline with only contact mode dynamics. Now if the driveline
is in contact mode, i.e. no change in the position of the lash, the lash estimate using
contact mode dynamics should not change. But if the driveline is traversing through
the lash, i.e. backlash mode, the estimator will accumulate some error in the lash
position and would start estimating the lash angle. Finally, when the driveline has
reached contact mode again, there will be no further change in the lash angle estimate
and a steady offset in the lash angle would be achieved. This steady value will be the

size of the driveline backlash.

4.1.2 Kalman backlash size estimator

Based on the rationale discussed in Section [4.1.1} a Triggered Kalman Backlash Size
Estimator is designed (TKBSE) to estimate the size of the backlash while the driveline
traverses from the negative contact to positive contact. The trigger to estimate the

size of backlash is based on the commanded torque value by the engine (7% inst brake)-
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If the engine commanded torque is greater than zero and the change in engine com-
manded torque is more than a small calibration value (6 Nm/s), this implies that
the driveline is being forced to traverse backlash and achieve positive contact. This
scenario provides important information to the estimator to estimate the backlash

size.

Based on the above discussion, modified state variables for the size estimator can be
given by:

~ ~

X= % Gire 0. Opar—0y b0 0, 2a (4.1)

7;t'r

Here 2& represents the backlash size estimate. The A, B and C matrices for the size
estimator are given by Equation [3.13, Equation [3.16| and Equation |3.17| respectively.

If the Kalman gain is given by K, then the estimates can be given by:

X = AenX 4+ Bonu + K [Z — CpX] (4.2)

where, Z represents the measurement inputs to the Kalman estimator.

Fixed Kalman gains were calculated for the above state space model using a process
noise co-variance (Q), a measurement noise co-variance (R) in Matlab®. The values
of the measurement noise co-variance have been kept the same as the one used in the
DSKSE as they depend on the accuracy of the sensors used to measure the engine

and the wheel speeds. The process noise co-variance matrix was used as a calibration
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to reduce the error between the estimated and actual backlash size.

Figure shows the layout of TKBSE. A torque command, T ;ystprake iS sent to
the vehicle model and the TKBSE. The resulting engine and wheel speeds from the
vehicle model are sent to the estimator through a sample and hold block to discretize
the continuous plant outputs. The vehicle road load is also calculated based on the
measured wheel speed and sent to the TKBSE as an input. The torque command
to the TKBSE is also sent to the trigger block. This block checks if the derivative
of the torque is more than a calibration value (6 Nm/s) and compares the torque to
a set value (0 Nm, in this case). If both the conditions are met, a trigger is sent
to the TKBSE to start the lash size estimation. The trigger block also sends the
initial conditions of the engine and wheel speeds based on the current measurements
each time the TKBSE is triggered. The outputs of the TKBSE are the twist angles,

speeds, and the size estimate.
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4.1.3 TKBSE outputs

Figure shows the output of the TKBSE. Figure (a) shows the engine torque
input to the estimator for two consecutive tip-ins and tip-outs. Figure (b) shows
the triggers which are used to trigger the size estimation. The solid line shows the
trigger that the driveline torque is positive and the dashed line shows that the torque is
increasing which implies a tip-in event. The size estimation is triggered when both the
triggers are active. Figure (¢) shows the comparison of input and estimated engine
and wheel speeds in the engine domain. It can be seen that the engine and wheel
speeds are estimated only when both the triggers are active and the estimates are
held constant to the last estimated value otherwise, indicating that the size estimator
is not triggered anymore and thus not updating the size. Figure (d) shows the
size estimate which starts at zero and when the estimator is triggered for the first
time, it experiences a transient to estimate the backlash size based on the error in
the engine and the wheel speeds and then finally arrives at a value of size estimate
which becomes constant when the estimator is triggered off. For the second tip-in,
the size estimate re-corrects itself and again arrives at a value of the backlash size.
The current analysis is done when the engine and wheel speeds are sampled at every

10 ms.

Figure [4.3| shows the size estimate of the TKBSE for multiple tip-in scenarios. Figure
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Figure 4.2: TKBSE outputs with input engine torque and triggers
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(a) shows the input torque profile to the estimator. The only difference with
respect to the analysis of Figure is this analysis is done for a longer time duration.
Figure (b) shows the comparison of the estimated and the plant engine speeds.
It can be seen that the estimator is triggered only during the tip-in scenarios where
the backlash of the driveline is traversing. Rest of the time, the estimates are held
constant while the plant engine speed varies. This can also be seen in Figure (c)
which shows the comparison of the estimated and plant wheel speeds where the esti-
mated wheel speed deviates from the plant wheel speed (estimated speed is constant
while the plant speed increases) when the estimator is not triggered. Figure (d)
shows the backlash size estimate with the transients during the start of each trisgger
and the estimate converging to a final value of the lash size as the trigger continuous

and eventually holding the last estimate until a new tip-in cycle starts.
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4.1.4 Modified backlash size estimate for TKBSE

It can be seen from Figure and Figure that the backlash size estimate has an
initial transient each time the estimator is triggered which settles down after some
time to a final value. This final value represents the size of the backlash. Thus, the
representation of the size estimate can be modified to show the final value of the
estimate as shown in Figure (d), where the modified lash signal takes the final
value of the size estimate after each trigger cycle or when there is no change in the

lash size estimate.

This representation for the backlash size will be used from here on to represent the

estimated backlash size of the driveline.
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4.2 Validation of TKBSE

In order to validate the TKBSE, a torque profile is selected as an input to the plant
model for different backlash sizes of the plant. Three backlash sizes have been chosen.
Given the half backlash size is represented by «, the three chosen plant backlash sizes
are represented as 2«, 4a, and 6. The torque input and the outputs of plant model,
i.e. the engine and wheel speeds, for different backlash sizes are then fed to the
TKBSE to estimate the size of backlash based on the inputs and the measurements,
refer Figure for inputs, measurements and estimates of the TKBSE and for the

interface between the plant model and the TKBSE.

