
Damped Anderson Mixing for Deep Reinforcement
Learning: Acceleration, Convergence, and

Stabilization

Ke Sun∗1, Yafei Wang∗1, Yi Liu1, Yingnan Zhao1,2, Bo Pan1, Shangling Jui3,
Bei Jiang1, Linglong Kong1†

1University of Alberta, Edmonton, Canada
2Harbin Institute of Technology, Harbin, China

3Huawei Technologies Ltd.
{ksun6,yafei2,yliu16,yingnan6,pan1,bei1,lkong}@ublberta.ca

jui.shangling@huawei.com

Abstract

Anderson mixing has been heuristically applied to reinforcement learning (RL)
algorithms for accelerating convergence and improving the sampling efficiency
of deep RL. Despite its heuristic improvement of convergence, a rigorous mathe-
matical justification for the benefits of Anderson mixing in RL has not yet been
put forward. In this paper, we provide deeper insights into a class of acceleration
schemes built on Anderson mixing that improve the convergence of deep RL al-
gorithms. Our main results establish a connection between Anderson mixing and
quasi-Newton methods and prove that Anderson mixing increases the convergence
radius of policy iteration schemes by an extra contraction factor. The key focus of
the analysis roots in the fixed-point iteration nature of RL. We further propose a
stabilization strategy by introducing a stable regularization term in Anderson mix-
ing and a differentiable, non-expansive MellowMax operator that can allow both
faster convergence and more stable behavior. Extensive experiments demonstrate
that our proposed method enhances the convergence, stability, and performance of
RL algorithms.

1 Introduction

In reinforcement learning (RL) [1], an agent seeks an optimal policy in a sequential decision-making
process. Deep RL has recently achieved significant improvements in a variety of challenging tasks,
including game playing [2, 3, 4] and robust navigation [5]. A flurry of state-of-the-art algorithms have
been proposed, including Deep Q-Learning (DQN) [2] and variants such as Double-DQN [6], Dueling-
DQN [7], Deep Deterministic Policy Gradient (DDPG) [8], Soft Actor-Critic [9] and distributional
RL algorithms [10, 11, 12], all of which have successfully solved end-to-end decision-making
problems such as playing Atari games. However, the slow convergence and sample inefficiency of
RL algorithms still hinders the progress of RL research, particularly in high-dimensional state spaces
where deep neural network are used as function approximators, making learning in real physical
worlds impractical.

To address these issues, various acceleration strategies have been proposed, including the classical
Gauss-Seidel Value Iteration [13] and Jacobi Value Iteration [14]. Another popular branch of

∗Equal contributions in alphabetical order
†Corresponding author

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

ar
X

iv
:2

11
0.

08
89

6v
2

 [
cs

.L
G

]
 2

0
O

ct
 2

02
1

techniques accelerates RL by leveraging historical data. Interpolation methods such as Average-
DQN [15] have been widely used in first-order optimization problems [16] and have been proven
to converge faster than vanilla gradient methods. As an effective multi-step interpolation method,
Anderson mixing [17, 18], also known as Anderson acceleration, has attracted great attention from RL
researchers. The insight underpinning of Anderson acceleration is that RL [1] is intrinsically linked to
fixed-point iterations: the optimal value function is the fixed point of the Bellman optimality operator.
These fixed-points are computed recursively by repeatedly applying an operator of interest [19].
Anderson mixing is a general method to accelerate fixed-point iterations [17] and has been successfully
applied to fields, such as the computational chemistry [20] or electronic structure computation [21]. In
particular, Anderson acceleration leverages the m previous estimates in order to find a better estimate
in a fixed-point iteration. To compute the mixing coefficients in Anderson iteration, it searches for a
point with a minimal residual within the subspace spanned by these estimates. It is thus natural to
explore the efficacy of Anderson acceleration in RL settings.

Several works [22, 23] have attempted to apply Anderson acceleration to reinforcement learning.
Anderson mixing was first applied to value iteration in [19, 22] and resulted in significant conver-
gence improvements. Regularized Anderson acceleration [23] was recently proposed to further
accelerate convergence and enhance the final performance of state-of-the-art RL algorithms in various
experiments. However, previous applications of Anderson acceleration were typically heuristic: con-
sequently, these empirical improvements in convergence have so far lacked a rigorous mathematical
justification.

In this paper, we provide deeper insights into Anderson acceleration in reinforcement learning by
establishing its connection with quasi-Newton methods for policy iteration and improved conver-
gence guarantees under the assumptions that the Bellman operator is differential and non-expansive.
MellowMax operator is adopted to replace the max operator in policy iteration to simultaneously
guarantee faster convergence of value function and reduce the estimated gradient variance to yield sta-
bilization. In addition, we analyze the stability properties of Anderson acceleration in policy iteration
and propose a stable regularization to further enhance the stability. These key two factors, i.e., the
stable regularization and the theoretically-inspired MellowMax operator, are the basis for our Stable
Anderson Acceleration (Stable AA) method. Finally, our experimental results on various Atari games
demonstrate that our Stable AA method enjoys faster convergence and achieves better performance
relative to existing Anderson acceleration baselines. Our work provides a unified analytic framework
that illuminates Anderson acceleration for reinforcement learning algorithms from the perspectives
of acceleration, convergence, and stabilization.

2 Acceleration and Convergence Analysis of Anderson Acceleration on RL

We first present the notion of Anderson acceleration in the reinforcement learning and then provide
deeper insights into the acceleration if affords by establishing a connection with quasi-Newton
methods. Finally, a theoretical convergence analysis is provided to demonstrate that Anderson
acceleration can increase the convergence radius of policy iteration by an extra contraction factor.

Background Consider a Markov decision process (MDP) specified by the tuple (S,A, R, p, γ),
where S is a set of the states and A is a set of actions. The functions R : S × A → R and
p : S × A × S → [0, 1] are the reward function, with Rt = R(s, a), and transition dynamics
function, respectively for the MDP. The discount rate is denoted by γ ∈ [0, 1) and determines
the relative importance of immediate rewards relative to rewards received in the future. The Q-
value function evaluates the expected return starting from a given state-action pair (s, a), that is,
Qπ(s, a) = E [

∑∞
t=0 γ

tRt+1 | s0 = s, a0 = a]. A policy π(a|s) is a distribution mapping the state
space S to the action space A.

2.1 Anderson Acceleration in Policy Iteration

We focus on the tabular case to enable the theoretical analysis of Anderson acceleration in value
(policy) iteration, which can be naturally applied to function approximation. Both the value itera-
tion (V -notation) and the policy iteration (Q-notation) can have Anderson acceleration applied to
them to improve convergence. However, theoretical analysis has shown that value iteration enjoys
a γ-linear convergence rate, i.e., ‖V (t) − V ∗‖∞ ≤ γ‖V (t−1) − V ∗‖∞, where V (t) is the value

2

function in the iteration step t and V ∗ is the optimal value function, while policy iteration converges
faster. This is due to the fact that policy iteration more fully evaluates the current policy than does
value iteration. Additionally, policy iteration is more fundamental and scales more readily to deep
reinforcement learning. For this reason, we analyze our method in the policy iteration setting under
Q-notation as value iteration is a special case of policy iteration. Thus, our analysis also applies
under value iteration.

We first focus on the control setting where the optimal value of state-action pair Q∗(s, a) is defined
recursively as a function of the optimal value of the other state-action pair:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

p (s′ | s, a) ·max
a′

Q∗ (s′, a′) . (1)

Combining policy evaluation and policy improvement, the resulting policy iteration algorithm is
equivalent to solving for the fixed point of the Bellman optimality operator T : R|S×A| → R|S×A|
with T Q(s, a) = R(s, a) + γ

∑
s′∈S p (s′|s, a) ·maxa′ Q (s′, a′) .

