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Abstract: Despite the importance of maternal gestational weight gain, it is not yet conclusively
understood how weight gain during different stages of pregnancy influences health outcomes for
either mother or child. We partially attribute this to differences in and the validity of statistical
methods for the analysis of longitudinal and scalar outcome data. In this paper, we propose a
Bayesian joint regression model that estimates and uses trajectory parameters as predictors of a
scalar response. Our model remedies notable issues with traditional linear regression approaches
found in the clinical literature. In particular, our methodology accommodates nonprospective designs
by correcting for bias in self-reported prestudy measures; truly accommodates sparse longitudinal
observations and short-term variation without data aggregation or precomputation; and is more
robust to the choice of model changepoints. We demonstrate these advantages through a real-world
application to the Alberta Pregnancy Outcomes and Nutrition (APrON) dataset and a comparison
to a linear regression approach from the clinical literature. Our methods extend naturally to other
maternal and infant outcomes as well as to areas of research that employ similarly structured data.

Keywords: Bayesian modeling; functional regression; gestational weight; infant birth weight; joint
modeling; longitudinal data; maternal weight gain

1. Introduction

Maternal weight gain supports fetal growth and holds important health implications
for both mother and child during and after pregnancy [1–3]. Insufficient weight gain
is associated with preterm birth and low infant birth weight, while excessive weight
gain is linked to postpartum weight retention, gestational diabetes, hypertension, infant
macrosomia, and other complications [3–5]. A growing amount of clinical literature further
implicates maternal gestational weight gain outside of recommendations in adverse, long-
term health outcomes for the child, including a heightened future risk of cardiovascular
disease [6,7].

It is not yet conclusively understood how weight gain in different stages of pregnancy
affects health outcomes for either mother or child. This is despite previous findings that
gestational weight trajectories are similar across human populations with varying genetic,
cultural, and lifestyle traits [8]. As an example central to this article, previous studies
present conflicting conclusions on the effect of first- and second-trimester weight gain on
infant birth weight [8–12]. We attribute this in part to differences in and the validity of
the statistical methods currently used to jointly analyze scalar outcomes and longitudinal
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data. Thus, developments in methodology for analyzing how patterns in longitudinal data
(e.g., gestational weight gain) influence scalar outcomes (e.g., infant birth weight) are both
statistically and clinically relevant.

Retnakaran et al. [13] investigates the relationship between infant birth weight and
gestational weight gain in different periods of pregnancy using traditional linear regression.
The work’s models include, as predictors, demographic covariates together with pregravid
weight and interval-specific average weight gain. The authors opt for clinical data in order
to avoid bias in self-reported pregravid measurements that they claim is prevalent in other
studies [5,12]. The resulting preconception study design presents a few practical problems:
this design is more difficult to implement, limits the use of secondary data, and can intro-
duce other sampling biases and restrict model generalizability (e.g., through the exclusion
of unplanned pregnancies). Despite the supposed benefit of bias reduction, the work’s
average weight gain measurements are precomputed (as differences in average weight
between gestational intervals) and may be highly variable due to clinical measurement
error and the small number of observations in each gestational interval. As Richardson
notes, ignoring this measurement error can lead to unreliable effect estimates and mislead-
ing conclusions [14]. This linear regression approach furthermore does not account for
gestational age at each weight measurement and, through its initial precomputing stage,
reduces the amount of data used to fit the model. The consequent coarsening of information
may contribute to unreliable effect estimates and conclusions.

To address these issues, we turn to other approaches for modeling longitudinal data.
Joint models that simultaneously consider longitudinal responses and scalar health out-
comes are well established in the statistical literature [15–22]. These models were originally
motivated by HIV/AIDS and cancer research to predict patient outcomes using a time-
dependent covariate trajectory. Relevant methodology has since evolved to incorporate
techniques from functional data analysis, semiparametric inference, robust estimation,
and Bayesian methods [23].

In this paper, we consider a joint model for infant birth weight and gestational weight
gain trajectories that also incorporates clinical covariates. Our approach efficiently uses
information from estimated mean weight trajectories—including estimated pregravid
weight, interval-specific rates of weight gain, and individual residual variance—to predict
infant birth weight. As a result, our model can correct for bias in self-reported weight
measurements (when combined with clinical observations) and permits nonprospective
study designs with unbalanced longitudinal observations.