Figure 4.4{shows the result of size estimate for the baseline driveline backlash size (2«)
with engine and wheel speeds sampled every 10 ms. Table shows the comparison
of error in the estimated lash size for different plant lash angles for a fixed torque
input shown in Figure (a) and with engine and wheel speeds sampled every 10

ms. Below are observations from the error in the estimated lash size:

1 The maximum error for this torque profile with ramp inputs is less than 1%.

T As the plant lash size increases, the error in the estimated lash size decreases.
This is because, as the lash size increases, for a given value of torque ramp

rate and the magnitude of torque, the lash traversal time increases. With the
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Table 4.1
Variation in error in TKBSE’s size estimate with change in plant backlash
size and 10 ms sampling time for the estimator and speeds

Actual backlash size % Error in lash size estimate

200 0.81
4o 0.25
6 0.23

increased lash traversal time and a given discretization time of the estimator,
more data samples are available to estimate the size of the backlash, reducing

the error in the estimates.

With these values of error in the lash estimates, it can be said that the TKBSE is

validated for a given torque ramp rate. A more detailed analysis of the estimator’s

performance to varying torque inputs and delays is done in the next section.

4.3 Robustness analysis of TKBSE

Similar to robustness analysis of the Discrete Switched Kalman State Estimator, the

robustness analysis of Triggered Kalman Backlash Size Estimator is also done to

assess the performance of the estimator to various torque inputs, ramp rates, delays,

and sampling times. This is done so that the limitations of the TKBSE can also be

identified as well as certain hardware level decision can be made.

148



4.3.1 Robustness to varying step torque inputs

The most severe clunk and shuffle are observed in the driveline with step torque
inputs. Figure [4.5|shows a set of three step inputs which have been used to estimate
the lash size with varying plant backlash sizes. It is important to notice that there is
a first order shape to the torque inputs. This is due to the first order dynamics of the
engine and because the step input is given to the base and the instantaneous torque
commands. Figure shows the simulation result for “Step 1”7 torque profile with 2«
plant backlash size and 10 ms sampling time. It can be clearly seen in Figure (b)
and (c) of engine and wheel speeds respectively that the size estimator is triggered
for a limited time and holds the value at the end of trigger for the rest of the time.
Figure (d) also shows the size estimate with (w) and without (wo) constraint.
The without constraint signal shows the settling of backlash size estimate while the

with constraint signal takes the final value of each trigger cycle.

Figure 4.7| shows the results of error in size estimates for different torque step inputs
with the change in the plant backlash size and the sampling time of the TKBSE. Below

are the observations that can be made from the result of errors in size estimate.

T As the magnitude of step input torque increases (“Step 17 to “Step 3”), for

each sampling time, the error in the size estimate also increases. This can be
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Figure 4.5: Step inputs used to assess the robustness of TKBSE
explained by two reasons, (i) the Q of the TKBSE is tuned for the torque “Step
17 leading to a lesser error in the lash estimates with torque “Step 17, (i) with
the increase in torque step from profile 1 to 3, the lash traversal time decreases
because of the increasing final value of torque magnitude, thus the number of
data samples available to the estimator are less, leading to increased error in

the size estimate.

1 For a given plant backlash size, as the sampling time decreases the error in the
size estimate also decreases. This is because more data samples are available

for a given lash traversal time for the estimator to estimate the backlash size
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Figure 4.6: Simulation result for “Step 1”7 torque profile with 2« plant
backlash size and 10 ms sampling time.
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Figure 4.7: Variation of percentage error in size estimate for various step
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and 6a).

resulting in a decrease in the error.

1 For a given sampling time and torque step, as the plant backlash size increases,
the error in the estimates of the backlash size decreases due to the longer back-

lash traversal time.

T For very large backlash size (6c) and for a given torque step input, the effect
of sampling time on the error in the estimates decreases. This can be seen by

comparing the error in lash estimation for plant lash size of 6« for torque “Step
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1”7 and all sampling times.

4.3.2 Robustness to varying torque ramp rates

Post the analysis of the effect of various step torque inputs to the TKBSE, the effect
of varying torque ramp rates were also studied. An intercept of the torque input (two
tip-in and tip-out cycles out of a total 10 cycles) of varying ramp rates to the TKBSE
is shown in Figure 4.8/ A similar analysis, as done for the case of step input torque,
was done and the results with “Ramp 1”7 torque ramp rate with 2« plant backlash
size at 10 ms sampling time are shown in Figure [4.9] Figure[4.9](d) of the simulation
result shows that the actual and the estimated lash size are very close to each other.
The quantitative summary of the error in lash size estimates with varying torque

ramp rates, plant lash sizes and sampling times is shown in Figure 4.10
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Figure 4.8: Ramp torque inputs used to assess the robustness of TKBSE
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Figure 4.9: Simulation result for “Ramp 1” torque profile with 2« plant
backlash size and 10 ms sampling time.
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The key highlights of the variation of error with varying ramp rates are discussed

below:

1 As compared to the error in lash size estimation with step torque inputs, Figure
[4.7 the error with ramp torque inputs has significantly reduced. This is due
to increased lash traversal time with ramp torque inputs as compared to step

torque inputs.

T As the magnitude of torque ramp rate increases, i.e. ramp converging to step,
the error in the lash size estimate also increases. This is similar to the higher
errors in the lash size estimates with ramp torque inputs as compared to step

torque inputs.

