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Abstract

Distributed and federated learning has been widely studied for the case of dis-
tributed samples. We study an important yet less visited distributed learning
problem where features are inherently distributed, and sharing of raw data or model
parameters among parties is prohibited. We propose an ADMM sharing framework
to approach risk minimization over distributed features, where each party only
needs to share a single value for each sample in the training process, thus mini-
mizing the data leakage risk. We introduce a novel differentially private ADMM
sharing algorithm and bound the privacy guarantee with carefully designed noise
perturbation. Experiments show that the proposed algorithm converges efficiently,
demonstrating advantage over SGD for data with high dimensional features.

1 Introduction

The effectiveness of a machine learning model does not only depend on the quantity of samples, but
also on the availability of high-quality features. Recently, a wide range of distributed or federated
learning schemes, including gradient-based methods [1, 2] and ADMM-based methods [3, 4, 5], have
been proposed to enable learning from distributed samples, since collecting data centrally will incur
compliance overhead and privacy concerns. Most existing schemes, however, are under the umbrella
of data parallel schemes, where multiple parties possess different training samples.

An equally important scenario is to collaboratively learn from distributed features, where multiple
parties possess different features of a same sample, yet do not wish to share these features with each
other. Examples include a user’s behavioural data logged by multiple apps, a patient’s record stored at
different hospitals and clinics, a user’s investment behavior logged by multiple financial institutions,
etc. The question is—how can we train a joint model to make predictions about a sample leveraging
the potentially rich and vast features possessed by other parties, in a federated learning fashion?

The motivation of gleaning insights from vertically partitioned data dates back to association rule
mining [6, 7]. A few recent studies [8, 9, 10, 11, 12, 13, 14] have revisited vertically partitioned
features under the setting of distributed learning, which is motivated by the increase in feature
dimensionality as well as the opportunity of cooperation between multiple parties that may hold
different aspects of information about the same samples.

In this paper, we propose an ADMM algorithm to solve the empirical risk minimization (ERM)
problem, a general optimization formulation of many machine learning models visited by a number
of recent studies on distributed machine learning [10, 15]. We propose an ADMM-sharing-based
distributed algorithm to solve ERM, in which each participant does not need to share any raw features
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or local model parameters to other parties. Instead, each party only transmits a single value for each
sample to other parties, thus largely preventing the local features from being disclosed.

To further provide privacy guarantees, we present a privacy-preserving version of the ADMM sharing
algorithm, in which the transmitted value from each party is perturbed by a carefully designed
Gaussian noise to achieve the notion of ε, δ-differential privacy [16, 17]. For distributed features,
the perturbed algorithm ensures that the probability distribution of the values shared is relatively
insensitive to any change to a single feature in a party’s local dataset. Experimental results on
two realistic datasets suggest that the proposed ADMM sharing algorithm can converge efficiently.
Compared to the gradient-based method, our method can scale as the number of features increases
and yields robust convergence. The algorithm can also converge with moderate amounts of Gaussian
perturbation added, therefore enabling the utilization of features from other parties to improve the
local machine learning task.

Related Work. [18, 19] apply differential privacy (DP) to collaborative machine learning, with an
inherent tradeoff between the privacy cost and utility achieved by the trained model. Recently, DP
has been applied to ADMM algorithms to solve multi-party machine learning problems [3, 4, 20, 21].
However, all the work above is targeting the data-parallel scenario, where samples are distributed
among nodes. The uniqueness of our work is to enable privacy-preserving machine learning among
nodes with vertically partitioned features, i.e., the feature-parallel setting, which is equally important
yet relatively under-explored.

