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ABSTRACT
This article develops a novel spatial quantile function-on-scalar regression model, which studies the
conditional spatial distribution of a high-dimensional functional response given scalar predictors. With
the strength of both quantile regression and copula modeling, we are able to explicitly characterize the
conditional distribution of the functional or image response on the whole spatial domain. Our method
provides a comprehensive understanding of the effect of scalar covariates on functional responses across
different quantile levels and also gives a practical way to generate new images for given covariate values.
Theoretically, we establish the minimax rates of convergence for estimating coefficient functions under
both fixed and random designs. We further develop an efficient primal-dual algorithm to handle high-
dimensional image data. Simulations and real data analysis are conducted to examine the finite-sample
performance.
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1. Introduction

Functional data analysis (FDA) has been an active area of
research in the past decade. Well-known monographs in this
area include Ramsay and Silverman (2005, 2007), Bowman
(2010), and Ferraty and Vieu (2006). Functional regression,
particularly the functional linear regression model (FLM), has
been extensively studied. Functional data can be treated as either
response variables or covariate predictors (Greven and Scheipl
2017). In FLM, the mean dependence is modeled through a lin-
ear model generalizing the standard multiple linear regression
model. The literature on FLM is vast. For example, scalar-on-
function regression (a continuous response variable regressed
on functional covariates) has been studied by Cai and Hall
(2006), Crambes, Kneip, and Sarda (2009), Yuan and Cai (2010),
Hall and Horowitz (2007), and Wang, Zhu, and Alzheimer’s
Disease Neuroimaging Initiative (2017). Function-on-function
regression (a functional response regressed on functional pre-
dictors) has been investigated by Yao, Müller, and Wang (2005),
Ramsay and Silverman (2005), Ivanescu et al. (2015), and Sun et
al. (2018). Function-on-scalar regression (a functional response
regressed on scalar predictors) has been studied by Ramsay
and Silverman (2005, chap. 13), Reiss, Huang, and Mennes
(2010), and Goldsmith and Kitago (2016). The aim of this article
is to develop a spatial quantile function-on-scalar regression
model and investigate its related computational and theoretical
issues.

Different from the ordinary regression that only models
conditional mean dependence, quantile regression as a more
comprehensive procedure estimates conditional quantiles of the
response variable. Since Koenker and Bassett (1978), quantile
regression has been an emerging field of statistical research
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and has been widely applied in many disciplines includ-
ing neuroimaging, finance, and economics. Quantile regres-
sion is attractive because it estimates conditional quantiles
and allows statistical inference on the response’s entire condi-
tional distribution. Most importantly, quantile regression does
not require a specified error distribution, providing a flexi-
ble framework for modeling complex non-Gaussian data. To
date, while many studies have examined different quantile
regression models, a limited number of these consider func-
tional data. Cai and Xu (2008) studied quantile regression
methods for a set of smooth coefficient time series models.
Koenker (2004) and Yi and He (2009) developed quantile regres-
sion methods for longitudinal data. Wang, Zhu, and Zhou
(2009) studied semiparametric quantile autoregression mod-
els in partially linear varying coefficient models using splines.
Li, Liu, and Zhu (2007) proposed a kernel quantile regres-
sion to estimate conditional quantile functions given train-
ing scalar covariates and responses. Kato (2012) studied func-
tional quantile regression with functional covariates and a scalar
response.

In this article, motivated by medical imaging analysis, we
propose a novel spatial quantile function-on-scalar regression
model (denoted by SQR) that studies the conditional spatial
distribution of a functional response given scalar predictors.
We are particularly interested in the case where the responses
are high-dimensional functions or images obtained from n
independent subjects. Let the functional response be {Y(s) :
s ∈ S} on a field S and the scalar predictors be x ∈
R

p. Our SQR model includes two major components. The
first component is to model the marginal conditional distri-
bution of Y(s) given x at a fixed location s. This task can

© 2021 American Statistical Association

https://doi.org/10.1080/01621459.2020.1870984
https://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2020.1870984&domain=pdf&date_stamp=2021-02-26
mailto:wangxiao@purdue.edu
http://www.tandfonline.com/r/JASA


2 Z. ZHANG ET AL.

be achieved by assuming that the τ -level conditional quan-
tile of Y(s) is assumed to be a linear function of x such that
QY(s)(τ |x) = xTβτ (s), where QY(s)(·|x) is the conditional
quantile function of Y(s) given x at a location s and βτ (s) =
(βτ1(s), . . . , βτp(s))T contains p unknown coefficient functions.
The second component is to model the joint conditional dis-
tribution of Y(s) among spatial locations via a copula model.
We adopt a parametric copula to specify the joint distribu-
tion of F(s,x)(Y(s)), where F(s,x)(·) is the conditional cumu-
lative distribution function (CDF) of Y(s) given x at s and
F(s,x)(Y(s)) follows a uniform distribution marginally. With
these two components, we are able to explicitly characterize
the conditional joint distribution of Y(s) on the whole spatial
domain S , forming a generative model that given x, we can
simulate the image data Y . The proposed method provides a
framework to comprehensively understand the effects of scalar
covariates (e.g., age, gender, and disease status) on an image
response, and a practical way to generate new images given
covariates.

Although SQR has been studied in the literature (Su and Yang
2007; Hallin, Lu, and Yu 2009; Kostov 2009; Reich, Fuentes,
and Dunson 2011; Reich 2012; Lu, Tang, and Cheng 2014;
Yang and He 2015), our method differs from them in several
important aspects. First, our SQR is primarily developed for
handling large-scale image data Y(s) with dense grids across
multiple subjects. In contrast, most existing works on SQR
focus on the development of statistical methods for analyzing
simple spatial or longitudinal data (Hallin, Lu, and Yu 2009;
Reich, Fuentes, and Dunson 2011; Reich 2012; Yang and He
2015). For instance Hallin, Lu, and Yu (2009) considered SQR
for a strictly stationary real random field and proposed a local
linear estimator of spatial quantile function. Second, we employ
a parametric copula model to directly delineate the spatial
dependence of image data within each subject. In contrast,
most existing copula models were applied to quantile regres-
sion for different purposes and data types (Chen, Koenker, and
Xiao 2009; Bouyé and Salmon 2013; De Backer, Ghouch, and
Van Keilegom 2017; Kraus and Czado 2017; Wang, Feng, and
Dong 2019). For instance, in Wang, Feng, and Dong (2019),
the copula was used to model the temporal dependence of
longitudinal data, while it is assumed a linear quantile regression
model with QY(t)(τ |x) = xTβ0(τ ) at a fixed time point t and
for given covariates x. However, our model assumes that the
components of βτ (s) are functions of both τ and the spatial
location. Third, the unknown coefficient functions βτ (s) are
assumed to reside in a reproducing kernel Hilbert space and
estimate them through minimizing a quantile check function
(Koenker and Bassett 1978) plus a roughness penalty. Fur-
thermore, we estimate the unknown parameters of the copula
model by using generalized least squares (Cressie 1985; Genton
1998). Most of the aforementioned articles involving coeffi-
cient function estimation utilize a finite-dimensional approxi-
mation, such as Fourier basis or through a roughness penalty,
to regularize model complexity. It often leads to reasonable
functional estimate, but at a price of complicating theoretical
investigation.