T With decreasing the sampling time, the error in the lash size estimate decreases
because more data samples are available to the estimator to estimate the lash

size for a given lash traversal time.

1 The decrease in error of lash size estimate with an increase in lash size is also

evident throughout the different ramp rates as well as the sampling times.
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Figure 4.10: Variation of percentage error in size estimate for various ramp
input torque rates at different sampling times and plant backlash size (2q,
4o and 6a).

4.3.3 Robustness to torque inputs with varying duty cycle

and pulse width

For the discussions in Section and Section the duty cycle and pulse width
of the torque inputs were constant even though the torque rates were different. In

order to check whether the constant duty cycle and the pulse width are not causing
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(b) Comparison of constant and varying torque input duty cycle
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Figure 4.11: Comparison of varying duty cycle and pulse width torque

input profiles with constant duty cycle and pulse width profiles

the size estimate to converge to a specific value, two torque input profiles with varying

duty cycle and pulse width were also developed to check the error in the size estimate.

A comparison of those varying duty cycle and pulse width torque inputs with constant

duty cycle torque inputs is shown in Figure |4.11|
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The result of the TKBSE for “Varying 1”7 torque profile, a plant backlash size of 2«
and the sampling time of 10 ms is shown in Figure[4.12] Figure[4.12](d) shows a good

correlation between the estimated lash size and the actual plant backlash size.

Figure shows the summary of variation of lash size estimate with the two varying
duty cycle and pulse width torque input profiles for different lash sizes and sampling
times. The observations are very similar to the previous two cases. The average errors

in size estimate with this case are similar to those with ramp torque inputs.

159



(a) Input engine torque

20 25 30

35 40 45 50

(b) Engine speed comparison
T I T T T

Est engine speed

14N - —=-—- Plant engine speed
o -
& 12N
14N
12N
0 10 15 20 25 30 35 40 45 50
(c) Wheel speed comparison
T T I T T T T
\\ Est wheel speed
28N =—===Plant wheel speed || 7
x ™~
X 26N~ ' ' =
'
Py
24N - | | | //\\r/ ¥ -
| | | | | | | |
0 10 15 20 25 30 35 40 45 50
(d) Backlash size estimate
T T I T T T T
20b e e e e e e grm——————— S - S
» ' : 3 Z z 3 z 3
E ! : k t £ E oo Size wo constriant
o100 ¢l : : S 3 : Actual size
o) ! : H . f —-—- Size w constriant
I i i i ; 1 i :
e | | | | | | | | ]
0 10 15 20 25 30 35 40 45 50

Time (seconds)

Figure 4.12: Simulation result for “Varying 1” torque profile with 2« plant
backlash size and 10 ms sampling time.
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Figure 4.13: Variation of percentage error in size estimate for varying duty
cycle input torque rates at different sampling times and plant backlash size
(2ar, 4o and 6a).
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4.3.4 Robustness to variable torque input profile

Based on the results of the Section [£.3.1] Section [4.3.2] and [£.3.3] where one or the

other parameter of the input torque was fixed, in this scenario, a random torque
profile was generated to test the robustness of the size estimator. This is shown
in Figure m (a) where the torque ramp rate, the magnitude of the final value as
well as the duty cycle of the torque input, varies with time. The Figure [£.14] (b)
and (c) shows the comparison of estimated and the measured engine and the wheel
speeds. The estimates overlap with the measurements while the estimator is trigger
ON and are held to a constant value when triggered OFF. Figure m (d) shows the
comparison of the actual lash size, the estimated lash size without (wo) and with (w)
constraint. It can be seen that the final value of the lash size is kept as the one for

which the final torque value is maximum, i.e. the peak with 15t final value of torque.

Figure [4.15] shows the summary of variation in the error of lash size estimate for
different plant backlash angles as well as the sampling times. The general observations
from this plot are similar to previous robustness analyses. The order of error is similar
to the error with variable duty cycle and ramp torque inputs with decreasing error in

size estimate with increasing lash size as well as the sampling times.
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Figure 4.14: Simulation result for random torque profile with 2« plant
backlash size and 10 ms sampling time.
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Figure 4.15: Variation of percentage error in size estimate for random
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4.3.5 Robustness to constant delay in engine speed

As discussed in the robustness analysis of the state estimator, the measurement input
signals to the TKBSE can have a delay from the time it is measured at the crankshaft
to the time it is received by the estimator. Normally, the engine speed signals are
directly sent to the powertrain ECU and they have the highest priority in the CAN bus

as compared to other signals. As a result, the delay in the engine speed signal should
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Figure 4.16: Comparison of input measured engine speed with and without
delay.

be significantly less than other signals broadcasted over the CAN. An assumption is
made that a delay of 10 ms is significant for the engine speed signal and accordingly
simulation for delays of 5 ms,10 ms and 20 ms are done to understand the error in
the size estimate. A comparison of engine speed with and without delay is shown in

Figure for engine speed sampled at 10 ms and with 10 ms of constant delay.

Figure |4.17|shows a plot of variation of error in size estimate with increasing constant
delay in the engine speed for different sampling times. The observations that can be

made from the distribution of error are:

1 As the delay in the engine speed measurement increases, the error in the size
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Figure 4.17: Variation of error in size estimate with variation in engine
speed constant delay for different sampling times.

estimate also increases. This is because the trigger to estimate the lash size is
active for a fixed period of time and is based on the engine torque input and its
derivative values. As a result, a specific window of engine speeds measurement
data is available to the estimator to estimate the size of the backlash. With the
increasing delay in the engine speed measurement, the window of data with the
knowledge of lash traversal is reduced consequently increasing the error in the

lash size estimate.

1 The variation of error also shows that as the sampling time decreases, the error
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caused by the constant engine speed delay increases. This is contrary to the
expected behavior where the error in size estimate decreases with a decrease in

the sampling time.