[6, 22] are among the early studies that investigate the privacy issue of querying vertically partitioned
data. [9] adopts a random-kernel-based method to mine vertically partitioned data privately. However,
these studies provide privacy guarantees for simpler static queries instead of model training. [11]
proposes a composite model structure that can jointly learn from distributed features via a SGD-based
algorithm and its DP-enabled version, yet without offering theoretical privacy guarantees. Our work
establishes (ε, δ)-differential privacy guarantee result for federated learning over distributed features.
Experimental results further suggest that our ADMM sharing method converges in fewer epochs than
gradient methods in the case of high dimensional features. This is critical to preserving privacy in
machine learning since the privacy loss increases as the number of epochs increases [17].

2 Empirical Risk Minimization over Distributed Features

Consider N samples, each with d features distributed on M parties, which do not wish to share
data with each other. The entire dataset D ∈ RN × Rd can be viewed as M vertical partitions
D1, . . . ,DM , where Dm ∈ RN × Rdm denotes the data possessed by the mth party and dm is the
dimension of features on party m. Clearly, d =

∑M
m=1 dm. Let Di denote the ith row of D, and Dim

be the ith row of Dm (i = 1, · · · , N ). Let Yi ∈ {−1, 1}N be the label of sample i.

Let x = (x>1 , · · · , x>m, · · · , x>M )> represent the model parameters, where xm ∈ Rdm are the local
parameters associated with the mth party. The objective is to find a model f(Di;x) with parameters
x to minimize the regularized empirical risk, i.e.,

minimize
x∈X

1

N

N∑
i=1

li(f(Di;x), Yi) + λR(x),

where X ⊂ Rd is a closed convex set and the regularizer R(·) prevents overfitting.

Similar to recent literature on distributed machine learning [10, 23], ADMM [4, 3], and privacy-
preserving machine learning [15, 24], we assume the loss has a form

∑N
i=1 li(f(Di;x), Yi) =∑N

i=1 li(Dix, Yi) = l
(∑M

m=1Dimxm
)
, where we have abused the notation of l and in the second

equality absorbed the label Yi into the loss l, which can be a non-convex function. This framework
incorporates a wide range of commonly used models including support vector machines, Lasso,
logistic regression, boosting, etc.
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Therefore, the risk minimization over distributed features, or vertically partitioned datasets
D1, . . . ,DM , can be written in the following compact form:

minimize
x

l

(
M∑
m=1

Dmxm

)
+ λ

M∑
m=1

Rm(xm), (1)

subject to xm ∈ Xm,m = 1, . . . ,M, (2)

where Xm ⊂ Rdm is a closed convex set for all m.

We have further assumed the regularizer is separable such that R(x) =
∑M
m=1Rm(xm). This

assumption is consistent with our algorithm design philosophy—under vertically partitioned data, we
require each party focus on training and regularizing its local model xm, without sharing any local
model parameters or raw features to other parties at all.

3 Differentially Private ADMM Sharing Algorithm

Differential privacy [17, 25] is a notion that ensures a strong guarantee for data privacy. The
intuition is to keep the query results from a dataset relatively close if one of the entries in the dataset
changes, by adding some well designed random noise into the query, so that little information on
the raw data can be inferred from the query. Formally speaking, a randomized algorithm M is
(ε, δ)−differentially private if for all S ⊆ range(M), and for all x and y, such that |x − y|1 ≤ 1,
we have Pr(M(x) ∈ S) ≤ exp(ε)Pr(M(y) ∈ S) + δ. We present an differentially private variant
of ADMM sharing algorithm [26, 27] to solve Problem (1). Our algorithm requires each party only
share a single value to other parties in each iteration, thus requiring the minimum message passing.