As a general technique to speed up fixed-point iteration [17], Anderson acceleration has been
successfully yet heuristically applied to reinforcement learning algorithms [23, 19, 22]. Specifically,
Anderson acceleration linearly combines the m previous estimates to yield a better iteration target in
the fixed point iteration. Geometrically, Anderson acceleration applies the operator to a point that has
a minimal residual within the subspace spanned by these estimates. In policy iteration, Anderson
acceleration maintains a memory of the previous Q function values and updates the iterate as a linear
combination of these values with dynamic weights α(k) in the kth iteration step. Specifically,

Q(k+1)(s, a) = (1− βk)

m∑
i=0

α
(k)
i Q(k−m+i)(s, a) + βk

m∑
i=0

α
(k)
i T Q

(k−m+i)(s, a), (2)

where 0 ≤ βk ≤ 1 is the damping parameter. All of the coefficients α(k)
i in the coefficient vector

α(k) are computed following

α(k) = argmin
α∈Rm+1

∥∥∥∥∥
m∑
i=0

αi

(
T Q(k−m+i) −Q(k−m+i)

)∥∥∥∥∥
2

= argmin
α∈Rm+1

∥∥∥∆′k
T · α

∥∥∥
2
, s.t.

m∑
i=0

αi = 1,

(3)
where ∆′k

T
= [ek−m, · · · , ek] ∈ R|S×A|×(m+1) and ek = T Q(k) −Q(k) ∈ R|S×A| is the Bellman

residuals matrix. By the Karush-Kuhn-Tucker conditions, the analytic solution of optimal coefficient
vector αk is

α(k) =

(
∆′k∆′k

T
)−1

1

1T
(

∆′k∆′k
T
)−1

1
, (4)

where 1 denotes the vector with all components equal to one.

2.2 Connection Between Damped Anderson Acceleration and Quasi-Newton Methods

We know that the optimization problem is closely linked with solving a fixed-point iteration problem
by directly solving its first-order condition. Inspired by [24], we show that Anderson acceleration in
policy iteration attempts to perform a special form of quasi-Newton iteration from its optimization
problem behind.

To illuminate this connection, we firstly show that the original constrained optimization to obtain the
optimal α(k) in Eq.(3) can be equivalent to the unconstrained one

τ (k) = argminτ∈Rm ‖ek −Hkτ‖2 , (5)

where we let n = |S| × |A|, and then Hk = [ek − ek−1, · · · , ek−m+1 − ek−m] ∈ Rn×m.

τ (k) =
[
τ
(k)
0 , τ

(k)
1 , · · · , τ (k)m−1

]T
∈ Rm with τ (k)i =

∑m−i−1
j=0 α

(k)
j . Let δk = Q(k) − Q(k−1),

∆k = [δk, δk−1, · · · , δk−m+1] ∈ Rn×m. We show that the updating rule of Q(s, a) in Anderson
acceleration can be expressed as a quasi-Newton form in Proposition 1.

3

Proposition 1. By conducting the damped Anderson acceleration (Eq.(2) and (3)) on the policy
iteration, the updating of Q(k+1) can be reformulated as

Q(k+1) := Q(k) −Gkek (6)

whereGk = (∆k + βkHk)
(
HT
k Hk

)−1
HT
k −βkI can serve as an approximation of inverse Jacobian

matrix of ek = TQ(k) −Q(k), and I is an identity matrix.

Proposition 1 points out that Anderson acceleration on policy iteration additionally leverages more
information about the fixed-point residual ek = TQ(k) −Q(k) to update the Q function. Particularly,
the first part (∆k + βkHk)(HT

k Hk)−1HT
k in Gk contains partial structure matrix information about

the real inverse of Jacobian matrix, which has the huge potential to speed up the convergence of
the fixed-point iteration. More importantly, the results established in [17] and [18] can been seen
as special cases of Proposition 1 with βk = 1. If we directly get rid of the first part in Gk and set
βk = 1, the updating rule exactly degenerates to the Q-value function iteration without Anderson
acceleration.

2.3 Convergence Rate Analysis of Anderson Acceleration on RL

The success of the Anderson acceleration to reduce the residual is coupled in the algorithm iteration
at each stage. Let eαk =

∑m
j=0 α

(k)
j (TQ(j)−Q(j)). The stage-k gain θk can be defined by ‖eαk‖∞ =

θk‖ek‖∞. As α(k)
k = 1, α(k)

j = 0, j 6= k, i.e., m = 0, is an admissible solution to the optimization
problem in Eq. (3), it immediately follows that 0 ≤ θk ≤ 1. The key to rigorously show that Anderson
acceleration can speed up the convergence of policy iteration by taking a linear combination of history
steps is connecting the gain θk to the differences of consecutive iterates Q(k) and residual terms ek.
As discussed in the following part, the improvement of the convergence rate of the policy iteration by
using the acceleration technique is characterized by θk. We first consider the following assumption
about the operator T used to guarantee the first and second order derivatives of T are bounded, as in
[25].

Assumption 1. Assume the Bellman operator T acting on state-action value function Q has a fixed
point Q∗, and there are positive constants c1 and c2 such that

1. T ∈ C2(R|S×A|).

2. The first derivative of T is bounded by c1.

3. The second derivative of T is bounded by c2.

Theorem 1. Under Assumption 1, if the coefficients α(k)
i remain bounded and away from zero, the

following bound holds for the fixed point residual ek from Eq. (2) and (3) with depth m

‖ek‖∞ ≤ θk {((1− βk−1) + c1βk−1) ‖ek−1‖∞}+ c2 · (‖δk‖∞ + ‖δk−1‖∞)|τ1|‖δk−1‖∞

+ c2 ·
m∑
i=2

(
‖δk‖∞ + ‖δk−i‖∞ + 2

i−1∑
l=1

‖δk−i‖∞

)
|τi| ||δk−i‖∞.

(7)

Note that the first term of RHS in Eq. (7) characterizes an increased convergence radius by an extra
contraction factor θk. Therefore, if the error terms ‖δk−i‖∞ are small enough, and the operator T is
differentiable and has bounded first and second derivatives, the faster convergence result characterized
by θk can be derived for the Q-value function iteration with Anderson acceleration.

Unfortunately, the commonly used max operator in T does not satisfy Assumption 1 as it is not a
differentiable operator. Moreover, the “hard” max operator in T always commits to the maximum
action-value function according to current estimation for updating the value estimator, lacking the
ability to consider other potential action-values. A natural alternative is the Boltzmann Softmax
operator, but this operator is prone to misbehave [26] as it is not a non-expansive operator. MellowMax
operator [26], which can help strike a balance between exploration and exploitation, is considered
in this paper. More importantly, the more meaningful convergence result of Anderson acceleration
in policy iteration under Assumption 2 can be established due to the contraction properties of the
Bellman operator under MellowMax operator. The results are given in Theorem 2.

4

Assumption 2. Assume the Bellman operator T acting on state-action value function Q is a γ-
contraction operator, i.e., ‖T Q−T Q′‖∞ ≤ γ‖Q−Q′‖∞ for each state-action function pair Q and
Q′.

Theorem 2. If both Assumption 1 and 2 hold, the coefficients α(k)
i remain bounded and away from

zero. The following bound holds for the residual ek with depth m

‖ek‖∞ ≤ θk[(1− βk−1) + c1βk−1]‖ek−1‖∞ +O(

m∑
j=1

‖ek−j‖2∞). (8)

From Theorem 2, we find that there is a theoretical advantage to consider Anderson acceleration
for policy iteration with depth m due to the gain θk even with the higher-order accumulating terms.
Fortunately, the Bellman operator with MellowMax operator is a γ-contraction operator, satisfying
Assumption 2. Specifically, the resulting Bellman operator Tmm under the MellowMax operator is
defined as

TmmQ(s, a) = R(s, a) + γ
∑
s′∈S

p (s′ | s, a)mmω (Q (s′, ·)) , (9)

where mmω is the MellowMax operator and mmωQ (s′, ·) = log(1
|A|
∑
a′ exp[ωQ(s′, a′)])/ω.