4.3.6 Robustness to constant wheel speed delay

As compared to engine speed, the wheel speed data can have a higher delay and the
discussions with the sponsor organization have indicated that a delay of maximum
30 ms is adequate. Accordingly, Figure shows the comparison of input measured
wheel speed with and without delay of 30 ms for sampling time of 10 ms. The

summary of variation in size estimate is shown in Figure [4.19]
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Figure 4.18: Comparison of input measured wheel speed with and without
delay.

The observations from this analysis are listed below:

T Similar to the observation for variation of error in lash size estimate for a con-
stant delay in engine speed, with a constant delay in wheel speed, the error also

increases with an increase in the delay.

T On the contrary to the trend with a constant delay in engine speed, with a
constant delay in wheel speed, as the sampling time decreases, the error in size
estimate also decreases. This is more in line with observations that have been

made with the rest of the robustness analysis.

168



Error in lash size estimate (%)
N w £ N ()]

—_

o

10 20 30 10 20 30 10 20 30

1 5 10
Wheel speed delay (ms) , Sampling time (ms)

Figure 4.19: Variation of error in size estimate with variation in wheel
speed constant delay for different sampling times.

4.3.7 Robustness to combined constant engine and wheel

speed delays

As in the real world scenario, both the engine and wheel speed constant delay would
be acting together, their combined effect on the lash size estimate for one backlash
angle and different sampling times with 10 ms sampling delay in engine speed and

30 ms sampling delay in wheel speed is shown in this section of robustness analysis.
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Figure [4.20] shows the TKBSE’s output when the constant delays in the engine and
wheel speeds for 10 ms sampling time are added. It is evident from Figure [4.20] (d)
where the estimated size converges to the actual plant backlash size. The quantitative
data for the analysis and the summary of the errors for different sampling times is
shown in Figure |4.21] The maximum error of 4% is observed for 10 ms sampling with

a decrease in error of lash size estimate with a decrease in sampling time.
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Figure 4.20: TKBSE’s output for 10ms sampling of engine and wheel speed
for 10 ms constant delay in the engine speed and 30 ms constant delay in
wheel speed.
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Figure 4.21: Summary of error in lash size estimate for different sampling
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4.3.8 Robustness to CAN jitter in engine and wheel speeds

Figure [3.15] and Figure [3.16| showed the distribution of jitter in the engine and the
wheel speed signals and section discussed the effect of jitter on the robustness
of state estimator. The Kernel probability density functions derived for the engine
and wheel measured data sets were used to generate sampling data to be used for

robustness analysis of size estimator as well. As compared to the data generated for
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state estimator’s analysis, the number of samples were more for the analysis of size
estimator as the simulation is run for 50 seconds as compared to 7 seconds for state
estimator, leading to statistically close distribution of generated data. Furthermore,
multiple tip-in scenarios are being considered for size estimator so the distribution of
delay is also more uniform. The implementation of the jitter signal to the inputs of the
engine and the wheel speed measurements is similar to the way it was implemented
for the state estimator and can be seen in Figure The summary of results with

these jitter data set for different sampling times is shown in Figure 4.23|

Below are some of the major observations with respect to the error in size estimate

with jitter in engine and wheel speed signals:

1 The maximum error in the size estimate with combined engine and wheel speed

jitters is less than 4%.

1 The maximum error in size estimate occurs for engine speed distribution which
has a high density at 4-5 ms delay for a 10 ms sampling time of the estimator

and the engine and wheel speeds.

1 The various distribution of wheel speed jitter data does not affect the error in
lash size estimate for any given sampling time significantly. This is evident as
the different peaks for given sampling time and engine data sets of jitter are of

almost similar size.
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Figure 4.23: Summary of error in lash size estimate for different sampling
times and CAN jitter in measured engine and wheel speed signals.

1 Sampling time of 1 ms is most robust to the effect of jitter in engine and wheel

speeds.

4.3.9 Robustness to sampling time

Even though the effect of sampling time has been a consistent parameter in all the
robustness analysis so far, a cumulative plot for the error in lash size estimate for all

the analysis with respect to sampling time is plotted in this section to evaluate the
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overall performance of the TKBSE with different sampling times. Figure [4.24] shows

a box plot with variation of percentage error in lash size for different sampling times.

Below are the observations from the box plot:

T For 10 ms sampling time, 50% of the data, quartile Q; to Qgz, lies between 1%

to 4%. The mean and mode errors in the lash estimate are around 3%.

T For 5 ms sampling time, 50% of the data, quartile Q; to Qg, lies between 0%

to 3%. The mean and mode are around 2%.

T For 1 ms sampling time, 50% of the data, quartile Q; to Qgz, lies between 0%

to 2%. The mean and mode are around 1.5%.
T With the decrease in sampling time, the span of distribution of error decreases.

1 There are few outliers for all the sampling times.

As discussed in the state estimator chapter of this thesis, the decision to choose the
sampling time for implementation in vehicle would further depend on the hardware
available or to be used, cost of the hardware, and the allowable error in the size
estimate from state estimator’s point of view and its coupled effect on the control

algorithm’s performance, i.e. robustness of the controller to error in size estimate.