In particular, Problem (1) is equivalent to

minimize
x

l (z) + λ

M∑
m=1

Rm(xm), (3)

s.t.
M∑
m=1

Dmxm − z = 0, xm ∈ XM ,m = 1, . . . ,M, (4)

where z is an auxiliary variable. The corresponding augmented Lagrangian is given by

L({x}, z; y) =l(z) + λ

M∑
m=1

Rm(xm) + 〈y,
M∑
m=1

Dmxm − z〉+
ρ

2
‖

M∑
m=1

Dmxm − z‖2, (5)

where y is the dual variable and ρ is the penalty factor. In the tth iteration of the algorithm, variables
are updated according to

xt+1
m := argmin

xm∈Xm
λRm(xm) + 〈yt,Dmxm〉+

ρ

2

∥∥ M∑
k=1, k 6=m

Dkx̃tk +Dmxm − zt
∥∥2, (6)

x̃t+1
m := xt+1

m +N (0, σ2
m,t+1), m = 1, · · · ,M, (7)

zt+1 := argmin
z

l(z)− 〈yt, z〉+
ρ

2

∥∥ M∑
m=1

Dmx̃t+1
m − z

∥∥2, (8)

yt+1 := yt + ρ
( M∑
m=1

Dmx̃t+1
m − zt+1

)
, (9)

where N (µ, σ2) represents Gaussian noise. Formally, in a distributed and fully parallel manner, the
algorithm is described in Algorithm 1. Note that each party m needs the value

∑
k 6=mDkx̃tk − zt to

complete the update, and Lines 3, 4 and 12 in Algorithm 1 present a trick to reduce communication
overhead. On each local party , (6) is computed where a proper xm is derived to simultaneously
minimize the regularizer and bring the global prediction close to zt, given the local predictions
from other parties. When Rm(·) is l2 norm, (6) becomes a trivial quadratic program which can be
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Algorithm 1 The ADMM Sharing Algorithm
1: —–Each party m performs in parallel:
2: for t in 1, . . . , T do
3: Pull

∑
k Dkx̃tk − zt and yt from central node

4: Obtain
∑
k 6=mDkx̃tk − zt by subtracting the locally cached Dmx̃tm from the pulled value∑

k Dkx̃tk − zt
5: Compute x̃t+1

m according to (6) and (7)
6: Push Dmx̃t+1

m to the central node
7: —–Central node:
8: for t in 1, . . . , T do
9: Collect Dmx̃t+1

m for all m = 1, . . . ,M
10: Compute zt+1 according to (8)
11: Compute yt+1 according to (9)
12: Distribute

∑
k Dkx̃

t+1
k − zt+1 and yt+1 to all the parties.

efficiently solved. We perturb the shared value Dmxt+1
m in Algorithm 1 with a carefully designed

random noise in 7 to provide differential privacy. On the central node, the global prediction z is
found in (8) by minimizing the loss l(·) while bringing z close to the aggregated local predictions
from all local parties. Therefore, the computational complexity of (8) is independent of the number
of features, thus making the proposed algorithm scalable to a large number of features, as compared
to SGD or Frank-Wolfe algorithms.

4 Analysis

We demonstrate that Algorithm 1 guarantees (ε, δ) differential privacy with outputs
{Dmx̃t+1

m }t=0,1,··· ,T−1 for some carefully selected σm,t+1. We introduce a set of assumptions
widely used by the literature.

Assumption 1 1. The feasible set {x, y} and the dual variable z are bounded; their l2 norms
have an upper bound b1.

2. The regularizer Rm(·) is doubly differentiable with |R′′m(·)| ≤ c1, c1 being a finite constant.

3. Each row of Dm is normalized and has an l2 norm of 1.

Note that Assumption 1.1 is adopted in [28] and [29]. Assumption 1.2 comes from [21] and
Assumption 1.3 comes from [21] and [28]. As a typical method in differential privacy analysis, we
first study the l2 sensitivity of Dmxt+1

m , which is defined by:

Definition 1 The l2-norm sensitivity of Dmxt+1
m is defined by:

∆m,2 = max
Dm,D′

m

‖Dm−D′
m‖≤1

‖Dmxt+1
m,Dm −D

′
mx

t+1
m,D′

m
‖.

where Dm and D′m are two neighbouring datasets differing in only one feature column, and xt+1
m,Dm

is the xt+1
m derived from the first line of equation (6) under dataset Dm.