Rigorously, we show that MellowMax can simultaneously satisfy Assumption 1 and 2 in Appendix B.
As such, the faster convergence result presented in Theorem 2 can be derived. In other words, the
faster convergence of policy iteration under MellowMax operator can be established by applying
Anderson acceleration. Based on this theoretical principle, we apply MelloxMax operator in the
Bellman operator to design our method in Section 3, where a detailed discussion is also provided.

Finally, the Q-value estimate Q(k) can be obtained by iteratively applying the MellowMax operator
by starting from some initial value Q(0):

Q(k+1) ← (1− βk)

m∑
i=0

α
(k)
i Q(k−m+i) + βk

m∑
i=0

α
(k)
i TmmQ

(k−m+i), ∀(s, a) ∈ (S,A). (10)

3 Stabilization Analysis and Our Method

In this section, a stable regularization is firstly introduced and its stability analysis is provided as
well. We then briefly analyze the role that MellowMax operator plays when conducting Anderson
acceleration on deep reinforcement learning. These two factors eventually inspire our algorithm,
which we call Stable Anderson Acceleration (Stable AA).

3.1 Stable Regularization

Inspired by recent stable results of Anderson acceleration [18], we introduce the stable regularization
term on the aforementioned unconstrained optimization problem Eq. (5) to obtain mixing coefficients
τk. Particularly, we add `2 regularization of τk scaled by the Frobenius norm of ∆k and Hk to
improve the stability. This yields the new optimization problem

τk = argmin
τ∈Rm

‖ek −Hkτ‖2 + η
(
‖∆k‖2F + ‖Hk‖2F

)
‖τ‖2, (11)

where η is a positive tunning parameter representing the scale of regularization. The solution is
τk = (HT

k Hk + η(‖∆k‖2F + ‖Hk‖2F)I)−1HT
k ek. We introduce this stable regularization under the

unconstrained variables τk, which facilitates the optimization. Intuitively, if the algorithm converges,
we have limk→∞ ‖∆k‖F = limk→∞ ‖Hk‖F = 0. Therefore, the coefficient on the regularization
term vanishes as the algorithm converges, degenerating to Anderson acceleration method without
the stable regularization. In this sense, the stability owing to our stable regularization plays a more
important role in the early phase of training, which we demonstrate in Section 4. Based on the solved
stable regularization τk and the relationship between τk and α(k), we derive the updating of Q(k+1)

in the policy iteration as follows
Q(k+1) = Q(k) − G̃kek, (12)

where G̃k = −βkI + (∆k + βkHk)
(
HT
k Hk + η(‖∆k‖2F + ‖Hk‖2F)I

)−1
HT
k .

5

Moreover, the following Theorem characterizes the stability ensured by regularization in Eq (11).
Please refer to the proof in Appendix C.

Theorem 3. The matrix G̃k satisfy ‖G̃k‖2 ≤ |2/η − βk| , ‖G̃−1k Gk‖2 < 1.

Theorem 3 derives the upper bound of ‖G̃k‖2, which is determined by η and βk. Intuitively, a larger
strength of regularization η and a proper magnitude of βk can yield more stability. In addition,
‖G̃−1k Gk‖2 is strictly less than 1, revealing a smaller violation in Q(k) iteration compared with
non-regularized form.

To quantify the effect of regularization on the coefficient α(k), we provide some analytical results
regarding the obtained mixing coefficients α(k) in Proposition 2. The proof is provided in Appendix C.

Proposition 2. Let α(k)
non and α(k)

reg be the mixing coefficient vectors obtained by vanilla unconstrained
and our stable regularized Anderson acceleration, respectively. Define the transformation matrix
as A, satisfying α(k) = A · τ̃k with τ̃ (k) = (1, τk)T (detailed structure of A is in the Appendix C).
Let cond2(A) be the conditional number of A, i.e., cond2(A) = ‖A‖2‖A−1‖2. Then we have the
following inequalities

‖α(k)
reg ‖22 ≤ 4(1 +

‖ek‖2

η2
), ‖α(k)

reg − α(k)
non‖22 ≤ (cond2(A))2 ·

∥∥∥α(k)
non

∥∥∥2
2
− 2m+ 1

m+ 1
. (13)

From the first inequality, we observe that the `2-norm of the derived coefficients α(k)
reg is controlled

by the regularization parameter η. An overly large η tends to reduce the bound for the norm of α(k)
reg ,

implying a stable solution of the mixing coefficients α(k)
reg . Besides, we can conclude from the second

inequality that there is an inevitable gap between α(k)
non and α(k)

reg .

3.2 Stability Effects of MellowMax

The adopted MellowMax operator bridges the Anderson acceleration and reinforcement learning
algorithms and it has two-sided stability effects. Firstly, based on the convergence analysis in
Section 2, MellowMax operator satisfies the differential and non-expansive properties, which allows
the faster convergence of Anderson acceleration in policy iteration. In contrast, the commonly used
max and Boltzmann Softmax operator [27, 1] violate one of the theoretical assumptions respectively,
and thus the (faster) convergence of Anderson acceleration under them may not be guaranteed. This
is likely to yield instability while the training of algorithms.

Secondly, it is well-known that the “hard” max updating scheme in the popular off-policy methods,
such as Q-learning [28], may lead to misbehavior due to the overestimation issue in the noisy
environment [29, 6, 30]. By contrast, it has been demonstrated that MellowMax and Softmax
operators are capable of reducing the overestimation biases, therefore reducing the gradient noises
to stabilize the optimization of neural networks [26, 31]. The stable gradient estimation based on
MellowMax operator leads to the enhancement of final performance for algorithms.

3.3 Algorithm: Stable AA

The introduced stable regularization approach combined with the MellowMax operator finally form
our Stable AA method. In our algorithm, we focus on exploring the impact of Stable AA on Dueling-
DQN [7]. In particular, under the procedure of off-policy learning in DQN, we firstly formulate the
general damped Anderson acceleration form with the function approximator Qθ as follows

Qθ (st, at) = βt

m∑
i=1

α̂iQθi (st, at) + (1− βt)Est+1,rt

[
rt + γ

m∑
i=1

α̂i max
at+1

Qθi (st+1, at+1)

]
,

(14)
where θi are parameters of target network before the i-th update step. α̂i can be computed either by
vanilla Anderson acceleration [19], or Regularized Anderson acceleration [23]. Then the obtained
Qθ (st, at) serves as the target in the updating of Q-networks. In our Stable AA method, we firstly
solve the optimization problem in Eq. (11) to compute τk. Next we obtain α̃(k) by making use
of the quantitative relationship between τk and α(k). More importantly, we substitute max with

6

Algorithm 1 Stable AA Dueling-DQN Algorithm

1: Initialize a Q value network Qθ and m target networks with parameters θi (i = 1, ...,m). Set the
total training steps K and updating step M .

2: while k ≤ K do
3: Observe the initial state s0;
4: for t = 1 to T do
5: Select at = arg maxaQθ(st, a) with probability 1− ε and a random action with probability

ε.
6: Perform the action at, obtain rt and st+1. Store the transition (st, at, rt, st+1) in the replay

buffer.
7: Sample the batch of transitions (s, a, r, s′) from the replay buffer.
8: / * Step 1: compute α̃(k) * /
9: Compute ∆k and Hk, and then solve the optimization problem with stable regularization in

Eq. (11) to obtain τk.
10: Obtain the optimal coefficient vectors α̃(k) via α̃(k) = A · τ̃k, where the transformation

matrix A is defined in Proposition 2.
11: / * Step 2: compute the target Q̃θ by Anderson Mixing * /
12: Compute the value after the MellowMax operator for each target network Qθi , i.e.,

mmω(Qθi(st+1, ·))
13: Evaluate the target value function Q̃θ (st, at) via Eq. (15) under the Melloxmax operator.
14: / * Step 3: update the Q value networks * /
15: Update the Q value network θ by minimizing the loss in Eq.(16) with the target yt from

Step 2.
16: Update m target networks every M steps, i.e., θi ← θi+1(i = 1, ...,m) and θm ← θ.
17: Set k = k + 1.
18: end for
19: end while

MellowMax operator mmω. The resulting target value function Q̃θ in our Stable AA algorithm is
reformulated as

Q̃θ (st, at) = βt

m∑
i=1

α̃iQθi (st, at) + (1− βt)Est+1,rt

[
rt + γ

m∑
i=1

α̃i ·mmω(Qθi (st+1, ·))

]
,

(15)
where mmω(Q(s, ·)) is the MellowMax operator. Finally, the updating is performed by minimizing
the least squared errors of Bellman equation between the current Q value estimate Qθ(st, at) and the
target value function yt obtained from Eq. (15),

L(θ) = E(st,at)∈D

[
(yt −Qθ (st, at))

2
]
, (16)

where D is the distribution of previously sampled transitions.