To summarize, Table 4.2| shows the various robustness analyses done for the backlash

size estimator. All these robustness assessments provide an effective data summary
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Figure 4.24: Box plot for error in lash size estimate with sampling time.
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Table 4.2
Summary of robustness analysis for the size estimator

Description Status

Effect of varying torque step inputs
Effect of varying torque ramp rates
Effect of varying duty cycle and pulse width of torque ramp inputs

Effect of variable torque input profile
Effect of constant delay in

- Engine speed

- Wheel speed

- Combined engine and wheel speed delay
Effect of CAN jitter in

- Engine speed

- Wheel speed

- Combined engine and wheel speed

CC KK

<

Effect of sampling time

of the performance and limitations of the estimator and finish the development of the

Triggered Kalman Backlash Size estimator.
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Chapter 5

Conclusion and Future Work

5.1 Conclusions

The conclusions of this work are categorized into three sections (i) the validation of
the full order model and development of reduced order model, (i7) the backlash state

estimator and (7i7) the backlash size estimator and are discussed below -

1 Validation of full order model and development of reduced order

model -

— The full order vehicle model developed in [3] using Simulink® - AMESim®

interface was validated for the case of locked torque converter and 5%
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gear operation. Validation was done using the vehicle measurement data

provided by sponsor organization.

The simulated frequency of shuffle oscillation of the validated model has

less than 1% error with respect to vehicle measurement.

In order to eliminate the phase lag between the measured and simulated
values of propeller shaft torque, a low pass filter needs to be added to the

model.

A two mass reduced order model, generally used in literature to repre-
sent the automotive driveline with backlash, was not able to capture the
dynamics of the full order model with sustained oscillations in simulated

outputs.

A three mass model with separate tire stiffness and damping was developed
to simulate the driveline response which was able to capture the dynamics

of the full order model.

The start and end of lash traversal with lumped backlash reduced order
model and split backlash reduced order model are same. Thus, the number
of equations and states representing the reduced order model can be further

reduced with lumping the backlash.

The 3 degrees of freedom (3DOF) reduced order model simulated frequency
of shuffle has less than 1% error with respect to vehicle measured frequency

of oscillation.

180



— With the 3DOF reduced order model, the simulation time has decreased
by 2.4 times and the number of states of the model has reduced from 47

to 10.

1 Backlash state estimator

— Due to the backlash non-linearity, the driveline model needs to be divided
into two linear models, one for the contact mode and other for backlash

mode of operation.

— If the angular positions of the lumped inertia (engine, final drive and wheel)
are considered as the states of the system, then using the engine and wheel
speed as measurements, the system is not observable in the contact mode

or the backlash mode.

— The contact mode model is observable with engine and wheel speeds mea-
surements if the twist angles between the inertia are considered as the

states of the system.

— As the driveline is not rigidly connected in the backlash mode, it is not
observable with twist angles as the states of the system. Thus a reduced
order backlash model is developed without the backlash position state and

engine side twist angle. This reduced order backlash model is observable.

— The Kalman filter estimates all the positions in the contact mode, but

only estimates 4 states in the backlash mode. The rest of the states in the
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backlash mode are calculated/predicted using the state equations.
— The FOM developed for this work was used to validate the state estimator.

— Constant delays and CAN jitter delays in the engine and wheel speeds, used
to assess the performance of the backlash state estimator, were derived

from the measured data by the hardware group.

— The error in the estimated engine and wheel speeds is significantly less than
the error in the lash traversal time. This is because the lash traversal time

does not have the measurement based update during backlash traversal.

— The backlash state estimator’s (DSKSE) estimated lash traversal time er-
ror reduces with reduction in the sampling time of the engine speed, wheel
speed and the estimator.

— A delay of 1 step size in the estimation of end of lash traversal is seen for
some of the torque inputs. The effect of this on the percentage error in
lash traversal time changes with the sampling period.

— For a given constant delay in engine speed and wheel speed, the effect of
delay in engine speed is more as compared to that of wheel speed.

— With 10 ms sampling time, the CAN jitter does not cause any delay in the
end of lash traversal because the max delay due to jitter is 5 ms which the

sample data is not be to perceive.

— Sampling time of 5ms is the most sensitive to the effect of CAN jitter in

the engine and the wheel speeds.
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— Sampling time of 1ms is most robust to the effect of CAN jitter in the

engine and the wheel speeds.

1 Backlash size estimator

— The validation of backlash size estimator was done using the FOM plant

model developed for this work.

— Constant delays and CAN jitter based delays in the engine and wheel
speeds, used to assess the performance of the backlash size estimator, were

derived from the measured data by the hardware group.

— The error in lash size estimate is a function of the rate of torque input and
the final value of the torque. This is because, both the rate and final value
of torque input affect the number of data samples available to estimate the

size of the backlash lash during lash traversal.

— As the sampling time of the engine speed, the wheel speed and the esti-
mator decreases the error in size estimate also decreases because of the

increased number of data samples available to estimate the size of the

backlash.

— As the backlash size increases, the error in the lash size estimate also
decreases. This is due to the increased lash traversal time which leads to
increased number of sample data available to the size estimator to converge

to the final value.
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— A maximum error of 8% is observed in the estimated backlash size with
10 ms sampling time for estimator and the engine and wheel speed mea-

surements.

— The measured CAN jitter causes a maximum error in size estimate of 3.5%

for 10 ms sampling time.

5.2 Future Works

Below are some of the future work associated with this project -

T The full order plant model currently has been validated for 5" gear only. Con-
sequently, the reduced order model and the state and size estimators are also
validated for 5" condition. In order to implement the state and size estimator
for vehicle application, it needs to be validated for the rest of the gears as well.
This is because, the engine lumped inertia which contains the inertia of the
transmission and the transmission gear ratio used in the state space model will

change.

T Similarly, the model has been developed for only locked torque converter case.

In case of slipping and open torque converter, the full order model will change
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resulting in changes in the reduced order model and the state and size estima-

tors.

As the sensitivity analysis was done for the full order model in [3], a similar
sensitivity analysis will also required to be done for the state and size estimator
in order to understand the performance of the estimators to incorrect plant

parameters.