Our main contributions are summarized as follows. First,
it allows us to establish a representation theorem stating that,
although the optimization is defined on an infinite-dimensional

function space, its solution actually resides in a data-adaptive
finite-dimensional subspace. This result guarantees an exact
solution when optimization is carried out on this finite dimen-
sional subspace. Second, we develop and implement an efficient
primal-dual algorithm to handle large image data efficiently, as
computation is generally very challenging with complex, high-
dimensional images in quantile regression. We use extensive
numerical studies to demonstrate the computational advantages
of our method over other popular quantile regression opti-
mization solvers such as the alternating direction method of
multipliers (ADMM) algorithm (Boyd et al. 2011). Third, an
important theoretical result of our work establishes the optimal
convergence rate of the error in estimating these coefficient
functions under both fixed and random designs. This general-
izes the results in Cai and Yuan (2012) and Du and Wang (2014)
for functional linear regression with a scalar response to the
functional response scenario.

The rest of this article is organized as follows. In Section 2,
we introduce the mathematical details of the proposed SQR
model, including the quantile regression and copula models.
Section 3 introduces an efficient primal-dual algorithm to solve
the high-dimensional quantile regression model and a general-
ized least square method to estimate parameters in the copula
model. In Section 4, we studied the optimal convergence rate
of the error in estimating the coefficient functions under both
fixed and random designs. In Section 5, extensive numerical
studies are used to illustrate the advantages of the proposed
method.

2. Spatial Quantile Regression and Copula Models

The SQR model studies the conditional spatial distribution of
an imaging response {Y(s) : s ∈ S} given scalar predictors x ∈
R

p. The conditional quantile function of Y(s) given x for a fixed
location s at any quantile level τ ∈ (0, 1) is assumed to be

QY(s)(τ |x) = xTβτ (s), (1)
where βτ (s) = (βτ1(s), . . . , βτp(s))T ∈ Fp is the vector of
the unknown coefficient functions with each component of βτ

residing in the function space F . Assume that F is a reproduce
kernel Hilbert space (RKHS) H(K) with a reproducing kernel
K. Equation (1) completely specifies the conditional marginal
distribution of Y(s) given x and s.

In practice, the image response is often observed at discrete
locations s1, . . . , sm in S , and the image values across different
points in S are highly correlated. The conditional marginal
distribution of Y(s) is fully captured by (1), however, the spatial
dependence among Y(s) at different points in S is not modeled.
To capture the joint distribution of (Y(s1), . . . , Y(sm)) given
scalar covariates x, we propose using copula models. Let the
conditional CDF of Y(sj) given x be F(sj,x)(y) = P(Y(sj) ≤
y|x), j = 1, . . . , m. The random variable Ux(sj) = F(sj,x)(y)
has a uniform marginal distribution. The conditional copula of
(Y(s1), . . . , Y(sm)) given x is defined as the conditional joint
CDF of (Ux(s1), . . . , Ux(sm)) given by

Cθ (u1, . . . , um) = P

(
Ux(s1) ≤ u1, . . . , Ux(sm) ≤ um

∣∣∣x)
. (2)

The copula C parameterized by θ contains all information on the
spatial dependence structure of Y(·). In this article, we adopt a
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parametric family of copulas Cθ with θ = θ(x) to characterize
the joint conditional distribution of (Y(s1), . . . , Y(sm)). There-
fore, the conditional joint distribution of (Y(s1), . . . , Y(sm))

given x can be written as

P

(
Y(s1) ≤ y1, . . . , Y(sm) ≤ ym

∣∣∣x)
= Cθ(x)

(
F(s1,x)(y1), . . . , F(sm,x)(ym))

)
.

There are many choices of copula models such as the Stu-
dent’s t copula (Demarta and McNeil 2005), the noncentral χ2-
copula (Bárdossy 2006), and the Gaussian copula (Kazianka and
Pilz 2010). It is a challenging task to determine the optimal
choice of the copula. In our numerical analysis, we have exam-
ined 21 different copula models for the real diffusion tensor
imaging (DTI) dataset from the ADNI and found that the Stu-
dent’s t copula fits the data well in most of the times. Therefore,
we adopt the Student’s t copula in this article, and denote it by

Cθ

(
u1, . . . , um

)
= t�,�θ

(
t−1
� (u1), . . . , t−1

� (um)
)

,

where t�,�θ
represents the multivariate t-distribution function

with parameter (�θ , �, 0), and t−1
� is the inverse CDF of t-

distribution with � degrees of freedom. Note that �/(� − 2)�θ

is the covariance matrix of the t-distribution for � > 2 in t-
distribution. Furthermore, we use the Mateŕn family (Guttorp
and Gneiting 2006; Matérn 2013) to specify a class of isotropic
correlation functions given by

corr
(

t−1
� (U(s + h)), t−1

� (U(s))
∣∣∣ x

)
= M(h)

that depends on the spatial separation parameter h, where

M(h) = 21−ν

�(ν)
(α‖h‖)νKν(α‖h‖). (3)

Here Kν is the modified Bessel function of the second kind,
ν > 0 is a smoothness parameter defining the smoothness of
the sample path, and α > 0 is a spatial scale parameter. For our
numerical studies, the parameters � and ν are selected and kept
fixed, and the parameter α is treated as unknown. We assume
that α depends on x. With an abuse of notation, we write the
scale parameter as exp(αTx), where α ∈ R

p.
Suppose that we observe (xi, Yi(sij)) for subject i and location

sij, i = 1, . . . , n and j = 1, . . . , m. In this article, we consider
two different designs for the location points {sij}. The first one is
called a fixed design, where the functional response are observed
at the same locations across curves or images. That is, s1j =
s2j = · · · = snj := sj for j = 1, . . . , m. A second design, called
random design, occurs when {si1, . . . , sim} are independently
sampled from a distribution {π(s) : s ∈ S}. Our goal is to
estimate the coefficient functions βτk(·), k = 1, . . . , p and the
parameters in the copula model. There are two main challenges
related to this problem. The first one is to construct statistically
efficient estimates of unknown parameters, in particularly the
infinite dimensional coefficient functions. The second one is to
develop a numerically efficient algorithm to estimate unknown
parameters to handle the high dimensionality of functional or
image data.