In summary, the key of Stable AA method in policy iteration lies in two factors: the stable reg-
ularization in Eq. (11) in computing coefficient α(k), and the MellowMax operator enabling the
faster convergence in updating Q(k), both of which improve the convergence and sample efficiency.
Moreover, we provide a detailed description of Stable AA on Dueling-DQN algorithm in Algorithm 1.
Similar to the strategy in [23], the incorporation of Stable AA into policy gradient based algorithms,
including actor critic [1] and twin delayed DDPG (TD3) [32] can be directly implemented in their
critics part. It can be viewed as a straightforward extension, and we leave this exploration as future
works.

4 Experiment

Our theoretical results about Anderson acceleration mainly apply to the case of a tabular value
function representation, but our derived Stable AA algorithms can be naturally applied into the
function approximation setting. The goal of our experiments is to show that our Stable AA method
can still be useful in practice by improving the performance of Dueling-DQN algorithms. Our
experimental results demonstrate that such an improvement is attributed to the joint benefits of the
proposed stable regularization and the MelloMax operator.

7

Experimental Settings We perform our Stable AA Dueling-DQN algorithm on a variety of Atari
games, and mainly focus on reporting four representatiave games, i.e., SpaceInvaders, Enduro,
Breakout, and CrazyClimber. Results of other games are similar, which we provide in Appendix D.
We compare our approach with Dueling-DQN [7] and Regularized Anderson Acceleration (RAA)[23].
In addition, we also provide an ablative analysis about our Stable AA algorithm to illuminate the
separate and joint impacts of stable regularization and MellowMax operator. In the following
experiments, we report results statistics by running three independent random seeds. We set βt in
Eq. (15) as 0.1 for convenience.

Implementation of MellowMax Operator The MellowMax operator mmω satisfies the desirable
differential and non-expansive properties, enabling the faster convergence in policy iteration with
Anderson acceleration. Nevertheless, we need to perform an additional root-finding algorithm [26] to
compute the optimal ω in each state in order to maintain these properties and help the MellowMax
operator to identify a probability distribution. Unfortunately, this root-finding algorithm is compu-
tationally expensive to be applied. Following the strategy in [31], we tune the inverse parameter ω
from {1, 5, 10} and then report the best score.

4.1 Performance of Our Stable AA

We select DuelingDQN and DuelingDQN-RAA as baselines for the evaluation on the four Atari
games. These two algorithms and our approach DuelingDQN-Stable AA are trained under the same
random seeds and evaluated every 10,000 environment steps, where each evaluation reports the
average returns with standard deviations. Our implementation is adapted from RAA [23]. After the
grid search, we set ω in MelloxMax of Stable AA as 5.0 and η in stable regularization as 0.1 across 4
Atari games.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time Steps (1e7)

200

300

400

500

600

700

800

A
ve

ra
ge

 R
et

ur
n

SpaceInvaders
DuelingDQN
DuelingDQN_RAA
DuelingDQN_StableAA(ours)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time Steps (1e7)

0
100
200
300
400
500
600
700
800

A
ve

ra
ge

 R
et

ur
n

Enduro
DuelingDQN
DuelingDQN_RAA
DuelingDQN_StableAA(ours)

0.2 0.4 0.6 0.8 1.0 1.2
Time Steps (1e7)

0

50

100

150

200

250

A
ve

ra
ge

 R
et

ur
n

Breakout
DuelingDQN
DuelingDQN_RAA
DuelingDQN_StableAA(ours)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time Steps (1e7)

20000

40000

60000

80000

A
ve

ra
ge

 R
et

ur
n

CrazyClimber
DuelingDQN
DuelingDQN_RAA
DuelingDQN_StableAA(ours)

Figure 1: Learning curves of DuelingDQN, DuelingDQN-RAA and our approach DuelingDQN-
Stable AA on SpaceInvaders, Enduro, Breakout, and CrazyClimber games over 3 seeds. Shaded
region corresponds to the standard deviation.

From Figure 1, we note that our DuelingDQN-StableAA (red line) significantly outperforms Regular-
ized AA (blue line) and baseline (black line) across all four games. Overall, Dueling-RAA enables to
accelerate DuelingDQN to improve the sample efficiency and enhance the final performance, but our
approach can lead to further benefits. Remarkably, our DuelingDQN-StableAA (red line) is superior
to RAA to a large margin, especially on Breakout where our approach achieves around 250 average
return while RAA only achieves 150 return. In summary, we conclude that the joint impact of both
stable regularization and theoretically-principled MellowMax further accelerate the convergence and
improve the sample efficiency of the popular off-policy DuelingDQN algorithm.

8

4.2 Ablation Analysis

We further examine the separate impact of the proposed stable regularization (shown in Eq. (11))
and the theoretically-principled MelloxMax operator via the rigorous ablation study. Starting from
DuelingDQN, we firstly add stable regularization with different scales η while comparing with our
resulting Stable AA method. Meanwhile, we separately replace Max operator in DuelingDQN with
MellowMax operators with various inverse parameters ω to explore their impacts.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time Steps (1e7)

200

300

400

500

600

700

800

A
ve

ra
ge

 R
et

ur
n

SpaceInvaders: Stable Regularization
DuelingDQN
+StableReg0.1
+StableReg1.0
+StableReg10.0
+StableReg0.1+MelloxMax5.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time Steps (1e7)

0
100
200
300
400
500
600
700
800

A
ve

ra
ge

 R
et

ur
n

Enduro: Stable Regularization
DuelingDQN
+StableReg0.1
+StableReg1.0
+StableReg10.0
+StableReg0.1+MelloxMax5.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time Steps (1e7)

200

300

400

500

600

700

800

A
ve

ra
ge

 R
et

ur
n

SpaceInvaders: MellowMax
DuelingDQN
+MellowMax1.0
+MellowMax10.0
+MellowMax5.0
+StableReg0.1+MelloxMax5.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time Steps (1e7)

0

200

400

600

800

A
ve

ra
ge

 R
et

ur
n

Enduro: MellowMax
DuelingDQN
+MellowMax1.0
+MellowMax10.0
+MellowMax5.0
+StableReg0.1+MelloxMax5.0

Figure 2: Learning curves of DuelingDQN, +MellowMax, +Stable Regularization (+StableReg), and
+Stable Regularization+MellowMax on SpaceInvaders, Enduro games over 3 seeds.

Impact of Stable Regularization From diagrams in the first row of Figure 2, we can observe that
the benefit margin of stable regularization on Anderson acceleration differs from game to game.
Concretely, naively applying stable regularization on DuelingDQN regardless of the MellowMax
to guarantee the faster convergence of Anderson acceleration can still significantly accelerate the
convergence in Spaceinvaders. In contrast, the stable regularization is able to boost the sample
efficiency mildly on Enduro. For example, when η = 1.0 (green line), “+StableReg1.0” is more
sample efficient (higher than yellow and orange lines) in the early phase of training. However, the
benefit of stable regularization vanishes as the training proceeds, achieving comparable performance
with DuelingDQN. Interestingly, if we further add the additional MellowMax operator (red line), the
resulting Stable AA approach can accomplish the improvement of performance to a large margin.