We have Lemma 1 state the upper bound of the l2-norm sensitivity of Dmxt+1
m .

Lemma 1 Assume that Assumption 1 hold.

Then the l2-norm sensitivity of Dmxt+1
m,Dm is upper bounded by C = 3

dmρ
[λc1 + (1 +Mρ)b1].

We have Theorem 1 for differential privacy guarantee in each iteration.

Theorem 1 Assume assumptions 1.1-1.3 hold and C is the upper bound of ∆m,2. Let ε ∈ (0, 1]
be an arbitrary constant and let Dmξt+1

m be sampled from zero-mean Gaussian distribution with
variance σ2

m,t+1, where

σm,t+1 =

√
2ln(1.25/δ)C

ε
.
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Figure 1: Performance over the a9a data set with 32561 training samples, 16281 testing samples and
123 features.
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Figure 2: Performance over the gisette data set with 6000 training samples, 1000 testing samples and
5000 features.

Then each iteration guarantees (ε, δ)-differential privacy. Specifically, for any neighboring datasets
Dm and D′m, for any output Dmx̃t+1

m,Dm and D′mx̃t+1
m,D′

m
, the following inequality always holds:

P (Dmx̃t+1
m,Dm |Dm) ≤ eεP (D′mx̃t+1

m,D′
m
|D′m) + δ.

With an application of the composition theory in [17], we come to a result stating the overall privacy
guarantee for the training procedure.

Corollary 1 For any δ′ > 0, Algorithm 1 satisfies (ε′, T δ+ δ′)−differential privacy within T epochs
of updates, where

ε′ =
√

2T ln(1/δ′)ε+ Tε(eε − 1). (10)

Without surprise, the overall differential privacy guarantee may drop dramatically if the number of
epochs T grows to a large value, since the number of exposed results grows linearly in T . However,
as we will show in the experiments, the ADMM-sharing algorithm converges fast, taking much fewer
epochs to converge than SGD when the number of features is relatively large. Therefore, it is of great
advantage to use ADMM sharing for wide features as compared to SGD or Frank-Wolfe algorithms.
When T is confined to less than 20, the risk of privacy loss is also confined.

5 Experiments

We test our algorithm by training l2-norm regularized logistic regression on two popular public
datasets, namely, a9a from UCI [30] and giette [31]. We get the datasets from [32] so that we follow
the same preprocessing procedure listed there. a9a dataset is 4 MB and contains 32561 training
samples, 16281 testing samples and 123 features. We divide the dataset into two parts, with the
first part containing the first 66 features and the second part remaining 57 features. The first part is
regarded as the local party who wishes to improve its prediction model with the help of data from
the other party. On the other hand, gisette dataset is 297 MB and contains 6000 training samples,
1000 testing samples and 5000 features. Similarly, we divide the features into 3 parts, the first 2000
features being the first part regarded as the local data, the next 2000 features being the second part,
and the remaining 1000 as the third part. Note that a9a is small in terms of the number of features
and gisette has a relatively higher dimensional feature space.
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Figure 3: Test performance for ADMM under different levels of added noise.

A prototype system is implemented in Python to verify our proposed algorithm. Specifically, we
use optimization library from scipy to handle the optimization subproblems. We apply L-BFGS-B
algorithm to do the x update in (6) and entry-wise optimization for z in (8). We run the experiment
on a machine equipped with Intel(R) Core(TM) i9-9900X CPU @ 3.50GHz and 128 GB of memory.

We compare our algorithm against an SGD based algorithm proposed in [11]. We keep track of
the training objective value (log loss plus the l2 regularizer), the testing log loss for each epoch for
different datasets and parameter settings. We also test our algorithm with different levels of Gaussian
noise added. In the training procedure, we initialize the elements in x, y and z with 0 while we
initialize the parameter for the SGD-based algorithm with random numbers.