3. Algorithms

3.1. Efficient Primal-Dual Algorithm for Estimating
Coefficient Functions

For given observations (xi, Yi(sij)), we estimate the unknown
parameters in the spatial quantile regression model (1) by solv-
ing the following optimization problem for a given τ ∈ (0, 1),

min
β∈Fp

n∑
i=1

m∑
j=1

ρτ (Yi(sij) − xT
i βτ (sij)) + λ

2

p∑
k=1

R(βτk), (4)

where ρτ (r) = τ rI(r > 0) − (1 − τ)rI(r ≤ 0) is the check
function (Koenker and Bassett 1978) and I(·) is the indicator
function, βτ (s) = (βτ1(s), . . . , βτp(s))T are the coefficient func-
tions, R is a roughness penalty on βτ , and λ > 0 is a parameter
controlling the smoothness penalty. We let R(βτk) = ‖βτk‖2

K ,
where ‖ · ‖K is a seminorm in the RKHS H(K) (Wahba 1990).
For simplicity, we also assume that the null space of H(K) is {0}.
In the following derivations, we illustrate the algorithm in the
case of fixed design, so that Y(sij) can be denoted as Y(sj). An
extension to the case of a random design is straightforward.

Throughout the article, Gaussian kernels are used for K(·, ·)
just for simplicity. Other kernels can be easily incorporated.
For example, some common options include the Laplace kernel
K(x, y) = exp(−σ‖x − y‖1), the polynomial kernel K(x, y) =
(〈x, y〉 + σ 2)d, and the inverse-quadratic kernel K(x, y) =
σ 2/(σ 2 + ‖x − y‖2

2). Learning kernels is definitely a nontrivial
question. A common way for learning kernels is to combine
different kernels to improve them. For example, let K(x, y) =
c1K1(x, y) + c2K2(x, y) with c1, c2 ≥ 0, where K1 and K2 are
potential kernels. The hyperparameters c1 and c2 can be set by
cross-validation. Moreover, based on both simulations and real
data analysis reported below, the use of Gaussian kernels leads
to accurate estimation results.

Let β̂τ = (β̂τ1, . . . , β̂τp) be the optimal solution of (4).
For notational simplicity, we drop the subscript τ from the
coefficient functions β when the context is clear. It is straight-
forward to establish a representation theorem (Wahba 1990)
stating that β̂ actually resides in a finite-dimensional subspace
of H, which facilitates computation by reducing an infinite-
dimensional optimization problem to a finite-dimensional one.
Specifically,

β̂k(s) = μk + bT
k ks, (5)

for k = 1, . . . , p, where μk is a scalar, bk = (bk1, . . . , bkm)T ∈
R

m, and ks = (K(s, s1), . . . , K(s, sm))T ∈ R
m. The spatial

smoothness of β̂k(s) comes from the RKHS assumption and the
nature of image data. The use of regularization term λR(βk) is
to regularize the coefficients {bkj}m

j=1 to avoid overfitting and the
use of GACV allows us to implicitly incorporate spatial corre-
lations to select the tuning parameter λ. Specifically, if there is
high correlation among observations on the same subject, then
GACV would lead to the selection of a large λ.

The challenges of solving (4) under the parameterized form
in (5) come from several aspects. First, the number of param-
eters to be estimated is generally large in medical imaging
applications. In particular, each of the p coefficient functions is
represented by m + 1 unknown parameters (m depends on the
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dimensionality of Y). For example, if Y is a two-dimensional
image with a resolution of 50 × 50, we have m = 2500, and
so we will need to estimate p(2500 + 1) parameters. Second, the
nondifferentiability of the check function significantly increases
the difficulty of the optimization problem. A straightforward
optimization strategy for (4) is to use the popular ADMM
algorithm (Boyd et al. 2011) that divides the optimization (4)
into a few simpler optimization subproblems that can be solved
iteratively. Details of the ADMM algorithm applied for solving
(4) are included in Supplement III. However, the convergence of
ADMM can be very slow, and when the dimension of Y is large,
the computational cost of some subproblems of ADMM can be
huge due to the large matrix inversion.

To overcome this computational challenge, we propose a
primal-dual algorithm that converges much faster than ADMM
and avoids large matrix inversion in each optimization iter-
ation. The primal-dual kind of optimization approaches has
been applied in the field of quantile regression. For instance,
Koenker and Park (1996) described a primal-dual approach for
computation of nonlinear quantile regression estimators based
on the interior point method. Portnoy and Koenker (1997)
and Portnoy (1997) compared the interior point method with
existing simplex-based methods for quantile regression, and
showed that the interior point approach was competitive and
exhibited a rapidly increasing advantage for large problems. In
our problem, to estimate coefficient function β̂k corresponding
to the covariate xk for k = 1, . . . , p, we rely on the formula (5).
However, the traditional interior point algorithm for quantile
regression (Koenker and Park 1996; Portnoy 1997; Portnoy and
Koenker 1997) does not involve {bk} that are difficult to solve.

We make a critical observation that the primal variable μ =
(μ1, . . . , μp)T is also a dual variable for the dual problem, which
leads to the following efficient optimization strategy. Similar to
Li, Liu, and Zhu (2007), we introduce positive residuals {ξij ∈
R+} and negative residuals {ζij ∈ R+} such that −ζij ≤ Yi(sj)−
Ŷi(sj) ≤ ξij, where Ŷi(sj) = xT

i β̂(sj). We obtain an optimization
problem that is equivalent to (4) as follows:

min
ξ ,ζ ,μ,b

τ

n∑
i=1

m∑
j=1

ξij + (1 − τ)

n∑
i=1

m∑
j=1

ζij + λ

2

p∑
k=1

bT
k �bk

s.t. Yi(sj) = xT
i μ +

p∑
k=1

xikkT
sj bk + ξij − ζij,

i = 1, . . . , n, j = 1, . . . , m, (ξ , ζ ) ∈ R
nm+ ,

where � = (K(si, sj)) ∈ R
m×m, μ = (μ1, . . . , μp)T ∈ R

p, xik
is the kth element of xi, and ξij and ζij are elements of ξ and ζ ,
respectively. The primal Lagrangian function is defined as