We employ the Bayesian joint modeling approach of Jiang et al. [23]. Our model
uses parameter estimates that describe individual gestational weight trajectories to model
the association between infant birth weight and gestational weight gain. We model the
mean [24,25] and measurement error [26,27] of these trajectories using a robust, semipara-
metric mixed effects model and a Bayesian linear spline approach [23].

Our joint model remedies the issues noted above for linear regression [13]. First,
by using estimated mean trajectory parameters as predictors of infant birth weight, our ap-
proach obtains more-efficient estimates of the time-dependent effects of gestational weight
gain. More generally, our joint modeling method, implemented in a Bayesian framework,
borrows information from all observations and patients in a one-stage procedure. On the
other hand, the predictors in the traditional linear model, such as interval-specific weight
gain, are precomputed in an initial step independently for each patient using only a small
proportion of the available data at a time. Second, our approach truly accommodates longi-
tudinal data by explicitly accounting for gestational age at each weight measurement when
estimating weight gain trajectories. Third, unlike other studies that treat within-patient
residual variance as a nuisance parameter, our method models measurement error variance
and uses it as a random effect to predict infant birth weight.

Our approach to mean trajectory modeling mitigates bias in self-reported prestudy
measurements and accounts for variability inherent in observed data. These are notable
advantages over traditional methods such as the linear regression approach above, where
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the amalgamation of data from different sources can negatively impact an analysis. Another
advantage of the proposed model is its potential to be used for prediction and intervention:
our model can be applied to predict infant birth weight well before term and can thus be
conveniently deployed in clinical settings. More generally, while infant birth weight is the
primary focus of the present paper, our approach and discussions apply to other maternal
and infant outcomes and to other areas of research that employ similarly structured data.

In Section 2, we introduce the pregnancy outcomes dataset used in this article and
the proposed model. This section also presents our chosen prior distributions and com-
putational methods. We present estimates for the effect of time-specific maternal weight
gain on infant birth weight obtained under the proposed model in Section 3, and compare
these estimates to those obtained using the linear regression approach described above [13].
In Section 4, we discuss our results and provide some concluding remarks on the general
significance of our approach and future directions.

2. Materials and Methods
2.1. Data

Throughout this paper, we use data from the 2009–2012 Alberta Pregnancy Outcomes
and Nutrition (APrON) study [28]. The 2189 women in the APrON study, all of whom
were at least 16 years of age and at most 27 weeks into gestation, are part of a longitudinal
cohort [28,29]. As part of the APrON study, maternal weight and gestational age were
measured at each trimester following registration. Participants recruited before 13 weeks
gestation have measurements corresponding to all three trimesters, while those recruited
between 14 and 27 weeks gestation have measurements only for the second and third
trimesters. Pregravid weight, along with other demographic characteristics, were self-
reported by each participant upon recruitment. Gestational age at delivery was assessed
postpartum. In addition to the APrON data, clinical weight measurements were collected
from all participants at regularly scheduled prenatal visits. The number of weight measure-
ments for each participant varies due to missing appointments or data. The longitudinal
weight data in this study may be considered sparse and has been previously examined in
the functional data analysis literature [30].

We only include participants with a live, singleton birth in the following analyses. We
exclude individuals without a reported pregravid weight; those with less than three weight
measurements during pregnancy; and those with missing gestational age at delivery, infant
birth weight, marital status, education level, income level, ethnic origin, parity, or age. We
do not consider any postpartum weight measurements in our analyses.

The final analytic sample consists of n = 1340 participants with N = 15,183 weight
observations. Demographic characteristics for this sample, stratified by infant birth weight
class, are summarized in Table 1. We use <2.5 kg, ≥2.5 kg and <4 kg, and ≥4 kg as
criteria defining low, normal, and high infant birth weight classes [31]. Clinical weight
measurements (i.e., not including self-reported pregravid measurements) were taken at
gestational ages ranging from 4.4 to 41.7 weeks, with a median of 30.3 weeks. Participants
have a median of 12 recorded weight measurements each.
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Table 1. Summary of demographic covariates for the analytic sample in the APrON dataset. For cate-
gorical variables, counts and relative percentages are reported. A * indicates the chosen reference
category. For continuous variables, means (and standard deviations, in parentheses) are reported.