The estimator developed in this work have been validated in simulation envi-
ronment, a test rig based validation of the estimator also needs to be done to

understand the performance of the estimator in real vehicle environment.

A control system needs to be developed which can shape the engine commanded

torque such that at the point of impact, the torque can be reduced to reduce

the clunk and shuffle.
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Appendix A

State Estimator Calibration

This section briefly discusses the calibration parameters that have been used to tune
the DSKSE. Refer to Section [3.1.2.4] for more details. The process noise co-variance
and the measurement noise co-variance coefficients that have been used for the DSKSE

are shown below:
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q1

0

q2

0

0 0
0 0
3 0
0
0 0
0 0

where, the values of the coefficients used are:

q1

q2

q3

qa

qs

de

= le—2

= le3

= be—3

= 4e—-3

= le—-1

= le—3

where, the values of the coefficients used are:
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r = 2—95

(A.4)
T2 = 3e—5

From the values of the Q and R shown in the Equation and respectively, it
can be seen that the values of R matrix are smaller in magnitude as compared to the
values of Q. This implies that the speed measurements (engine and wheel speeds)

are trusted more, as compared to the model to estimate the states of the system.

To understand the effect of the individual process noise co-variance matrix coefficients
on the estimate of the backlash position, these coefficients are varied and the results
are shown Figure and Figure [A.2] The observations made from the Figure

and Figure are listed below:

1 Changing the magnitudes of co-variances associated with the engine side twist
angle state (fTe — Otarisar), the final drive speed state (éfdr), and the backlash

position state (6;,) does not significantly affect the backlash position estimate.

1 During the backlash traversal, since there is no load acting on the engine inertia,
the engine side shaft does not twist. As a result of this, changing the value of
the error co-variance associated with respect to engine side twist angle does not

significantly affect the estimated backlash traversal.

1 Since one side of the final drive inertia is connected to the backlash element,
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Backlash Angle (Deg)

(a) Variation with engine side twist angle state
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(b) Variation with engine speed state plant
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Figure A.1: Effect of varying the engine side twist angle state, engine speed
state, and the wheel side twist angle state on the backlash position estimate
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Figure A.2: Effect of varying the final drive speed state, wheel speed state,
and the backlash position state on the backlash position estimate
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the engine side torque does not affect the final drive speed during the backlash
mode. This reduces the effect of changing the magnitude of error co-variance

associated with final drive speed on the estimated backlash position.

Figure (b) shows the variation of backlash position estimate with changing
the engine speed measurement error co-variance. It can be seen that as the
error co-variance increases the deviation of estimated backlash traversal from
the plant backlash traversal increases. This happens because engine speed is
one of the primary source of information for the estimates and increasing its
error co-variance leads to reducing the trust on the engine speed estimate from
the driveline dynamics model. This increases the error in the backlash position

estimate.

Changing the error co-variance associated with the wheel side twist angle does

not have any fixed impact on the estimated backlash position. This can be seen

from Figure (c).

When the error co-variance associated with the wheel speed is increased for a
fixed value of the error co-variance associated the engine speed, it implies that
more trust is given to the engine speed as compared to the previous scenario.
This leads to decreasing the error in deviation of lash traversal with respect to

the plant lash traversal. This can also be seen in Figure (b).
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etrain Modeling for Shuffle and Clunk Mitigation”, SAE International WCX -

2019.
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1. M. Ravichandran, J. Doering, R. Johri, P. Reddy, K. Darokar, D. Robinette and
M. Shahbakhti, ”Introductory description of AJC feature and its performance

evaluation in MHT, Report No. SRR-2019-0024.
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Appendix C

Program and Data File Summary

Tables in this section lists the figures, model files, script files and data files that were

used to generate the results shown in this work.
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C.1

Chapter 1

Table C.1
Chapter 1 figure files

File Name

File description

Fig 1 1.pdf
Fig 1 2.pdf
Fig 1 3.pdf
Fig 1 4.pdf
Fig_1.5.pdf
Fig 1 6.vsdx
Fig_1_7.vsdx
Fig 1 8.vsdx
Fig_ 1.9.vsdx

Fig_1_10.vsdx

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Figure 1.8
Figure 1.9

Figure 1.10
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C.2 Chapter 2

Table C.2
Chapter 2 figure files

File name File description
Fig 2 1.pdf Figure 2.1
Fig 2 2.pdf Figure 2.2
Fig 2 3.vsdx  Figure 2.3
Fig 2 4.fig Figure 2.4
Fig 2.5 fig Figure 2.5
Fig 2 6.fig Figure 2.6
Fig 2 7.jpg Figure 2.7
Fig 2 8. vsdx  Figure 2.8
Fig 2 9.fig Figure 2.9
Fig 2_10.vsdx Figure 2.10
Fig 2 11.fig Figure 2.11
Fig 2 12 fig Figure 2.12
Fig 2 13.fig Figure 2.13
Fig 2 14.vsdx Figure 2.14
Fig 2_15.fig Figure 2.15
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Table C.3
Chapter 2 Simulink® and AMESim® model files

File name File description

2DOF AMESim ROM
model

3DOF lumped backlash
AMESim ROM model

. . 3DOF Split backlash
ROM_cosim_Jul20_3DOF _modified_2backlash.ame AMESim ROM model
Vehicle_Model_trials_mod.ame Full order AMESim model

) Simulink model file to run
AJC_Torque_Shaping TCC_July23 new.slx oIl AMESim models

ROM _cosim_Jul20_2DOF.ame

ROM _cosim_Jul20_3DOF _modified.ame

Table C.4
Chapter 2 data files required to run the Simulink® and AMESim® models

File name File description

AMESim
wheel_slip.data

model data file

AMESim
5th_gear_losses.data

model data file

AMESim
crankshaft_torque_locked_5th_gear_translosses_removed.data

model data file

AMESim
Engine.torque.data

model data file

AMESim
Engine.torque.limits.data

model data file
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Table C.4 continued from previous page