� = τ

n∑
i=1

m∑
j=1

ξij + (1 − τ)

n∑
i=1

m∑
j=1

ζij + λ

2

p∑
k=1

bT
k �bk

−
n∑

i=1

m∑
j=1

dij(xT
i μ +

p∑
k=1

xikkT
sj bk + ξij − ζij − Yi(sj))

−
n∑

i=1

m∑
j=1

κijξij −
n∑

i=1

m∑
j=1

κ̃ijζij,

where dij, κij ≥ 0, and κ̃ij ≥ 0 are Lagrange multipliers. Setting
the derivatives of � to zero leads to

∂

∂μ
:

n∑
i=1

m∑
j=1

dijxi = 0, (6)

∂

∂bk
: bk = 1

λ

n∑
i=1

m∑
j=1

dijxik�
−1ksj , (7)

∂

∂ξij
: dij = τ − κij, (8)

∂

∂ζij
: dij = −(1 − τ) + κ̃ij, (9)

and the Karush–Kuhn–Tucker conditions are

dij(xT
i μ +

p∑
k=1

xikkT
sj bk + ξij − ζij − Yi(sj)) =0, (10)

κijξij =0, (11)
κ̃ijζij =0. (12)

Since κij and κ̃ij must be nonnegative, following (8) and (9), we
have dij ∈ [−(1 − τ), τ ]. Furthermore, we have

dij ∈ (−(1 − τ), τ) ⇒ κij, κ̃ij > 0 ⇒ ξij = ζij = 0 ⇒ Yi(sj)

= xT
i μ +

p∑
k=1

xikkT
sj bk.

Define Se as the index set

Se = {(i, j) : dij ∈ (−(1 − τ), τ), i = 1, . . . , n, j = 1, . . . , m}.

If (i, j) ∈ Se, we have

Yi(sj) = xT
i μ +

p∑
k=1

xikkT
sj bk (13)

= xT
i μ + 1

λ

n∑
i′=1

m∑
j′=1

di′j′xT
i′ xiK(sj′ , sj).

If the {dij} are known, then we may solve (4) by obtaining μ and
bk through (13) and (7). However, it is difficult to obtain dij in
the presence of linear constraints (6).

Next, we consider the Lagrange dual problem where the dual
function is defined as infξ ,ζ ,κ ,κ̃ �. To simplify the notation, we
vectorize our data by letting y = (Yi(sj)) ∈ R

nm, d = (dij) ∈
R

nm, and X = [x1; . . . ; xn] ∈ R
p×n. With these notations, from

(6)–(9), the dual problem can be written as

max
d

− 1
2λ

dTQd + dTy, (14)

s.t. d ∈ [−(1 − τ), τ ]nm, X̃d = 0,

where Q = � ⊗ XTX ∈ R
nm×nm and X̃ = (e ⊗ XT)T ∈

R
p×nm with e = [1, . . . , 1]T ∈ R

m and ⊗ indicating the
Kronecker product. The optimization problem (14) is a high-
dimensional quadratic programming problem with both box
and linear constraints. Because of the linear constraints, we may
not be able to solve this problem efficiently. However, these
linear constraints can be removed using the primal information
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because the primal variable μ is also a dual variable for the
dual problem. Hence, if μ is known, the dual variable d can be
obtained by solving

max
d

− 1
2λ

dTQd + dT(y − X̃Tμ), (15)

s.t. d ∈ [−(1 − τ), τ ]nm.

The quadratic program (15) with the box constraints can be
solved efficiently with the algorithm introduced in De Angelis,
Pardalos, and Toraldo (1997). Therefore, our optimization strat-
egy for (4) is to solve the primal and dual problems alternatively
until convergence.

Next, we discuss the effective degrees of freedom of our
model and smoothing parameter selection. The divergence

div(Ŷ) =
n∑

i=1

m∑
j=1

∂Ŷi(sj)

∂Yi(sj)

has been used by many authors (Efron 1986; Meyer and
Woodroofe 2000; Koenker 2005; Li, Liu, and Zhu 2007) to esti-
mate the effective dimension for a general modeling procedure.
This idea arises from the framework of Stein’s unbiased risk esti-
mation theory (Stein 1981). Under the setting of nonparamet-
ric regression with homoscedastic normal errors, divergence
is an unbiased estimate of the sum of the covariance between
individual fitted values and the corresponding observed val-
ues. Koenker, Ng, and Portnoy (1994) heuristically argued that,
under the one-dimensional nonparametric quantile smoothing
spline model, the number of interpolated observations is a
plausible estimate for the effective dimension of the fitted model.
Li, Liu, and Zhu (2007) proved that, under the one-dimensional
nonparametric kernel quantile regression model, the divergence
is exactly equal to the number of interpolated observations. In
this article, we formally prove that the divergence is exactly the
same as the number of interpolated Yi(sj)’s, thus, justifying its
use for the selection of λ.

Theorem 3.1. Let Se = {(i, j) : Yi(sj) = Ŷi(sj)}. For any fixed
λ > 0 and any Yi(sj), we have

div(Ŷ) = |Se|.
The proof is presented in the Appendix. The choice of the

smoothing parameter λ is a critical but difficult question. Com-
monly used criteria for quantile regression include the Schwarz
information criterion (SIC) (Schwarz 1978; Koenker, Ng, and
Portnoy 1994) and the generalized approximate cross validation
(GACV) (Yuan 2006). We adopt the GACV criteria in this article
to select λ:

GACV(λ) =
∑n

i=1
∑m

j=1 ρτ (Yi(sj) − xT
i β̂(sj))

nm − df
, (16)

where df is a measure of the effective dimensionality of the fitted
model that can be unbiasedly estimated by the divergence as
defined in Theorem 3.1.

3.2. Generalized Least Squares for the Copula

The quantile regression model in (1) only gives the marginal
distribution of Y(sj) given x. To obtain the joint distribution
of (Y(s1), . . . , Y(sm)) given x, we use the copula model. Let
Ux(sj) = F(sj,x)(Y(sj)), j = 1, . . . , m. We characterize the joint
distribution of (Ux(s1), . . . , Ux(sm)) using the Student’s t copula
model

Cθ

(
u1, . . . , um

∣∣∣x)
= P

(
Ux(s1) < u1, . . . , Ux(sm) < um

∣∣∣x)
= t�,�θ(x)

(
t−1
� (u1), . . . , t−1

� (um)
)

.

The covariance function follows the Mateŕn model (Guttorp and
Gneiting 2006; Matérn 2013), which specifies a class of isotropic
correlation functions

corr(t−1
� (U(sj)), t−1

� (U(sk))|x) = M(sj − sk), sj �= sk.