Infant Birth Weight Class
Low (<2.5 kg) Normal (≥2.5 and <4 kg) High (≥4 kg)

Mother characteristics
Participants 56 (4.18%) 1163 (86.79%) 121 (9.03%)

Age, years 32.66 (4.76) 31.33 (4.27) 31.91 (4.03)

Marital status
Married * 55 (98.21%) 1122 (96.47%) 118 (97.52%)

Single 1 (1.79%) 41(3.53%) 3 (2.48%)

Education
Graduate degree 11 (19.64%) 273 (23.47%) 27 (22.31%)

Some post-secondary * 37 (66.07%) 775 (66.64%) 83 (68.60%)
High school 8 (14.29%) 115 (9.89%) 11 (9.09%)

Income level
<70 k 11 (19.64%) 234 (20.12%) 19 (15.70%)
≥70 k * 45 (80.36%) 929 (79.88%) 102 (84.30%)

Ethnic origin
Asian 8 (14.29%) 77 (6.62%) 0 (0.00%)
Black 4 (7.14%) 11 (0.95%) 0 (0.00%)

Caucasian * 37 (66.07%) 956 (82.20%) 114 (94.22%)
Latin American 1 (1.79%) 38 (3.27%) 3 (2.48%)
Southeast Asian 4 (7.14%) 53 (4.56%) 2 (1.65%)

Other 2 (3.57%) 28 (2.41%) 2 (1.65%)

Parity
0 * 35 (62.50%) 667 (57.35%) 48 (39.67%)

1 18 (32.14%) 387 (33.28%) 52 (42.98%)
≥2 3 (5.46%) 109 (9.37%) 21 (17.36%)

Child characteristics
Birth weight, kg 2.23 (0.34) 3.33 (0.35) 4.25 (0.21)

Gestational age at delivery, weeks 36.01 (2.57) 39.51 (1.27) 40.20 (1.02)

2.2. Joint Model

We now present our joint model for infant birth weight and longitudinal gestational
weight gain. As a main feature, the model estimates the former using parameter estimates
from patient-specific maternal weight trajectories:

Yi | bbbi = (1, zzz>i , bbb>i , ln σ2
i )θθθ + εi

εi
i.i.d.∼ N(0, σ2)

for i = 1, . . . , n, where Yi denotes an observed infant birth weight; zzzi an observed demo-
graphic covariate vector; bbbi a vector of random weight trajectory parameters; and σ2

i the
trajectory’s residual variance for the ith patient. The vector θθθ contains the corresponding
fixed and random effects.

Individual longitudinal weight trajectories influence Yi through the random trajectory
parameters bbbi in the longitudinal submodel

Xij = f (tij; bbbi) + εij

εij
i.i.d.∼ N(0, σ2

i )

bbbi
i.i.d.∼ N(βββ, Σ)
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for j = 1, . . . , ni, where Xij is the observed weight of the ith patient at gestational age tij
and ni is the total number of longitudinal observations for the ith patient. We consider a
piecewise linear weight trajectory (as a function of gestational age t ≥ 0) [32]

f (t; bbb = (b0, b1, . . . , bK)
>) = b0 +

K

∑
k=1

bk(t− t∗k )+,

where x+ = max{0, x} for x ∈ R and (t∗1 = 0, . . . .t∗K, t∗K+1 = ∞) is a fixed, increasing
sequence of changepoint locations. Consequently, b0 is the mean pregravid weight and
∑k0

k=1 bk is the mean rate of weight gain in the gestational age interval [t∗k0
, t∗k0+1), for k0 =

1, . . . , K. Following common trimester boundaries [13], we take K = 8 with t∗2 = 13, t∗3 = 18,
t∗4 = 23, t∗5 = 27, t∗6 = 32, t∗7 = 37, and t∗8 = 45.

Under the proposed model, βββ describes an average, “prototype” trajectory, while the
random bbbis describe patient-specific trajectories and deviations from βββ. Our longitudinal
model accounts for short-term variation and measurement error in patient trajectories by
using ln σ2

i as a predictor of Yi.

2.3. Bayesian Framework and Model Estimation

We take a Bayesian approach to parameter estimation in the proposed model.

In the longitudinal submodel, we model random trajectory parameters as bbbi
i.i.d.∼

N(βββ, Σ) under the diffuse prior βββ ∼ N(0, 10I). Additional tests, not presented here, indicate
no need to consider a Gaussian mixture [23] in the distribution of the bbbis for our APrON
dataset. To avoid issues with unbounded likelihood [33] when using an unstructured
random effect covariance matrix Σ, we implement the empirical Bayes Wishart prior [34]

Σ ∼ W
(

m = 2 +
K + 1

2
, Λ =

n

∑
i=1

Ĉov(b̂bb
(OLS)
i )−1

)
,

where Ĉov(b̂bb
(OLS)
i ) is an estimate of the covariance matrix of the ordinary least squares

(OLS) estimator of bbbi. For the σ2
i s, the trajectory residual variances, we assume a log-

normal prior ln σ2
i

i.i.d.∼ N(µ, τ2) under the diffuse hyperpriors µ ∼ N(0, 103) and τ2 ∼
Inv-Gamma(10−4, 10−4). For the scalar response Yi, we take θθθ ∼ N(000, 10I) and σ2 ∼
Inv-Gamma(10−4, 10−4).