Fig. 1 and Fig. 2 show a typical trace of the training objective and testing log loss against epochs
for a9a and gisette, respectively. On a9a, the ADMM algorithm is slightly slower than the SGD
based algorithm, while they reach the same testing log loss in the end. On gisette, the SGD based
algorithm converges slowly while the ADMM algorithm is efficient and robust. The testing log
loss from the ADMM algorithm quickly converges to 0.08 after a few epochs, but the SGD based
algorithm converges to only 0.1 with much more epochs. This shows that the ADMM algorithm
is superior when the number of features is large. In fact, for each epoch, the x update is a trivial
quadratic program and can be efficiently solved numerically. The z update contains optimization
over computationally expensive functions, but for each sample, it is always an optimization over a
single scalar so that it can be solved efficiently via scalar optimization and scales with the number of
features.

Moreover, Corollary 1 implies that the total differential privacy guarantee will be stronger if the
number of epochs required for convergence is less. The fast convergence rate of the ADMM sharing
algorithm also makes it more appealing to achieve differential privacy guarantees than SGD, especially
in the case of wide features (gisette).

Fig. 3 shows the testing loss for ADMM with different levels of Gaussian noise added. The other two
baselines are the logistic regression model trained over all the features (in a centralized way) and
that trained over only the local features in the first party. The baselines are trained with the built-in
logistic regression function from sklearn library. We can see that there is a significant performance
boost if we employ more features to help training the model on Party 1. Interestingly, in Fig. 3(b), the
ADMM sharing has even better performance than the baseline trained with all features with sklearn.
It further shows that the ADMM sharing is better at datasets with a large number of features.

Moreover, after applying moderate random perturbations, the proposed algorithm can still converge
in a relatively small number of epochs, as Fig. 1(b) and Fig. 2(b) suggest, although too much noise
may ruin the model. Therefore, ADMM sharing algorithm under moderate perturbation can improve
the local model and the privacy cost is well contained as the algorithm converges in a few epochs.

6 Conclusion

We study learning over distributed features (vertically partitioned data) where none of the parties
shall share the local data. We propose the parallel ADMM sharing algorithm to solve this challenging
problem where only intermediate values are shared, without even sharing model parameters. To
further protect the data privacy, we apply the differential privacy technique in the training procedure
to derive a privacy guarantee within T epochs. We implement a prototype system and evaluate the
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proposed algorithm on two representative datasets in risk minimization. The result shows that the
ADMM sharing algorithm converges efficiently, especially on dataset with large number of features.
Furthermore, the differentially private ADMM algorithm yields better prediction accuracy than model
trained from only local features while ensuring a certain level of differential privacy guarantee.
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7 Supplementary Materials

7.1 Proof of Lemma 1

From the optimality condition of the x update procedure in (7), we can get

Dmxt+1
m,Dm = −Dm(ρD>mDm)−1

λR′m(xt+1
m,Dm) +D>myt + ρD>m(

M∑
k=1
k 6=m

Dkx̃k − z)

 ,

D′mxt+1
m,D′

m
= −D′m(ρD′>mD′m)−1

λR′m(xt+1
m,D′

m
) +D′>m yt + ρD′>m (

M∑
k=1
k 6=m

Dkx̃k − z)

 .
Therefore we have

Dmxt+1
m,Dm −D

′
mx

t+1
m,D′

m

= −Dm(ρD>mDm)−1

λR′m(xt+1
m,Dm) +D>mytDm + ρD>m(

M∑
k=1
k 6=m

Dkx̃k − z)



+D′m(ρD′>mD′m)−1

λR′m(xt+1
m,D′

m
) +D′>m yt + ρD′>m (

M∑
k=1
k 6=m

Dkx̃k − z)


= Dm(ρD>mDm)−1

×

λ(R′m(xt+1
m,D′

m
)−R′m(xt+1

m,Dm)) + (D′m −Dm)>yt + ρ(D′m −Dm)>(

M∑
k=1
k 6=m

Dkx̃k − z)


+ [D′m(ρD′>mD′m)−1 −Dm(ρD>mDm)−1]

×

λR′m(xt+1
m,D′

m
) +D′>m yt + ρD′>m (

M∑
k=1
k 6=m

Dkx̃k − z)

 .