For the Mateŕn model, we can easily verify that

var
(

t−1
� (U(sj)) − t−1

� (U(sk))
)

= 2�/(� − 2)(1 − M(h)),

where h = sj − sk. We denote N(h) = {(sj, sk) : sj −
sk = h; j, k = 1, . . . , m} to be the set of all pairs of locations
having lag difference h. Denote γ (h) = 1 − M(h). Matheron
(1963) defined the earliest unbiased nonparametric variogram
estimator of γ (h) for a fixed lag h as

2γ̂ (h) = � − 2
�|N(h)|

∑
(sj,sk)∈N(h)

∣∣∣t−1
� (U(sj)) − t−1

� (U(sk))
∣∣∣2

.

The method of generalized least squares determines an esti-
mator θ̂ by minimizing

G(θ) = (2γ̂ − 2γ (θ))T�−1(2γ̂ − 2γ (θ)).

Cressie (1985) studied the method of generalized least squares
for variogram fitting in the case where the variance-covariance
matrix � is diagonal, leading to the method of weighted least
squares (WLS). Genton (1998) discussed a more general frame-
work to approximate the variance-covariance matrix and signifi-
cantly improved the fit. We first discuss how to construct pseudo
copula observations. Pseudo copula observations Ũxi(sj) can be
constructed as F̂(sj,x)(Yi(sj)), for i = 1, . . . , n, j = 1, . . . , m,
where F̂j is the estimated conditional CDF of Yi(sj) given xi.
The information contained in the dual problem is the key to
obtain these pseudo copula observations. Let d̃ij = dij + (1 − τ)

such that d̃ij(τ ; xj, sj) : [0, 1] → [0, 1]. This d̃ij plays a crucial
role in connecting the statistical theory of quantile regression to
the classical theory of rank tests (Gutenbrunner and Jurecková
1992; Gutenbrunner et al. 1993). In particular, let Ŷi(sj) =
xT

i β̂τ (sj) be the fitted value. We have

d̃(τ ; xi, sj) =
⎧⎨
⎩

1 if Yi(sj) > Ŷi(sj),
(0, 1) if Yi(sj) = Ŷi(sj),
0 if Yi(sj) < Ŷi(sj).

(17)

The integral
∫ 1

0 d̃(τ ; xi, sj)dτ provides a natural estimate of con-
ditional quantile level of the observed response Yi(sj) given xi,
that is

Ũxi(sj) =
∫ 1

0
d̃(τ ; xi, sj)dτ , i = 1, . . . , n and j = 1, . . . , m.

(18)
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We denote different lags h by hk for k = 1, . . . , K, and let
gx(θ) = (2γ̂x(h1) − 2γx(h1, θ), . . . , 2γ̂x(hK) − 2γx(hK , θ))T .
We use Genton’s method (Genton 1998) to estimate � in the
generalized least squares. Let Vx(θ) be the inverse of the disper-
sion matrix of the sample variogram E(gx(θ)gx(θ)T |x). We can
obtain θ via:

θ̂ = arg min
θ

n∑
i=1

gT
xi(θ)Vxi(θ)gxi(θ). (19)

The asymptotic properties of this estimator have been estab-
lished in Cressie (1985, 2015) and Lahiri, Lee, and Cressie
(2002). We omit the details here.

4. Optimal Rate of Convergence

In this section, we establish the minimax rate of convergence
of estimating the coefficient functions. We consider the two
different designs introduced previously. For the fixed design,
the spatial functional response is observed at the same locations
across curves, that is, m1 = m2 = · · · = mn := m and
s1j = s2j = · · · = snj := sj for j = 1, . . . , m. Assume
that, as m → ∞, the empirical distribution of sj’s converges
to a fixed distribution π(s). For the random design, the sij are
independently sampled from a distribution. With an abuse of
notation, we also denote it by π(s). For any two p-dimensional
vector functions f 1, f 2 ∈ Fp, we define the L2-distance as

∥∥∥f 1 − f 2

∥∥∥2

s,2
=

∫
S

p∑
k=1

(f1k(s) − f2k(s))2π(s)ds.

For any fixed quantile level τ ∈ (0, 1), let βτk be the true
coefficient function. We measure the accuracy of the estimation
of β̂τk by

Eτ (β̂τk, βτk) = ∥∥β̂τk − βτk
∥∥2

s,2.

The rate of convergence of Eτ (β̂τk, βτk) as the sample size n and
the location sampling frequency m increase reflects the difficulty
of the estimation problem.

4.1. Minimax Lower Bound

The following result establishes the minimax lower bound for
estimating βτ over Fp under both fixed and random designs.
The minimax lower bound is given in the following theorem.

Theorem 4.1. Fix τ ∈ (0, 1), and suppose the eigenvalues {ρk :
k ≥ 1} of the reproducing kernel K satisfies ρk � k−2r for some
constant 0 < r < ∞. Then

(a) for the fixed design,

lim
aτ →0

lim
n,m→∞ inf

β̃τ ∈Fp
sup

βτ ∈Fp
P

(
Eτ (β̃τ , βτ ) ≥ aτ (n−1 + m−2r)

)
= 1; (20)

(b) and for the random design,

lim
aτ →0

lim
n,m→∞ inf

β̃τ ∈Fp
sup

βτ ∈Fp
P

(
Eτ (β̃τ , βτ ) ≥ aτ ((nm)−

2r
2r+1 + n−1)

)
= 1. (21)

The above infimums are taken over all possible estimators β̃τ

based on the training data.

Remark 4.1. The lower bounds established in Theorem 4.1
depend on the decay rate of the eigenvalues of the reproducing
kernel K. The lower bounds are different between the fixed
design and the random design. For both designs, when the
number of locations m is large, it has no effect on the rate of
convergence and the optimal rate is of order n−1. On the other
hand, a phrase transition phenomenon happens when m is of
order n1/2r . If m is below this order, the optimal rate for the fixed
design is of order m−2r and for the random design is of order
(mn)−2r/(2r+1). We may conclude that the random design leads
to a better result in terms of the rate of convergence. Similar
phenomenon has been studied when estimating the mean of
functional data (Cai and Yuan 2012).

Remark 4.2. The constants aτ in (20) and (21) depend on the
quantile level τ . If we assume τ ∈ T ⊂ (0, 1) with T being a
compact subset of (0, 1), it is possible to extend Theorem 4.1 to
hold uniformly for all τ , that is, we may choose a constant a in
both (20) and (21) that does not depend on τ . This result can be
established by a slight modification of the proof of Theorem 4.1.