For notational simplicity, let ϕϕϕ = {θθθ, σ2, βββ, Σ, µ, τ2} be the collection of model parame-
ters. We assume that all elements of ϕϕϕ have independent prior distributions and denote the
joint prior of ϕϕϕ by π. Define η

µ
i = (1, zzz>i , bbb>i , ln σ2

i )θθθ as the linear predictor corresponding
to Yi.

The full likelihood of ϕϕϕ for our model is

L(ϕϕϕ) = π(ϕϕϕ)
n

∏
i=1

[
|Σ|−0.5 exp

{
− 0.5(bbbi − βββ)>Σ−1(bbbi − βββ)

}
×

ni

∏
j=1

[
σ−1

i exp
{
− 0.5σ−2

i (xij − f (tij; bbbi))
2}]

× τ−1 exp
{
− 0.5τ−2(ln σ2

i − µ)2}
× σ−1 exp

{
− 0.5σ−2(yi − η

µ
i )

2}].
We implement a Gibbs sampler to perform posterior draws. For analytic derivations of

the posterior distributions, see Jiang et al. [23]. As the full conditional posterior of σ2
i has no

closed form, we obtain draws using the inverse cumulative distribution function method.
In our Markov Chain Monte Carlo (MCMC) procedure, we run a chain of 150,000 iterations
and use the first 50,000 iterations as a burn-in period; however, in this particular application,
we observe that the model converges very quickly and that even 10,000 total iterations
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are sufficient. To reduce autocorrelation in subsequent draws, we thin posterior draws by
saving only every 10th. We implement our model in C++ using the Scythe open-source
statistical library [35] and R [36].

We consider two models, each accounting for a different set of demographic covariates.
The first model (JM1) includes education level, income level, ethnic origin, parity, age
at pregnancy, and gestational age at delivery. The second model (JM2) includes only
demographic variables whose 95% credible interval in JM1 do not contain zero.

2.4. Comparison to Linear Regression

We compare our proposed method against the previously noted traditional linear
regression (LR) approach. We focus specifically on differences in the effects of maternal
weight gain rate in different gestational age periods on infant birth weight. To make this
comparison easier, we use the rate of weight gain in each gestational period (rather than
period-specific absolute weight gain) as a predictor of infant birth weight Yi.

We use the same gestational age intervals in both models: [0, 13), [13, 18), [18, 23),
[23, 27), [27, 32), [32, 37), and [32, 45). To compute the average rate of weight gain b̃k in the
kth interval, we first calculate the averages, µk and µk−1, of weight measurements taken in
the kth and (k− 1)th intervals, respectively. We then calculate the rate of weight gain as
b̃k = (µk − µk−1)/(mk −mk−1), where mk is the midpoint of the kth gestational age interval.
For the sake of notation, we let k = 0 refer to pregravid measurements (i.e., at week zero).

As noted previously, our joint model addresses numerous shortcomings of the LR
approach. First, the LR model does not fully take into account the timing of individual
maternal weight measurements, while our JM approach estimates patient-specific weight
trajectories as functions of time. Second, LR model estimates are subject to short-term
measurement error and variability: this is because only a small number of measurements
contribute to pregravid weight and the estimated rates of weight gain. Our hierarchical
Bayesian framework borrows information from all observations to estimate these quantities
via patient-specific trajectory parameters. As another feature that may be clinically relevant
in some applications, our model also estimates and uses short-term variability in maternal
weight as another predictor.

We similarly consider two linear regression models in the following analyses. The first
(LR1) uses estimated rates of weight gain (i.e., the b̃ks), average pregravid weight b̃0 = µ0,
and the same demographic variables as JM1. Similar to JM2, the second model (LR2)
includes only the demographic covariates whose 95% confidence intervals in LR1 do not
contain zero.

3. Results and Discussion

Table 2 presents parameter estimates for all four of the models described in the
previous section. Model convergence for the joint models were assessed visually and
numerically using five parallel chains. Trace plots for each of the coefficients in Table 2
suggest adequate convergence and mixing. Numerically, Rubin–Gelman statistics [37] for
these coefficients range from 1.005 to 1.027 and also imply model convergence.