Denote

Φ1 = Dm(ρD>mDm)−1

×

λ(R′m(xt+1
m,D′

m
)−R′m(xt+1

m,Dm)) + (D′m −Dm)>yt + ρ(D′m −Dm)>(

M∑
k=1
k 6=m

Dkx̃k − z)

 ,
Φ2 = [D′m(ρD′>mD′m)−1 −Dm(ρD>mDm)−1]

×

λR′m(xt+1
m,D′

m
) +D′>m yt + ρD′>m (

M∑
k=1
k 6=m

Dkx̃k − z)

 .

As a result:

Dmxt+1
m,Dm −D

′
mx

t+1
m,D′

m
= Φ1 + Φ2. (11)
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In the following, we will analyze the components in (11) term by term. The object is to prove
max Dm,D′

m

‖Dm−D′
m‖≤1

‖xt+1
m,Dm − x

t+1
m,D′

m
‖ is bounded. To see this, notice that

max
Dm,D′

m

‖Dm−D′
m‖≤1

‖Dmxt+1
m,Dm −D

′
mx

t+1
m,D′

m
‖

≤ max
Dm,D′

m

‖Dm−D′
m‖≤1

‖Φ1‖+ max
Dm,D′

m

‖Dm−D′
m‖≤1

‖Φ2‖.

For max Dm,D′
m

‖Dm−D′
m‖≤1

‖Φ2‖, from assumption 1.3, we have

max
Dm,D′

m

‖Dm−D′
m‖≤1

‖Φ2‖

≤

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

2

dmρ

λR′m(xt+1
m,D′

m
) +D′>m yt + ρD′>m (

M∑
k=1
k 6=m

Dkx̃k − z)


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ .

By mean value theorem, we have

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

2

dmρ

λD′>mR′′m(x∗) +D′>m yt + ρD′>m (

M∑
k=1
k 6=m

Dkx̃k − z)


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

≤ 2

dmρ

λ‖R′′m(·)‖+ ‖yt‖+ ρ‖(
M∑
k=1
k 6=m

Dkx̃k − z)‖

 .

For max Dm,D′
m

‖Dm−D′
m‖≤1

‖Φ1‖, we have

max
Dm,D′

m

‖Dm−D′
m‖≤1

‖Φ1‖ ≤
∣∣∣∣Dm(ρD>mDm)−1

×

λ(R′m(xt+1
m,D′

m
)−R′m(xt+1

m,Dm)) + (D′m −Dm)>yt + ρ(D′m −Dm)>(

M∑
k=1
k 6=m

Dkx̃k − z)


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

≤ ρ−1‖(D>mDm)−1‖

λ‖R′′m(·)‖+ ‖yt‖+ ρ‖(
M∑
k=1
k 6=m

Dkx̃k − z)>‖



=
1

dmρ

λ‖R′′m(·)‖+ ‖yt‖+ ρ‖(
M∑
k=1
k 6=m

Dkx̃k − z)‖

 .
10



Thus by assumption 1.1-1.2

max
Dm,D′

m

‖Dm−D′
m‖≤1

‖Dmxt+1
m,Dm −D

′
mx

t+1
m,D′

m
‖

≤ 3

dmρ

λc1 + ‖yt‖+ ρ‖(
M∑
k=1
k 6=m

Dkx̃k − z)>‖



≤ 3

dmρ

λc1 + ‖yt‖+ ρ‖z‖+ ρ

M∑
k=1
k 6=m

‖x̃k‖


≤ 3

dmρ
[λc1 + (1 +Mρ)b1]

is bounded. �

7.2 Proof of Theorem 1

Proof: The privacy loss from Dmx̃
t+1
m is calculated by:

∣∣∣∣lnP (Dmx̃t+1
m |Dm)