4.2. Minimax Upper Bound

In this section, we consider the upper bound for the minimax
risk and construct specific rate optimal estimators under both
designs. The upper bound shows that the rates given in The-
orem 4.1 are sharp. Specifically, we adopt the roughness reg-
ularization method to estimate the coefficient function vector
βτ ∈ Fp by minimizing

n∑
i=1

m∑
j=1

ρτ

(
Yi(sij) − xT

i βτ (sij)
) + λ

p∑
k=1

‖βτk‖2
K , (22)

where λ > 0 is a tuning parameter balancing fidelity to the
data and smoothness of the estimate. Let β̂τ be the estimate
from (22).

We now introduce the following main assumptions, which
put some constraints on the conditional CDF of Y(s) given x
and s and the design matrix from the covariates:

A1. Let the CDF of Y(s) given x and s be F(s,x)(y) = P(Y(s) ≤
y|x). Assume that there exist constants c0 > 0 and c1 >

0 such that for any u satisfying |u| ≤ c0,
∣∣F(s,x)(u) −

F(s,x)(0)
∣∣ ≥ c1|u|2.

A2. Assume x belongs to a compact subset of Rp and that the
eigenvalues of E(xxT) are bounded below and above by
some positive constants c2 and 1/c2, respectively.

Theorem 4.2. Fix τ ∈ (0, 1). Suppose the eigenvalues {ρk : k ≥
1} of the reproducing kernel K satisfies ρk � k−2r for some
constant 0 < r < ∞. If A1 and A2 hold, then

(a) for the fixed design,

lim
Aτ →∞ lim

n,m→∞ sup
βτ ∈Fp

P

(
En(β̂τ , βτ ) ≥ Aτ (n−1 + m−2r)

)
= 0 (23)

for any λ = O(nm(n−1 + m−2r));
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(b) and for the random design,

lim
Aτ →∞ lim

n,m→∞ sup
βτ ∈Fp

P

(
En(β̂τ , βτ ) ≥ Aτ ((nm)−

2r
2r+1 + n−1)

)
= 0

(24)
for any λ = O(nm(n−1 + m−2r/(2r+1))).

Remark 4.3. Combining Theorems 4.1 and 4.2 demonstrates
that β̂λ is rate-optimal. Similar to Theorem 4.1, the rate of
convergence shows both similarities and significant differences
between fixed and random designs. In particular, for the random
design, the optimal rate is (mn)−2r/(2r+1) when m = O(n1/2r)
and it is interesting to note that the dependency among Yi(sij)
does not affect the rate of convergence.

It is possible to extend Theorem 4.2 to hold uniformly for all
τ in some domain of interest. In the following, we assume that
τ ∈ T , with T being a compact subset of (0, 1).

Corollary 4.1. Assume τ ∈ T , and assume the same conditions
of Theorem 4.2.

(a) For the fixed design, we have

sup
τ∈T

∥∥β̂τ − βτ

∥∥2
s,2 = Op

(
n−1 + m−2r

)
(25)

for any λ = O(nm(n−1 + m−2r));
(b) For the random design, we have

sup
τ∈T

∥∥β̂τ − βτ

∥∥2
s,2 = Op

(
(nm)−

2r
2r+1 + n−1)

)
(26)

for any λ = O(nm(n−1 + m−2r/(2r+1))).

5. Numerical Analysis

In the following section, we evaluate the finite sample perfor-
mance of our method by using both simulated and real datasets,
and compare with other spatial quantile regression methods.

5.1. Algorithm Complexity

We first study the computational complexity of the proposed
primal-dual algorithm for SQR. As a comparison, we developed
another optimization algorithm based on the popular ADMM
(Boyd et al. 2011). Please refer to Supplement III for more
details on the ADMM algorithm. The iterative ADMM algo-
rithm divides the optimization problem in (4) into multiple sub-
problems, each of which has an explicit solution. In the high-
dimensional scenario, however, explicitly solving each step is
not computationally easy since it requires the multiplication
and inversion of large matrices. Another disadvantage of using
ADMM is its convergence rate, which can be poor when high
accuracy is desired (Boyd et al. 2011). In contrast, the pro-
posed primal-dual algorithm converges very quick and does not
require matrix inversion. We implemented and compared both
algorithms in MATLAB on a MacBook Pro with a 2.5 GHz Intel
Core i7 CPU and 16 GB of RAM. In addition, an Bayesian spatial
quantile regression (BSQR) method proposed in Reich, Fuentes,
and Dunson (2011) was implemented in R and compared with
our method. In our implementation, 5000 MCMC samples were

drawn and the final results were summarized based on a burn-in
of first 1000 samples.

Simulation datasets were generated from the following
model:

Yi(sj) = xi1βτ1(sj) + xi2βτ2(sj) + xi3βτ3(sj) + ηi(sj, τ),

for i = 1, . . . , n; j = 1, . . . , m, where xi1 = 1, xi2 ∼
Bernoulli(0.5), xi3 ∼ Uniform(0, 1), and {sj} are evenly sampled
on [0, 1]. We also set ηi(sj) = vi(sj) + εi(sj), where εi(sj) ∼
N(0, 0.1), and (vi(s1), . . . , vi(sm)) follows a multivariate normal
distribution with zero mean and a covariance matrix taking the
form cov(vi(sj), vi(sl)) = a ∗ exp(−((sj − sl)/h)2) with a = 0.6
and h = 0.8. We first construct ηi(s1), . . . , ηi(sm) for each i, and
then let ηi(sj, τ) = ηi(sj) − F−1(τ ) with F being the marginal
density function of ηi(sj) to make the τ th quantile of ηi(sj, τ)

zero for identifiability. We set βτ1(s) = 5s2, βτ2(s) = 2(1 − s)4,
and βτ3 = 2 + 20 sin(6s) + 2s3 for s ∈ [0, 1]. A Gaussian kernel
with σ = 0.2 is used for H(K). In all simulations, we fix the
smoothing parameter λ = 1.

To compare the computational complexity, we generated
different datasets with a combination of n = {50, 100, 200, 500}
and m = {50, 100, 1000}. For each simulated dataset, we ran
each algorithm for 100 times and computed the averages and
standard errors of the elapsed CPU times. Table 1 summarizes
the results at τ = 0.1, 0.5, and 0.8. Note that we did not directly
compare with the BSQR in Table 1, which as a Bayesian method
estimates βτ at L quantile levels simultaneously. Using the same
computer, it took BSQR about 1860 sec to get 5000 MCMC
samples when m = 50 and n = 50. The computational time
significantly increases as m increases (i.e., >3000 sec when m =
100).