Impact of MellowMax Operator As exhibited in diagrams in the last row of Figure 2, the benefit
of MellomMax operator still depends on the game. Particularly, the improvement of MellowMax
operator on SpaceInvaders is negligible, where the lines representing “+MelloxMax” overlap subtly
with DuelingDQN. Nevertheless, our Stable AA additionally incorporates the stable regularization,
achieving remarkable improvement of sample efficiency. In addition, due to the fact that it is hard to
compute the optimal inverse temperature ω in MellowMax, we tune the parameter ω and report the
corresponding results in Figure 2. It manifests from the diagram on Enduro game that MellowMax
under ω = 5.0, 10.0 (green and yellow lines) can substantially enhance the final performance. More
importantly, under the joint benefits of both the stable regularization and the theoretically-principled
MellowMax operator, our Stable AA DuelingDQN algorithm can simultaneously accelerate the
convergence and improve the final performance.

5 Discussion and Conclusion

Apart from MellowMax, other variants of Softmax operator can also be combined with Anderson
acceleration, although their theoretical principles have not been studied. For instance, the competitive
performance of the Boltzmann Softmax operator suggests that it is still preferable in certain domains,

9

despite its non-contraction property. We leave the exploration towards more desirable operators
as future works. Additionally, the study of our approach on a wider variety of Atari games, and
implement on more state-of-the art algorithms are expected in the future.

In this paper, we firstly provide deeper insights into the mechanism of Anderson acceleration on
the reinforcement learning setting by connecting damped Anderson acceleration with quasi-Newton
method and providing the faster convergence results. These theoretical principles about the faster
convergence of Anderson acceleration inspire the leverage of MellowMax operator. Combing with a
stable regulation, the resulting Stable AA strategy is applied in DuelingDQN, which has been further
demonstrated to significantly accelerate the convergence and enhance the final performance.

Acknowledgement

We would like to thank the anonymous reviewers for great feedback on the paper. Yingnan
Zhao and Ke Sun were supported by the State Scholarship Fund from China Scholarship Coun-
cil (No:202006120405 and No:202006010082). Dr. Jiang and and Dr. Kong were supported by
the Natural Sciences and Engineering Research Council of Canada (NSERC). Dr. Kong was also
supported by the University of Alberta/Huawei Joint Innovation Collaboration, Huawei Technologies
Canada Co., Ltd., and Canada Research Chair in Statistical Learning.

References

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.
[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control through deep rein-
forcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalch-
brenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of go with deep neural networks and tree search,” Nature, vol. 529, no.
7587, pp. 484–489, 2016.

[4] B. Mavrin, S. Zhang, H. Yao, and L. Kong, “Exploration in the face of parametric and intrinsic
uncertainties,” in Proceedings of the 18th International Conference on Autonomous Agents and
MultiAgent Systems, 2019, pp. 2117–2119.

[5] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino, M. Denil, R. Goroshin,
L. Sifre, K. Kavukcuoglu et al., “Learning to navigate in complex environments,” arXiv preprint
arXiv:1611.03673, 2016.

[6] H. Hasselt, “Double q-learning,” Advances in Neural Information Processing Systems, vol. 23,
pp. 2613–2621, 2010.

[7] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas, “Dueling network archi-
tectures for deep reinforcement learning,” in International Conference on Machine Learning.
PMLR, 2016, pp. 1995–2003.

[8] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra,
“Continuous control with deep reinforcement learning,” arXiv preprint arXiv:1509.02971, 2015.

[9] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor,” in International Conference on Machine
Learning. PMLR, 2018, pp. 1861–1870.

[10] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspective on reinforcement
learning,” in International Conference on Machine Learning. PMLR, 2017, pp. 449–458.

[11] B. Mavrin, H. Yao, L. Kong, K. Wu, and Y. Yu, “Distributional reinforcement learning for
efficient exploration,” in International Conference on Machine Learning. PMLR, 2019, pp.
4424–4434.

[12] S. Zhang, B. Mavrin, L. Kong, B. Liu, and H. Yao, “Quota: The quantile option architecture
for reinforcement learning,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, no. 01, 2019, pp. 5797–5804.

10

[13] M. L. Puterman, “Markov decision processes,” Handbooks in Operations Research and Man-
agement Science, vol. 2, pp. 331–434, 1990.

[14] M. L. Puterman and S. L. Brumelle, “The analytic theory of policy iteration,” Dynamic Pro-
gramming and Its Applications, pp. 91–113, 1978.

[15] O. Anschel, N. Baram, and N. Shimkin, “Averaged-dqn: Variance reduction and stabilization
for deep reinforcement learning,” in International Conference on Machine Learning. PMLR,
2017, pp. 176–185.

[16] S. Bubeck, “Convex optimization: Algorithms and complexity,” arXiv preprint arXiv:1405.4980,
2014.

[17] H. F. Walker and P. Ni, “Anderson acceleration for fixed-point iterations,” SIAM Journal on
Numerical Analysis, vol. 49, no. 4, pp. 1715–1735, 2011.

[18] A. Fu, J. Zhang, and S. Boyd, “Anderson accelerated douglas–rachford splitting,” SIAM Journal
on Scientific Computing, vol. 42, no. 6, pp. A3560–A3583, 2020.

[19] M. Geist and B. Scherrer, “Anderson acceleration for reinforcement learning,” arXiv preprint
arXiv:1809.09501, 2018.

[20] Y. Peng, B. Deng, J. Zhang, F. Geng, W. Qin, and L. Liu, “Anderson acceleration for geometry
optimization and physics simulation,” ACM Transactions on Graphics (TOG), vol. 37, no. 4, pp.
1–14, 2018.

[21] H. An, X. Jia, and H. F. Walker, “Anderson acceleration and application to the three-temperature
energy equations,” Journal of Computational Physics, vol. 347, pp. 1–19, 2017.

[22] Y. Li, C. Ni, G. Xie, W. Yang, S. Zhou, and Z. Zhang, “Accelerated value iteration via anderson
mixing,” 2018.

[23] W. Shi, S. Song, H. Wu, Y.-C. Hsu, C. Wu, and G. Huang, “Regularized anderson acceleration for
off-policy deep reinforcement learning,” Advances in Neural Information Processing Systems,
2019.

[24] H.-r. Fang and Y. Saad, “Two classes of multisecant methods for nonlinear acceleration,”
Numerical Linear Algebra with Applications, vol. 16, no. 3, pp. 197–221, 2009.

[25] C. Evans, S. Pollock, L. G. Rebholz, and M. Xiao, “A proof that anderson acceleration improves
the convergence rate in linearly converging fixed-point methods (but not in those converging
quadratically),” SIAM Journal on Numerical Analysis, vol. 58, no. 1, pp. 788–810, 2020.

[26] K. Asadi and M. L. Littman, “An alternative softmax operator for reinforcement learning,” in
International Conference on Machine Learning. PMLR, 2017, pp. 243–252.

[27] M. G. Azar, V. Gómez, and H. J. Kappen, “Dynamic policy programming,” The Journal of
Machine Learning Research, vol. 13, no. 1, pp. 3207–3245, 2012.

[28] C. J. C. H. Watkins, “Learning from delayed rewards,” 1989.
[29] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning,”

in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1, 2016.
[30] L. Pan, Q. Cai, Q. Meng, W. Chen, L. Huang, and T.-Y. Liu, “Reinforcement learning with

dynamic boltzmann softmax updates,” International Joint Conference on Artificial Intelligence
(IJCAI), 2020.

[31] Z. Song, R. Parr, and L. Carin, “Revisiting the softmax bellman operator: New benefits and new
perspective,” in International Conference on Machine Learning. PMLR, 2019, pp. 5916–5925.

[32] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation error in actor-critic
methods,” in International Conference on Machine Learning. PMLR, 2018, pp. 1587–1596.

[33] S. Kim, K. Asadi, M. Littman, and G. Konidaris, “Deepmellow: removing the need for a target
network in deep q-learning,” in Proceedings of the Twenty Eighth International Joint Conference
on Artificial Intelligence, 2019.

11

A Proof: Connection with quasi-Newton

Proof.