P (D′mx̃t+1
m |D′m)

∣∣∣∣ =

∣∣∣∣∣ln P (Dmx̃t+1
m,Dm +Dmξt+1

m )

P (D′mx̃t+1
m,D′

m
+D′mξ

′,t+1
m )

∣∣∣∣∣ =

∣∣∣∣ln P (Dmξt+1
m )

P (D′mξ
′,t+1
m )

∣∣∣∣ .
Since Dmξt+1

m and D′mξ′,t+1
m are sampled from N (0, σ2

m,t+1), combine with lemma 1, we have∣∣∣∣ln P (Dmξt+1
m )

P (D′mξ
′,t+1
m )

∣∣∣∣
=

∣∣∣∣∣2ξ
t+1
m ‖Dmxt+1

m,Dm −D
′
mx

t+1
m,D′

m
‖+ ‖Dmxt+1

m,Dm −D
′
mx

t+1
m,D′

m
‖2

2σ2
m,t+1

∣∣∣∣∣
≤

∣∣∣∣∣2Dmξt+1
m C + C2

2C2·2ln(1.25/σ)
ε2

∣∣∣∣∣
=

∣∣∣∣ (2Dmξt+1
m + C)ε2

4Cln(1.25/σ)

∣∣∣∣ .
In order to make

∣∣∣ (2Dmξt+1
m +C)ε2

4Cln(1.25/σ)

∣∣∣ ≤ ε, we need to make sure

∣∣Dmξt+1
m

∣∣ ≤ 2Cln(1.25/σ)

ε
− C

2
.

In the following, we need to proof

P (
∣∣Dmξt+1

m

∣∣ ≥ 2Cln(1.25/σ)

ε
− C

2
) ≤ δ (12)

holds. However, we will proof a stronger result that lead to (12). Which is

P (Dmξt+1
m ≥ 2Cln(1.25/σ)

ε
− C

2
) ≤ δ

2
.

Since the tail bound of normal distribution N (0, σ2
m,t+1) is:

P (Dmξt+1
m > r) ≤ σm,t+1

r
√

2π
e
− r2

2σ2
m,t+1 .
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Let r = 2Cln(1.25/σ)
ε − C

2 , we then have

P (Dmξt+1
m ≥ 2Cln(1.25/σ)

ε
− C

2
)

≤
C
√

2ln(1.25/σ)

r
√

2πε
exp

[
− [4ln(1.25/σ)− ε]2

8ln(1.25/σ)

]
.

When δ is small and let ε ≤ 1, we then have√
2ln(1.25/σ)2

(4ln(1.25/σ)− ε)
√

2π
≤

√
2ln(1.25/σ)2

(4ln(1.25/σ)− 1)
√

2π
<

1√
2π
. (13)

As a result, we can proof that

− [4ln(1.25/σ)− ε]2

8ln(1.25/σ)
< ln(

√
2π
δ

2
)

by equation (13). Thus we have

P (Dmξt+1
m ≥ 2Cln(1.25/σ)

ε
− C

2
) <

1√
2π

exp(ln(
√

2π
δ

2
) =

δ

2
.

Thus we proved (12) holds. Define

A1 = {Dmξt+1
m : |Dmξt+1

m | ≤ 1√
2π

exp(ln(
√

2π
δ

2
},

A2 = {Dmξt+1
m : |Dmξt+1

m | > 1√
2π

exp(ln(
√

2π
δ

2
}.

Thus we obtain the desired result:

P (D′mx̃t+1
m |Dm)

= P (Dmxt+1
m,Dm +Dmξt+1

m : Dmξt+1
m ∈ A1)

+P (Dmxt+1
m,Dm +Dmξt+1

m : Dmξt+1
m ∈ A2)

< eεP (Dmxt+1
m,D′

m
+Dmξ′,t+1

m ) + δ = eεP (Dmx̃t+1
m |D′m) + δ.

�
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