To compare the estimation precision, we use the root mean
integrated squared error (RMISE), which is defined as

RMISEτ =
⎛
⎝m−1

m∑
j=1

(β̂τk(sj) − βτk(sj))
2

⎞
⎠

1/2

for k = 1, 2, 3.

Table 2 reports RMISE, averaged over 100 runs, and its standard
deviation (SD). Table 1.1 in Supplement II reports RMISEs in a
more noisy scenario.

The results in Tables 1 and 2 clearly indicate that the primal-
dual algorithm outperforms the ADMM algorithm and BSQR
in both computational efficiency and accuracy. Also the pro-
posed algorithm is robust to high noise based on the results
in Table 1.1 in Supplement II. When the sample size n and
dimension of data m are large, it takes an extremely long time
for ADMM to obtain a solution, whereas the primal-dual algo-
rithm is much more efficient. Such computational efficiency is
particularly important for our high-dimensional neuroimaging
applications. Moreover, given a fixed m and an increasing num-
ber of the observations n, the estimated β gets better, following
our theoretical results. Experiments with the random design
also produce similar results. The computational bottleneck of
our current implementation is the quadratic programming with
box constraints, which can be improved by using C++ or parallel
computing.
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Table 1. Elapsed CPU times of ADMM and primal-dual algorithms.

Primal-dual ADMM

(n, m) τ = 0.1 τ = 0.5 τ = 0.8 τ = 0.1 τ = 0.5 τ = 0.8

(50,50) 0.042(0.009) 0.045(0.008) 0.059(0.065) 18.5(0.221) 18.1(0.595) 19.10(0.468)
(50,100) 0.130(0.008) 0.152(0.007) 0.131(0.012) 41.1(0.409) 41.41(0.433) 41.97(0.646)
(100,50) 0.133(0.007) 0.148(0.007) 0.126(0.005) 39.01(0.920) 38.98(0.909) 38.98(0.908)
(100,100) 0.293(0.037) 0.400(0.089) 0.358(0.068) 89.57(0.273) 89.61(0.292) 89.61(0.292)
(200,50) 0.295(0.036) 0.450(0.088) 0.330(0.043) 82.49(0.356) 82.51(0.340) 82.45(0.339)
(200,100) 0.703(0.046) 0.849(0.095) 0.737(0.096) 178.80(323) 179.45(0.400) 179.20(0.399)
(500,50) 1.10(0.076) 1.24(0.137) 1.07(0.058) 201.62(0.211) 209.07(0.349) 200.07(0.349)
(500,100) 2.71(0.230) 3.11(0.544) 2.92(0.562) 440.60(0.490) 444.49(0.552) 443.40(0.553)
(500,1000) 120(1.36) 118(0.798) 119(0.570) * * *

NOTE: Mean and standard deviation (in bracket) are displayed in each entry.
* Missing value due to significant computing time. The unit is second.

Table 2. Comparison of the RMISE of the estimators obtained from different methods.

Primal-dual (τ = 0.5) ADMM (τ = 0.5) BSQR (τ = 0.5))

(n, m) β1 β2 β3 β1 β2 β3 β1 β2 β3

(50,50) 0.065(0.034) 0.092(0.041) 0.272(0.069) 0.282(0.071) 0.210(0.067) 0.560(0.112) 0.482(0.097) 0.340(0.081) 0.584(0.191)
(50,100) 0.042(0.027) 0.054(0.030) 0.150(0.056) 0.078(0.034) 0.148(0.046) 0.212(0.069) 0.206(0.141) 0.342(0.163) 0.542(0.123)
(100,50) 0.053(0.035) 0.063(0.034) 0.189(0.056) 0.105(0.035) 0.205(0.065) 0.311(0.064) 0.235(0.055) 0.200(0.144) 0.337(0.123)
(100,100) 0.028(0.019) 0.025(0.017) 0.087(0.032) 0.033(0.019) 0.136(0.045) 0.151(0.065) 0.231(0.024) 0.157(0.072) 0.354(0.143)
(200,50) 0.039(0.021) 0.029(0.018) 0.110(0.031) 0.067(0.033) 0.164(0.047) 0.227(0.053) 0.231(0.097) 0.128(0.056) 0.310(0.091)
(200,100) 0.029(0.013) 0.018(0.010) 0.079(0.020) 0.025(0.020) 0.122(0.053) 0.082(0.042) 0.137(0.025) 0.069(0.015) 0.251(0.025)
(500,50) 0.036(0.012) 0.019(0.010) 0.090(0.019) 0.028(0.019) 0.166(0.057) 0.083(0.043) 0.077(0.039) 0.083(0.009) 0.157(0.041)
(500,100) 0.029(0.007) 0.018(0.007) 0.078(0.011) 0.020(0.018) 0.097(0.029) 0.062(0.035) 0.073(0.017) 0.098(0.007) 0.143(0.073)

NOTE: Mean and standard deviation (in bracket) are displayed in each entry.

Figure 1. βμ , βδ and simulated Y in the copula model.

5.2. Simulation Study on Copula Model

In this section, we evaluate the finite sample performance of
the proposed copula model in capturing the joint distribution
of {Y(sj)} given x. Similar to Section 5.1, we simulate x =
[x1, x2, x3]T ∈ R

3 according to x1 = 1, x2 ∼ Bernoulli(0.5), and
x3 ∼ Uniform(0, 1). To adapt the copula model, we simulate
the response image Y using a different procedure. We let Y(s)
conditional on x be a normal distribution with mean μx(s) and
variance σ 2

x (s) and the quantile of Y(s) at different s follow a
Gaussian process. More specifically, the τ th quantile of Y(sj) is
given as

F−1
(sj,x)(τ ) = μx(sj) + σx(sj)�

−1(τ ).