Q(k+1) = (1− βk)

m∑
l=0

α
(k)
l Q(k−m+l) + βk

m∑
l=0

α
(k)
l TQ(k−m+l)

= (1− βk)

[
Q(k) −

m−1∑
i=0

τi
(
Q(k−i) −Q(k−i−1)

)]

+ βk

[
TmmQ

(k) −Q(k) +Q(k) −
m−1∑
i=0

τi
(
TQ(k−i) − TmmQ(k−i−1)

)]
= Q(k) − (1− βk) ∆k · τ − βk · (∆k +Hk) τ + βkek

= Q(k) + βkek − (∆k + βkHk) τ

= Q(k) − ((∆k + βkHk)
(
HT
k Hk

)−1

HT
k − βkI)ek

:= Q(k) −Gkek

This formula indicates the termGk = (∆k + βkHk)
(
HT
k Hk

)−1
HT
k −βkI can be seen as the inverse Jacobian

of ek = TQ(k) −Q(k).

B Proof in Convergence results

Proof about Assumption 1 This proof is to show that MellowMax operator satisfies Assumption 1.

Proof. We first show Tmm is twice continuously differentiable. For any vector x = (x1, . . . , xn)T , we have

∂mmω(x)

∂xi
=

exp(ωxi)∑
l exp(ωxl)

and

∂mmω(x)

∂x2i
=
ω exp(ωxi)

[∑
l exp(ωxl)

]
− (exp(ωxi))

2 ω(∑
l exp(ωxl)

)2
∂mmω(x)

∂xi∂xj
=
∂mmω(x)

∂x∂xi
=
−ω exp(ω(xi + xj))

(
∑
l exp(ωxl))2

,

which implies that Tmm is twice continuously differentiable due to smoothness exp(·) and for any bounded
domain in Rn, the first and second order derivative exist.

We next show the first and second derivative of Tmm are bounded which follows from ‖Tmm(Q + ∆) −
TmmQ‖∞ ≤ c1‖∆‖∞ + c2‖∆2‖∞ + o(‖∆2‖∞) for any ∆→ 0.

‖Tmm(Q+ ∆)− TmmQ‖∞ =
∥∥∥ γ
ω
· P · log {I exp[ω(Q+ ∆)]} − γ

ω
· P · log {I exp(ωQ)}

∥∥∥
∞

=
∥∥∥ γ
ω
· P · log {I exp(ω∆)}

∥∥∥
∞

=

∥∥∥∥ γω · P ·
[
(I exp(ω∆)− I)− 1

2
(I exp(ω∆)− I)2 + o(∆2)

]∥∥∥∥
∞

≤
∥∥∥ γ
ω
· P · [I exp(ω∆)− I]

∥∥∥
∞

+ o(‖∆2‖∞)

=

∥∥∥∥ γω · P ·
[

Iω∆ +
1

2
I∆2ω2

]∥∥∥∥
∞

+ o(‖∆2‖∞)

≤ c1‖∆‖∞ + c2‖∆2‖∞ + o(‖∆2‖∞), (A1)

where P = [p(si′ |si, aj]1≤i,i′≤|S|,1≤j≤m.

Proof about Theorem 1 This proof is to show that we have the results in Theorem 1 under Assumption 1.

12

Proof. Let

Qαk (s, a) =

m∑
l=0

α
(k)
l Q(k−m+l)(s, a)

Q̃αk (s, a) =

m∑
l=0

α
(k)
l TmmQ

(k−m+l)(s, a)

Then

Q(k+1)(s, a) = (1− βk)Qαk (s, a) + βkQ̃α(s, a).

Define T ′(·; ·), T ′′(·; ·, ·) as linear form with respect to the arguments to the right of semicolon. Let δk =

Q(k) −Q(k−1), zk(t) = Q(k−1) + tδk, zk,t(u) = zk−1(t) + u(zk(t)− zk−1(t)). Then

Tmm(Q(k))− Tmm(Q(k−1)) =

∫ 1

0

T ′mm(zk(t); δk))dt

=

∫ 1

0

{
T ′mm(zk+1(t); δk) +

∫ 1

0

T ′′mm(zk+1,t(s); zk(t)− zk+1(t), δk)ds

}
dt

=

∫ 1

0

∫ 1

0

{
T ′mm(zk+1(t); δk) + T ′′mm(zk+1,t(s); zk(t)− zk+1(t), δk)

}
dsdt.

We note that

ek = Tmm(Q(k))−Q(k) = Tmm(Q(k))− [(1− βk−1)Qαk−1 + βk−1Q̃αk−1]

= (1− βk−1)[Tmm(Q(k))−Qαk−1] + βk−1[Tmm(Q(k))− Q̃αk−1] (A2)

For each term on the right hand of formula (A2), we have

TmmQ
(k) −Qαk−1 =

m∑
i=0

α
(k−1)
i TmmQ

(k) −
m∑
i=0

α
(k−1)
i Q(k−m+i−1)

=

m∑
i=0

α
(k−1)
i (TmmQ

(k) −Q(k−m+i−1))

=

m∑
i=0

α
(k−1)
i (TmmQ

(k−m+i−1) −Q(k−m+i−1)) +

m∑
i=0

α
(k−1)
i (TmmQ

(k) − TmmQ(k−m+i−1))

= eαk−1 +
m∑
i=0

(
m−i∑
l=0

α
(k−1)
l

)
(TmmQ

(k−i) − TmmQ(k−i−1))

= eαk−1 +

m∑
i=0

τiδ̃k−i,

where eαk =
∑m
i=0 α

(k)
i (TmmQ

(k−m+i) − Q(k−m+i)), τi =
∑m−i
l=0 α

(k−1)
l , δ̃k−i = TmmQ

(k−i) −
TmmQ

(k−i−1). Moreover,

TmmQ
(k) − Q̃αk−1 = TmmQ

(k) −
m∑
i=0

α
(k−1)
i TmmQ

(k−i−1)

=

m∑
i=0

α
(k−1)
i (TmmQ

(k) − TmmQ(k−i−1))

=

m∑
i=0

τiδ̃k−i.

13

Therefore, formula (A2) can be rewritten as

ek = (1− βk−1)(eαk−1 +

m∑
i=0

τiδ̃k−i) + βk−1

m∑
i=0

τiδ̃k−i

= (1− βk−1)eαk−1 +

m∑
i=0

τiδ̃k−i

= (1− βk−1)eαk−1 +

m∑
i=0

τi

∫ 1

0

T ′mm(zk−i(t); δk−i)dt

= (1− βk−1)eαk−1 +

m∑
i=1

τi

{∫ 1

0

T ′mm(zk(t); δk−i)dt

+

k−1∑
l=k−i

∫ 1

0

T ′mm(zl(t); δk−i)− T ′mm(zl+1(t); δk−i)dt

}
+

∫ 1

0

T ′mm(zk(t); δk)dt

= (1− βk−1)eαk−1 +

∫ 1

0

T ′mm(zk(t);

m∑
i=0

τiδk−i)dt

+
m∑
i=1

τi

k−1∑
l=k−i

∫ 1

0

∫ 1

0

T ′′mm(zl+1,t(s); zl(t)− zl+1(t), δk−i)dsdt

= (1− βk−1)eαk−1 +

∫ 1

0

T ′mm(zk(t);

m∑
i=0

τiδk−i)dt

+

m∑
i=1

∫ 1

0

∫ 1

0

k−1∑
l=k−i

T ′′mm(zl+1,t(s); zl(t)− zl+1(t), τiδk−i)dsdt.