We observe major differences in the estimated effects of weight gain between the LR
and JM approaches. Both LR models find rate of weight gain to be a useful predictor of
infant birth weight only after 18 weeks gestation. On the other hand, the JM models find
this to be true throughout gestation, including before 18 weeks.
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Table 2. Parameter estimates obtained using the LR and the proposed JM models, with 95% confidence
and credible intervals, respectively. For JM model interpretability, we present estimates for ∑k

j=1 bj

(rather than for just bk), which can be interpreted as the effect of weight gain rate in the kth gestational
interval. Boldface indicates an estimate whose corresponding credible (or confidence) interval does
not contain zero.

Model
JM1 JM2 LR1 LR2

Demographic variables
Marital status

Single 0.151
(−0.161, 0.467)

0.277
(0.001, 0.553)

Education

Graduate 0.016
(−0.115, 0.146)

0.059
(−0.058, 0.175)

High school −0.034
(−0.222, 0.152)

−0.114
(−0.340, 0.112)

Income level

<70 k −0.039
(−0.193, 0.114)

−0.137
(−0.291, 0.016)

Ethnic origin

Asian −0.038
(−0.264, 0.183)

−0.025
(−0.227, 0.177)

Black −0.322
(−0.856, 0.208)

0.056
(−0.805, 0.917)

Latin American −0.038
(−0.356, 0.272)

−0.144
(−0.419, 0.131)

Southeast Asian −0.098
(−0.369, 0.178)

−0.139
(−0.396, 0.118)

Other −0.09
(−0.445, 0.269)

0.348
(0.027, 0.670)

Parity

1 0.147
(0.028, 0.269)

0.136
(0.020, 0.254)

0.137
(0.017, 0.258)

0.121
(0.005, 0.238)

≥2 0.246
(0.052, 0.444)

0.215
(0.032, 0.400)

0.384
(0.206, 0.561)

0.331
(0.159, 0.503)

Age at pregnancy −0.013
(−0.073, 0.047)

−0.025
(−0.082, 0.032)

Gestational age at delivery 0.162
(0.127, 0.197)

0.166
(0.130, 0.200)

0.092
(0.039, 0.145)

0.103
(0.051, 0.155)

Pre-pregnancy weight

Clinical measure 0.006
(0.002, 0.011)

0.006
(0.002, 0.011)

Trajectory estimate (b̂0) 0.007
(0.003, 0.012)

0.007
(0.003, 0.012)

Trajectory estimator variance
(ln Σ̂11)

0.162
(0.127, 0.197)

0.003
(−0.063, 0.066)

Rate of weight gain (by GA interval)

[0, 13) 0.701
(0.264, 1.138)

0.718
(0.300, 1.153)

0.061
(−0.186, 0.307)

0.085
(−0.157, 0.327)

[13, 18) 1.256
(0.527, 1.972)

1.291
(0.581, 2.014)

0.076
(−0.186, 0.333)

0.123
(−0.129, 0.375)

[28, 23) 1.703
(0.697, 2.708)

1.758
(0.780, 2.728)

0.201
(0.032, 0.371)

0.200
(0.034, 0.365)

[23, 27) 1.929
(0.665, 3.183)

1.997
(0.754, 3.219)

0.191
(0.026, 0.356)

0.193
(0.031, 0.356)

[27, 32) 2.010
(0.490, 3.525)

2.082
(0.613, 3.538)

0.270
(0.102, 0.437)

0.223
(0.06, 0.385)

[32, 37) 2.009
(0.390, 3.673)

2.086
(0.455, 3.662)

−0.277
(−0.507, −0.048)

−0.285
(−0.513, −0.056)

[37, 45) 2.027
(0.330, 3.720)

2.108
(0.439, 3.729)

0.277
(0.002, 0.551)

0.304
(0.033, 0.574)
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Further, we note a difference in the direction of the estimated effect of weight gain
during weeks 32–37 between the JM and LR models. Our JM approach estimates this
effect to be positive, while the LM model estimates a negative effect. Given the positive
estimates for other gestational intervals and the positive estimate originally reported in
Retnakaran et al. [13], we suspect that the LR model is inaccurate here. As discussed
previously, this could be attributed to the loss of time information or the precomputation
of average weight gain measurements. These results illustrate how the LR approach
might not yield reliable conclusions, even with relatively large datasets. Towards the
end of this section, we also discuss the sensitivity of the LR approach to the choice of
gestational intervals.