File name

File description

engine_speed_50%load.data

lockedtcc.validation.data.gear.table.data

opentcc.validation.gearshift.data

ROM_cosim_Jul20_3DOF _modified_.data

Torque.converter.data

Torque.converter.kfactor.data

Torque.converter.kfactordaNm.data

Torque.converter.kfactordaNm.lbfconverted.data

Torque.converter.kfactorNm.data

AMESim

model data file

AMESim

model data file

AMESim

model data file

AMESim

model data file

AMESim

model data file

AMESim

model data file

AMESim

model data file

AMESim

model data file

AMESim

model data file
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Table C.4 continued from previous page

File name File description

AMESim
Vehicle_Model_with_tyre_dynamics_2_.data

model data file

Vehicle measured
18-03-07_160337_P552_35_mfarmer5_lockedpressoverride

data Mary Farmer
_400.mat

- locked TCC

C.3 Chapter 3

Table C.5
Chapter 3 figure files

File name File description

Fig 3_1.vsdx  Figure 3.1
Fig 3 2.vsdx  Figure 3.2
Fig_3_3.fig Figure 3.3
Fig_3_4.fig Figure 3.4
Fig_3.5.fig Figure 3.5
Fig_3_6.fig Figure 3.6

Fig 3.7 fig Figure 3.7
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Table C.5 continued from previous page

File name File description
Fig 3 8.fig Figure 3.8
Fig_3.9.fig Figure 3.9
Fig_3_10.fig Figure 3.10
Fig 3. 11.eps  Figure 3.11
Fig 3_12.fig Figure 3.12
Fig_3_13.fig Figure 3.13
Fig 3_14.fig Figure 3.14
Fig 3_15.fig Figure 3.15
Fig 3.16.vsdx Figure 3.16
Fig 3_17 fig Figure 3.17
Fig_3_18.fig Figure 3.18
Fig 3.19.fig Figure 3.19
Fig_3_20.fig Figure 3.20
Fig_321.fig Figure 3.21
Fig 3.22.fig Figure 3.22
Fig_3_23.fig Figure 3.23
Fig 3 24 .fig Figure 3.24
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Table C.6
Chapter 3 Simulink® file for the estimator

File name File description

new_estimator_kalman_inversion.slx State Estimator new

Table C.7
Chapter 3 Matlab® script files

File name File description
new_kalman_filter_script.m Estimator initialization file
Robustness_analysis_plots.m Plot file

Plot file for CAN

wheel _speed_sampling_error_Jons_data.m

jitter wheel speed

Plot file for CAN
data_dist_engine_speed_Jons_data.m

jitter engine speed

Table C.8
Chapter 3 data files required to run Simulink® model

File name File description

Step input
Measured _FOM for_state_estimator_inputs_step400Nm.mat

plant data

Step input
Measured _FOM _for_state_estimator_inputs_step200Nm.mat

plant data

208



Table C.8 continued from previous page

File name File description

Step input
Measured_FOM _for_state_estimator_inputs_step300Nm.mat

plant data

Step input
Measured_FOM _for_state_estimator_inputs_step700Nm.mat

plant data

Step input
Measured _FOM _for_state_estimator_inputs_step600Nm.mat

plant data

Step input
Measured _FOM _for_state_estimator_inputs_stepb00Nm.mat

plant data

Ramp input
Measured _FOM _for_state_estimator_inputs_1000Nm.mat

plant data

Ramp input
Measured _FOM _for_state_estimator_inputs_200Nm.mat

plant data

Ramp input
Measured FOM _for_state_estimator_inputs_300Nm.mat

plant data

Ramp input
Measured _FOM _for_state_estimator_inputs_ 400Nm.mat

plant data

Ramp input
Measured _FOM for_state_estimator_inputs_500Nm.mat

plant data
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Table C.8 continued from previous page

File name File description
Ramp input
Measured _FOM _for_state_estimator_inputs_600Nm.mat
plant data
Ramp input
Measured _FOM _for_state_estimator_inputs_700Nm.mat
plant data
Ramp input
Measured _FOM _for_state_estimator_inputs_800Nm.mat
plant data
Ramp input
Measured _FOM _for_state_estimator_inputs_900Nm.mat
plant data
wheel

r_state_estimator_wheel.mat

jitter data

engine
r_state_estimator.mat

jitter data

State
new_estimator_kalman_inversion.slx

Estimator new

intialization file
new_kalman _filter_script.m

state estimator

Robustness_analysis_plots.m Plot file

wheel _speed_sampling_error_Jons_data.m Plot file
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Table C.8 continued from previous page

File name File description

r_eng_and_wheel_speed_with_dataset_delay_state_estimator.mat Plot file

data_dist_engine_speed_Jons_data.m data can jitter

C.4 Chapter 4

Table C.9
Chapter 4 figure files

File name File description

Fig 4 1.vsdx  Figure 4.1

Fig_ 4.2 fig Figure 4.2
Fig 4 3.fig Figure 4.3
Fig 4 4 fig Figure 4.4
Fig 4.5 fig Figure 4.5
Fig 4 6.fig Figure 4.6
Fig_ 4_7.pdf Figure 4.7
Fig 4 8.fig Figure 4.8
Fig 4.9.fig Figure 4.9
Fig 4 10.pdf  Figure 4.10