For the term
∑m
i=0 τiδk−i, it can be rewritten as

m∑
i=0

τiδk−i = δk +

m∑
i=1

τiδk−i

= Q(k) −Q(k−1) + τ1Q
(k−1) −

m−1∑
i=0

αiQ
(k−m+i−1)

= Q(k) − α(k−1)
m Q(k−1)

m−1∑
i=1

α
(k−1)
i Q(k−m+i−1)

= Q(k) −Qαk−1

= βk−1(Q̃αk−1 −Q
α
k−1) = βk−1e

α
k−1,

where the second and third equality hold using the formula τi − τi+1 = α
(k−1)
m−i , τ1 = 1− α(k−1)

m . Then, we
obtain

ek =

∫ 1

0

(1− βk−1)eαk−1 + βk−1T
′
mm(zk(t); eαk−1)dt

+

m∑
i=1

∫ 1

0

∫ 1

0

k−1∑
l=k−i

T ′′mm(zl+1,t(s); zl(t)− zl+1(t), τiδk−i)dsdt. (A3)

Formula (A1) and (A3) together imply that

‖ek‖∞ ≤ (1− βk−1) ‖eαk−1‖∞ + βk−1 · c1 · ‖eαk−1‖∞ +

m∑
i=1

k−1∑
l=k−i

c2 ·
(
‖δl‖∞ + ‖δl+1‖∞

)
|τi| ‖δk−i‖∞

= θk
{

((1− βk−1) + c1βk−1) ‖ek−1‖∞
}

+ c2 ·
m∑
i=2

(
‖δk‖∞ + ‖δk−i‖∞ + 2

i−1∑
l=1

‖δk−i‖∞

)
|τi| ||δk−i‖∞

+ c2 · (‖δk‖∞ + ‖δk−1‖∞)|τ1|‖δk−1‖∞. (A4)

14

Proof about Assumption 2 This proof is to show that MellowMax operator satisfies Assumption 2 (non-
expansive operator). Similar result is also given in [26, 33].

Proof. Let |S| = n1, A = n2. Note that

TmmQ = R+ γ · P ·mmω(Q)

where mmω(Q) = 1
ω

log{ 1
n2
· I · exp(ωQ)}, I = In1×n1 ⊗ 1Tn2×1.

‖TmmQ− TmmQ′‖∞ ≤ γ‖P‖∞‖mmω(Q)−mmω(Q′)‖∞
≤ γ‖mmω(Q)−mmω(Q′)‖∞
≤ γ‖Q−Q′‖∞ (A5)

Proof about Theorem 2 We analyze a bound for δj in terms of ej in the following part. Based on formula
(A5), we have

(1− γ)‖δk‖∞ = ‖δk‖∞ − γ‖δk‖∞
≤ ‖δk‖∞ − ‖TmmQ(k) − TmmQ(k−1)‖∞

≤
∥∥∥Q(k) −Q(k−1) − TmmQ(k) + TmmQ

(k−1)
∥∥∥
∞

= ‖ek − ek−1‖∞. (A6)

Let Ek = (ek−m, . . . , ek). The optimization problem

αk = argminα∈Rm+1‖Ekα‖22 s.t.

m∑
i=0

αi = 1

is equivalent to the unconstrained form

min
η∈Rm

‖ek−m +

m∑
i=1

ηi(ek−m+i − ek−h+i−1)‖2, ηi =

m∑
l=i

α
(k)
l (A7)

min
τ̃∈Rm

∥∥∥∥∥ek −
m−1∑
i=0

τ̃i (ek−i − ek−i−1)

∥∥∥∥∥
2

, τ̃i =

m−i−1∑
l=0

α
(k)
l (A8)

Seeking the critical point for ηm in (A7) yields that

〈ek−m, ek − ek−1〉+

m∑
i=1

ηi〈ek−m+i − ek−m+i−1, ek − ek−1〉 = 0.

This implies that

ηm ‖ek − ek−1‖2 = −〈ek−m, ek − ek−1〉 −
m−1∑
i=1

ηi 〈ek − ek−1, ek−m+i − ek−m+i−1〉

= −ηm−1〈ek − ek−1, ek−1〉 −

〈
ek − ek−1,

m−2∑
i=0

αiek−m+i

〉
.

Applying Cauchy-Schwarz inequality and triangle inequalities yields∣∣∣α(k)
m

∣∣∣ ‖ek − ek−1‖ ≤ |ηm−1| ‖ek−1‖+

m−2∑
i=0

α
(k)
i ‖ek−m+i‖.

Based on the inequality ‖ · ‖∞ ≤ ‖ · ‖2 over Rn and formula (A6), it follows∣∣∣α(k)
m

∣∣∣ ‖δk‖∞ ≤ 1

1− γ

{
|ηm−1|||ek−1||+

m−2∑
i=0

α
(k)
i ‖ek−m+i‖

}
. (A9)

Seeking the critical point with respect to τ̃p, (p = 1, . . . ,m− 1) in (A8) yields〈
ek −

m−1∑
i=0

τ̃i (ek−i − ek−i−1) , ek−p − ek−p−1

〉
= 0

15

which implies

τ̃p ‖ek−p − ek−p−1‖2 = 〈ek−p − ek−p−1, τ̃p−1ek−p〉 − 〈ek−p − ek−p−1, τ̃p+1ek−p−1〉

+

〈
ek−p − ek−p−1,

m−p−2∑
j=0

αjek−m+j

〉
+

〈
ek−p − ek−p−1,

m∑
j=m−p+1

αjek−m+j

〉
.

Then

|τ̃p| ‖δk−p‖∞ ≤
1

1− γ

{
|τ̃p−1| ‖ek−p‖+ |τ̃p+1| ‖ek−p−1‖+

m−p−2∑
j=0

|αj | ‖ek−m+j‖+

m∑
j=m−p+1

|αj | ‖ek−m+j‖

}
(A10)

Combing (A4), (A9) and (A10), we establish

‖ek‖∞ ≤ θk
{

((1− βk−1) + c1βk−1)
∥∥ek−1

∥∥
∞

}
+ Constant ·

{
m∑
i=2

‖δk−i‖2∞ + ‖δk−1‖2∞

}

= θk
{

((1− βk−1) + c1βk−1)
∥∥ek−1

∥∥
∞

}
+O

(
m∑
i=1

‖ek−i‖2∞

)
.

C Proof: Stable regularization

We firstly prove the stability of the derived regularization in Theorem 3.

Proof. It is easy to prove that ‖G̃−1
k G−1

k ‖2 ≤ 1 as long as we directly remove the regularization term to induce
the inequality. Then, we have

‖G̃k‖2 ≤

∣∣∣∣∣−βk +
‖∆k + βkHk‖2 ‖Hk‖2
η
(
‖∆k‖2F + ‖Hk‖2F

) ∣∣∣∣∣
≤

∣∣∣∣∣−βk +
‖∆k‖2 ‖Hk‖2+‖Hk‖22
η
(
‖∆k‖2F + ‖Hk‖2F

) ∣∣∣∣∣
≤

∣∣∣∣∣−βk +
‖∆k‖F ‖Hk||F+‖Hk‖2F
η
(
‖∆k‖2F + ‖Hk‖2F

) ∣∣∣∣∣
≤
∣∣∣∣2η − βk

∣∣∣∣ .

This indicates that the `2 norm of updating matrix G̃k is upper bounded, which can guarantee the stability. Then
we provide the proof of Proposition 2.

Proof. Firstly, we denote the structure matrix A as follows:

A =

0 0 0 0 · · · 0 0 1
0 0 0 0 · · · 0 1 −1
...

...
...

...
...

...
...

...
0 0 1 −1 · · · 0 0 0
0 1 −1 0 · · · 0 0 0
1 −1 0 0 · · · 0 0 0

(m+1)×(m+1)

Note that α(k)
reg = A · τ̃reg, where

τ̃reg =

(
1
τreg

)
∈ Rm+1.

We first bound α(k)
reg ,

16

‖α(k)
reg ‖22 ≤ ‖A‖22 · ‖τ̃reg‖22 ≤ 4 ·

(
1 + ‖τreg‖22

)
≤ 4

[
1 +

∥∥∥∥(H>k Hk + η
(
‖∆k‖2F + ‖Hk‖2F

)
I
)−1

∥∥∥∥2 · ‖HT
k ek‖2

]

≤ 4

(
1 +

‖HT
k ek‖2

η2
(
‖∆k‖2F + ‖Hk‖2F

))

≤ 4

(
1 +
‖ek‖2

η2

)
.