Other differences in the effect of rate of weight gain are less drastic but important
nonetheless. In general, effect estimates in the LR models (relative to those in the JM
models) are shrunk towards zero. We attribute this shrinkage to attenuation bias in the LR
models due to self-reporting bias (in pregravid measurements) and the LR models’ inability
to account for short-term variation in the weight trajectories. As discussed previously, this
can be due to the small number of observations used to compute each patient’s pregravid
weight (b̃0) and interval-specific rates of weight gain (the b̃ks).

Figure 1 illustrates the importance of accounting for deviation in patient-level tra-
jectories (described by the bbbis) from the prototype trajectory (described by βββ) in our JM
approach. While an overall trend in individual fitted trajectories is apparent, we see
significant amounts of variation in gestational weight gain trajectories between patients.
Figure 2 illustrates our proposed model’s ability to accommodate individual longitudinal
trajectories even in the presence of between-patient variability.

In a separate analysis not shown in Table 2, we consider a different set of gestational
intervals (i.e., the sequence of t∗k s): [0, 15), [15, 20), [20, 25), [25, 30), [30, 35), and [35, 45),
this time chosen out of convenience. The JM models yield similar conclusions with these
different intervals while the LR models find weight gain during only 20–30 weeks gestation
to be associated with infant birth weight. This demonstrates that the LR model is not robust
with respect to the precomputation of interval-specific weight gain measurements and,
as above, calls into question the validity of this approach.
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Figure 1. Posterior mean estimates from the proposed JM1 model for the mean weight gain trajectory
βββ (solid blue) and twenty randomly selected individual trajectories bbbi (solid grey), both as functions
of gestational age (GA). The light blue and grey regions describe 95% credible bands for βββ and bbbi,
respectively. Dotted grey lines indicate model changepoints (i.e., at GA = t∗k ).
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Figure 2. Eight randomly selected estimates of individual trajectories bbbi from the JM1 model as
functions of gestational age (GA) (solid grey) and corresponding observed weights Xij. Observed
weights from the eight patients are denoted by 1, 2, . . . , 8. Light grey regions denote 95% credible
bands for Xij (each for a fixed i). Dotted grey lines indicate model changepoints (i.e., at GA = t∗k ).

4. Conclusions

In this paper, we provided a hierarchical Bayesian model for the joint analysis of
scalar and longitudinal data based on Jiang et al. [23]. Our work was motivated by a
question in maternal health research on the relationship between (scalar) infant birth
weight and (longitudinal) gestational weight gain during different periods of pregnancy.
We contrasted our joint modeling approach with one using traditional linear regression
that has appeared in the clinical literature [13] and is reminiscent of analyses commonly
seen in applied research.

This comparative LR approach was originally proposed for a preconception cohort
study to eliminate self-reporting bias in pregravid measurements [13]. However, in addition
to the design’s inconvenience, this approach does not fully account for gestational age or
clinical measurement error and uses only a small number of observations to pre-estimate
(i.e., in an initial stage separate from model estimation) weight gain in each gestational
period. This results in high-variance model estimates that are not robust to the choice of
gestational intervals. In contrast, through a one-stage, hierarchical Bayesian framework,
our JM approach accounts for gestational age and short-term variability in longitudinal
measurements, and borrows information from all observations to reduce bias and obtain
more-reliable estimates.

The benefits of our model over the LR approach are apparent in our real-world study
using the APrON pregnancy outcomes dataset. Beyond the LR model’s questionable
negative estimated association between infant birth weight and maternal weight gain for
32–37 weeks gestation, we observed relative shrinkage in LR effect estimates towards zero.
This illustrates the unreliability of the LR methodology and the impact of attenuation bias
on effect estimates. On the other hand, our JM approach produced estimates that were
reasonable and stable, even when considering different gestational periods.

We have demonstrated the usefulness of our joint modeling approach in settings with
continuous scalar and longitudinal responses. Our approach extends naturally to other
submodels and data types such as ordinal health outcomes (e.g., through an appropriate
(cumulative) probit or logit link function at the response level of the model) [23]. While
our focus in this paper was on comparing the JM and LR approaches, the proposed model
can be further optimized for predictive purposes. Our developments hold immediate
implications for clinical interventions, such as the early identification of pregnant women



Entropy 2022, 24, 232 10 of 11

at risk of birth complications (e.g., extreme infant birth weight or other outcomes, whether
scalar or ordinal) using self-reported prepregnancy data or sparse clinical observations.
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