211



Table C.9 continued from previous page

File name File description

Fig 4_11.fig Figure 4.11
Fig 4 12.fig Figure 4.12
Fig 4 .13.pdf  Figure 4.13
Fig 4 14 .fig Figure 4.14
Fig 4 15.pdf  Figure 4.15
Fig_ 4_16.fig Figure 4.16
Fig 4 17.pdf  Figure 4.17
Fig 4 18.fig Figure 4.18
Fig 4 19.pdf  Figure 4.19
Fig 4 20.fig Figure 4.20
Fig 4 21.pdf  Figure 4.21
Fig 4 22.vsdx Figure 4.22
Fig 4 23.pdf  Figure 4.23

Fig 4 24 fig Figure 4.25
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Table C.10

Chapter 4 Simulink® estimator files

File name

File description

Onlysizeestimator _Amesim_inputs_discrete_thesis_correction.slx

Size Estimator

simulink file

Table C.11

Chapter 4 Matlab® script file

File name

File description

Size estimator
ROM _based _size_estimator_discrete_thesis_correction.m

initialization file

Table C.12
Chapter 4 data files

File name

File description

Size_est_uni.mat
size_est_input_step_minus20to60Nm_1backlash.mat
size_est_input_step_minus20to60Nm_2backlash.mat
size_est_input_step_minus20to60Nm_3backlash.mat
size_est_input_step_minus20to100Nm_1backlash.mat
size_est_input_step_minus20to100Nm_2backlash.mat

size_est_input_step_minus20to100Nm_3backlash.mat

Data files

Data files

Data files

Data files

Data files

Data files

Data files
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Table C.12 continued from previous page

File name

File description

size_est_input_step_minus20to150Nm_1backlash.mat
size_est_input_step_minus20to150Nm_2backlash.mat
size_est_input_step_minus20to150Nm _3backlash.mat
size_est_inputs_lbasebacklash_minus20to60Nm.mat
size_est_inputs_lbasebacklash_minus20to60Nm_variable.mat
size_est_inputs_lbasebacklash_minus20to100Nm.mat
size_est_inputs_lbasebacklash_minus20to150Nm.mat
size_est_inputs_lbasebacklash_minus20to150Nm _variable.mat
size_est_inputs_2basebacklash_minus20to60Nm.mat
size_est_inputs_2basebacklash_minus20to60Nm_variable.mat
size_est_inputs_2basebacklash_minus20to100Nm.mat
size_est_inputs_2basebacklash_minus20to150Nm.mat
size_est_inputs_2basebacklash_minus20to150Nm_variable.mat
size_est_inputs_3basebacklash_minus20to60Nm.mat
size_est_inputs_3basebacklash_minus20to60Nm_variable.mat
size_est_inputs_3basebacklash_minus20to100Nm.mat
size_est_inputs_3basebacklash_minus20to150Nm.mat

size_est_inputs_3basebacklash_minus20to150Nm_variable.mat

Data files

Data files

Data files

Data files

Data files

Data files

Data files

Data files

Data files

Data files

Data files

Data files

Data files

Data files

Data files

Data files

Data files

Data files
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Table C.12 continued from previous page

File name File description
Size_est_nor.mat Data files
size_est_random _profile_1backlash.mat Data files
size_est_random_profile_2backlash.mat Data files
size_est_random_profile_3backlash.mat Data files
r_size_estimator.mat Data files
r_size_estimator_wheel.mat Data files

C.5 Appendix A

Table C.13
Appendix A figure files

File name File description

Fig A 1.fig Figure A.1

Fig A 2.fig Figure A.2

215



	Contents
	List of Figures
	List of Tables
	Acknowledgments
	Nomenclature
	List of Abbreviations
	Abstract
	Introduction
	Motivation
	Technical terms used in this work
	Literature review
	Research scope and thesis organization

	Control Oriented Driveline Model Development and Validation
	Full order model (FOM)
	Overview of Full order model
	Assumptions of full-order model
	Validation of full order model
	Vehicle measurements
	Model validation results with baseline parameters
	Full order plant model with modified parameters


	Reduced order model
	ROM I - 2DOF
	Model development
	Model Validation

	ROM II - 3DOF lumped backlash
	Model development
	Model Validation

	Assessment of model order reduction


	Backlash State Estimator
	Model development
	State Space models
	State Space Model I
	State Space model II

	Estimator design
	Kalman estimator
	Backlash mode - Prediction and estimation updates
	DSKSE Transition conditions
	Process noise and Measurement noise co-variance matrices


	Discrete Switched Kalman State Estimator - Validation
	Robustness analysis - DSKSE
	Robustness to varying step torque inputs
	Robustness to varying torque ramp rates
	Robustness to constant measurement delay
	Effect of constant delay in engine speed
	Effect of constant delay in wheel speed

	Effect of combined delay in engine and wheel speed
	Effect of CAN jitter in engine and wheel speed measurements
	Effect of sampling time

	Sensitivity analysis for DSKSE
	Sensitivity to varying estimator model parameters
	Sensitivity to different operating gear


	Backlash Size Estimator
	Estimator model development
	P for size estimator
	Kalman backlash size estimator
	TKBSE outputs
	Modified backlash size estimate for TKBSE

	Validation of TKBSE
	Robustness analysis of TKBSE
	Robustness to varying step torque inputs
	Robustness to varying torque ramp rates
	Robustness to torque inputs with varying duty cycle and pulse width
	Robustness to variable torque input profile
	Robustness to constant delay in engine speed
	Robustness to constant wheel speed delay
	Robustness to combined constant engine and wheel speed delays
	Robustness to CAN jitter in engine and wheel speeds
	Robustness to sampling time


	Conclusion and Future Work
	Conclusions
	Future Works

	References
	State Estimator Calibration
	Publications from this thesis
	Conference Paper
	Published Conference Paper

	Ford Internal Publication

	Program and Data File Summary
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Appendix A