We next analyze α(k)
reg − α(k)

non . Since

HT
k ek −HT

k Hkτnon = 0,

HT
k ek −

[
HT
k Hk + η

(
‖∆k‖2F + ‖Hk‖2F

)
I
]
τreg = 0

Then τreg − τnon =
[
HT
k Hk + η

(
‖∆k‖2F + ‖Hk‖2F

)
I
]−1 [

η
(
‖∆k‖2F + ‖Hk‖2F

)
I
]
τnon which implies

‖τreg − τnon‖2 ≤
(
η
(
‖∆k‖2F + ‖Hk‖2F

))
‖I‖2

η (‖∆k‖2F + ‖Hk‖2F)
‖τnon‖2 = ‖τnon‖2. (A11)

Let τ̃reg = (1, τTreg)
T , τ̃non = (1, τTnon)

T . Then τ̃non = A−1α
(k)
non , and ‖τnon‖22 = ‖A−1α

(k)
non‖22 − 1. Based on

(A11), we can establish

‖α(k)
reg − α(k)

non‖22 ≤ ‖A‖22‖τ̃reg − τ̃non ‖22 = ‖A‖22‖τreg − τnon‖22

≤ ‖A‖22
(∥∥∥A−1α(k)

non

∥∥∥2
2
− 1

)
≤ ‖A‖22 ·

∥∥A−1
∥∥2
2
·
∥∥∥α(k)

non

∥∥∥2
2
− ‖A‖22

≤ (cond2(A))2 ·
∥∥∥α(k)

non

∥∥∥2
2
− 2m+ 1

m+ 1
.

D Results on Other games

We provide results of our algorithms on other 12 Atari games. Our results in Figure 3,4,5 and 6 show that our
Stable AA DuelingDQN consistently outperforms both DuelingDQN and DuelingDQN-RAA significantly.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time Steps (1e7)

200

400

600

800

1000

1200

1400

A
ve

ra
ge

 R
et

ur
n

AlienNoFrameskip-v4
DuelingDQN
DuelingDQN_RAA
DuelingDQN_StableAA(ours)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time Steps (1e7)

2500

5000

7500

10000

12500

15000

17500

20000

A
ve

ra
ge

 R
et

ur
n

BattleZoneNoFrameskip-v4
DuelingDQN
DuelingDQN_RAA
DuelingDQN_StableAA(ours)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time Steps (1e7)

200

300

400

500

600

700

A
ve

ra
ge

 R
et

ur
n

BerzerkNoFrameskip-v4
DuelingDQN
DuelingDQN_RAA
DuelingDQN_StableAA(ours)

0.2 0.4 0.6 0.8 1.0 1.2
Time Steps (1e7)

17.5
20.0
22.5
25.0
27.5
30.0
32.5
35.0

A
ve

ra
ge

 R
et

ur
n

BowlingNoFrameskip-v4
DuelingDQN
DuelingDQN_RAA
DuelingDQN_StableAA(ours)

Figure 3: Learning curves of DuelingDQN, DuelingDQN-RAA, DuelingDQN-Stable AA (ours) on
Aline, BattleZone, Berzerk and Bowling games over 3 seeds.

17

0.2 0.4 0.6 0.8 1.0 1.2
Time Steps (1e7)

500

600

700

800

900

A
ve

ra
ge

 R
et

ur
n

ChopperCommandNoFrameskip-v4
DuelingDQN
DuelingDQN_RAA
DuelingDQN_StableAA(ours)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time Steps (1e7)

0

1000

2000

3000

4000

5000

6000

7000

A
ve

ra
ge

 R
et

ur
n

DemonAttackNoFrameskip-v4
DuelingDQN
DuelingDQN_RAA
DuelingDQN_StableAA(ours)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time Steps (1e7)

100

200

300

400

500

A
ve

ra
ge

 R
et

ur
n

FrostbiteNoFrameskip-v4
DuelingDQN
DuelingDQN_RAA
DuelingDQN_StableAA(ours)

0.2 0.4 0.6 0.8 1.0 1.2
Time Steps (1e7)

16
15
14
13
12
11
10
9
8

A
ve

ra
ge

 R
et

ur
n

IceHockeyNoFrameskip-v4
DuelingDQN
DuelingDQN_RAA
DuelingDQN_StableAA(ours)

Figure 4: Learning curves of DuelingDQN, DuelingDQN-RAA, DuelingDQN-Stable AA (ours) on
ChopperCommand, DemonAttack, Frostbite and IceHockey games over 3 seeds.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time Steps (1e7)

0
2000
4000
6000
8000

10000
12000
14000
16000

A
ve

ra
ge

 R
et

ur
n

KungFuMasterNoFrameskip-v4
DuelingDQN
DuelingDQN_RAA
DuelingDQN_StableAA(ours)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time Steps (1e7)

250

500

750

1000

1250

1500

1750

A
ve

ra
ge

 R
et

ur
n

MsPacmanNoFrameskip-v4
DuelingDQN
DuelingDQN_RAA
DuelingDQN_StableAA(ours)

0.2 0.4 0.6 0.8 1.0 1.2
Time Steps (1e7)

350

300

250

200

150

100

50

0

A
ve

ra
ge

 R
et

ur
n

PitfallNoFrameskip-v4
DuelingDQN
DuelingDQN_RAA
DuelingDQN_StableAA(ours)

0.2 0.4 0.6 0.8 1.0 1.2
Time Steps (1e7)

20
15
10
5
0
5

10
15
20

A
ve

ra
ge

 R
et

ur
n

PongNoFrameskip-v4
DuelingDQN
DuelingDQN_RAA
DuelingDQN_StableAA(ours)

Figure 5: Learning curves of DuelingDQN, DuelingDQN-RAA, DuelingDQN-Stable AA (ours) on
KungFu, MsPacman, Pitfall and Pong games over 3 seeds.

18

0.2 0.4 0.6 0.8 1.0 1.2
Time Steps (1e7)

200

0

200

400

600

800

1000

A
ve

ra
ge

 R
et

ur
n

PrivateEyeNoFrameskip-v4
DuelingDQN
DuelingDQN_RAA
DuelingDQN_StableAA(ours)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time Steps (1e7)

2

4

6

8

10

12

14

A
ve

ra
ge

 R
et

ur
n

RobotankNoFrameskip-v4
DuelingDQN
DuelingDQN_RAA
DuelingDQN_StableAA(ours)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time Steps (1e7)

500
1000
1500
2000
2500
3000
3500
4000
4500

A
ve

ra
ge

 R
et

ur
n

UpNDownNoFrameskip-v4
DuelingDQN
DuelingDQN_RAA
DuelingDQN_StableAA(ours)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time Steps (1e7)

4000

6000

8000

10000

12000

14000

A
ve

ra
ge

 R
et

ur
n

YarsRevengeNoFrameskip-v4
DuelingDQN
DuelingDQN_RAA
DuelingDQN_StableAA(ours)

Figure 6: Learning curves of DuelingDQN, DuelingDQN-RAA, DuelingDQN-Stable AA (ours) on
PrivateEye, Robotank, UpNDown and YarsRevenge games over 3 seeds.

19

	1 Introduction
	2 Acceleration and Convergence Analysis of Anderson Acceleration on RL
	2.1 Anderson Acceleration in Policy Iteration
	2.2 Connection Between Damped Anderson Acceleration and Quasi-Newton Methods
	2.3 Convergence Rate Analysis of Anderson Acceleration on RL

	3 Stabilization Analysis and Our Method
	3.1 Stable Regularization
	3.2 Stability Effects of MellowMax
	3.3 Algorithm: Stable AA

	4 Experiment
	4.1 Performance of Our Stable AA
	4.2 Ablation Analysis

	5 Discussion and Conclusion
	A Proof: Connection with quasi-Newton
	B Proof in Convergence results
	C Proof: Stable regularization
	D Results on Other games