Since in our mode we assume linear relations, both μx(sj) and
σx(sj) should be linear functions of x in the simulation. We
let μx(sj) = x1β

μ
1 (sj) + x2β

μ
2 (sj) + x3β

μ
3 (sj) and σx(sj) =

x1β
σ
1 (sj) + x2β

σ
2 (sj) + x3β

σ
3 (sj). That is, we write the τ th

quantile of Y(sj) as F−1
(sj,x)(τ ) = xTβτ (sj), where βτ (s) =

(β
μ
1 + βσ

1 �−1(τ ), . . . , βμ
3 + βσ

3 �−1(τ ))T . Figure 1 plots the
simulated β ’s. To simulate Y(·) with spatial dependence, we use
the introduced copula model. We let �−1(U(s)) with U(s) =
F(s,x)(Y(s)) be a Gaussian process generated from the Matérn
family

(�−1(U(s1)), . . . , �−1(U(sm))|x ∼ N(0, �(x,α)),

with �(x,α)(s, s) = σ 2
(x,α)(s) = (x1β

σ
1 (s)+x2β

σ
2 (s)+ x3β

σ
3 (s))2,

�(x,α)(si, sj) = σ(x,α)(si)σ(x,α)(sj) M(|si − sj|), and M(h) =
21−ν �(ν)(exp(αTx)‖h‖)νKν(exp(αTx)‖h‖). We set ν = 5/2,
α = (0.8, 0.8, 0.8)T . We now can simulate (Y(s1), . . . , Y(sm))

from this model. Figure 1(c) shows 200 simulated Y ’s.
We generated 200 training observations from the above

model, along with 500 observations for validation and 500 for
testing. We used a fixed Gaussian kernel with σ = 0.2 for
H(K). First, we evaluate the λ selection criterion. Specifically,
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Figure 2. GACV values versus λ.

we compare GACV with a gold standard method that minimizes
the sum of RMISEs (sRMISE) defined as

sRMISE(τ ) =
p∑

k=1

⎛
⎝m−1

m∑
j=1

(β̂τk(sj) − βτk(sj))
2

⎞
⎠

1/2

.

Figure 2 shows the selected λ versus the corresponding GACV
value. We then compare parameter estimation accuracy under
GACV and the gold standard. Table 3 shows the L2 distance
between βτ i and β̂τ i across different τ values. It is not surprising
that the gold standard is better than GACV since we used
the ground truth information in the gold standard method.
However, we also can observe that GACV has very similar
performances as the gold standard method, especially at τ =
0.5, where we have more data available for parameter estimation
in this simulation. The smoothness level goes up from β1 to β3 in
our simulation. We observe that GACV tends to select a simpler
model than does the gold standard—that is the smoothest β1 is
best estimated with GACV.

Next, we consider the copula model. Based on a randomly
selected observation pair (Yi, xi = (1, 1, 0.2926)T), we obtained
the following results in Figure 3: (a) the ground truth marginal
distribution given the xi (different quantiles are plotted with
different colors), (b) the estimated quantiles based on the λ

selected by the gold standard method, and (c) the estimated
quantiles based on the GACV. The red curve in (a)–(c) shows
Yi. In Figure 3(d), we show the quantile functions U(s) of the
observation Yi in different scenarios (distributions) of (a),(b)
and (c).

To quantitatively evaluate the estimated quantile functions
U(s) in different λ selection scenarios, we calculate its L2 dis-
tance to the ground truth quantile function. In average, we
got ‖U(s) − Û(s)‖ = 0.081(±0.0351) and 0.101(±0.0398)

for GACV and gold standard methods, respectively. This result
indicates that in terms of recovering the quantile function U(s),
GACV is not worse than the gold standard. GACV is used in all
of the following experiments.

We then compare different couple models on fitting the
bivariate empirical observation pair (F̂(si,x)(yi), F̂(sj,x)(yj)) with
different �s (�s = ‖sj−si‖). Using the R package “VineCopula”
(Nikoloulopoulos, Joe, and Li 2012), we compared 21 different
copula models, including the Gaussian copula and Student’s
t copula. The results are shown in Figure 2.2 in Supplement
II. Although the pair (F(si,x)(yi), F(sj,x)(yj)) is simulated from
Gaussian, t-distribution fits the empirical data better in most
of the cases, justifying our choice of t-copula. Note that we
obtained similar conclusion with the real data (refer to Figure
2.1 in Supplement II).

We also evaluate the generalized least square algorithm for
estimating parameters in the t-copula model, whose degree of
free parameter � was estimated based on (F̂(si,x)(yi), F̂(sj,x)(yj))
using the R package “VineCopula.” We fixed ν = 5/2 in
all experiments. Figure 4(a) shows the 20 ground truth func-
tions of �−1(U(s)), and (b) shows the corresponding esti-
mated �̂−1(U(s)). Moreover, some flat regions in �̂−1(U(s))

Table 3. Comparison of different methods on selecting λ, evaluated through ‖βi − β̂i‖0.

(n = 200, GACV Gold standard

m = 100) τ = 0.1 τ = 0.5 τ = 0.8 τ = 0.1 τ = 0.5 τ = 0.8

β1 0.139(0.050) 0.045(0.035) 0.061(0.039) 0.095(0.061) 0.054(0.042) 0.054(0.051)
β2 0.233(0.058) 0.143(0.043) 0.199(0.047) 0.101(0.059) 0.073(0.052) 0.041(0.041)
β3 0.191(0.075) 0.242(0.069) 0.302(0.065) 0.159(0.093) 0.155(0.092) 0.162(0.091)

NOTE: The mean and standard deviation (in bracket) are displayed in each entry.

Figure 3. Comparison of marginal density estimation under different λ selection criteria. Given an observation (Yi , xi = (1, 1, 0.2926)T ) (Yi is plotted in the red curve
in panels (a)–(c)), panels (a)–(c) show the marginal distribution of Y|xi with the ground truth parameters, parameters estimated based the gold standard method, and
parameters based on GACV, respectively. Panel (d) shows the quantile function U(s) of the Yi(s) in the distributions in panels (a)–(c).
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Figure 4. Parameters estimation in the copula model. Panels (a) and (b) show some ground truth quantile functions �−1(U(s)) and the corresponding estimated
�̂−1(U(s)), respectively. The blue lines mark different quantile ranges for calculating difference between �−1(U(s)) and �̂−1(U(s)). Panels (c) and (d) show the ground
truth covariance and the estimated covariance, respectively.

Figure 5. Examples of simulating {Yi} with given {xi} in the simulated test dataset.

are caused by the estimation precision because we only esti-
mated quantiles from 1 to 99. The average point-wise distances
between �−1(U(s)) and �̂−1(U(s)) shown in Figure 4(b) show
that the estimates are better in the middle than in the tail. We
then calculated t−1

� (U(s)), and estimate �θ(x) in our copula
model. For x = (1, 1, 0.8507)T , Figures 4(c) and (d) show the
ground truth covariance function and the estimated covariance
function �/(�−2)�̂θ(x), respectively. The estimation algorithm
can work very well even when the domain is irregular (see
additional simulation results in the supplementary materials).

Next, we can obtain the joint distribution of Y|x. Using {xi}
(i = 1, . . . , 500) in the test dataset, we simulated Yi. In Figure 5,
(a) shows the randomly sampled {Yi} using the ground truth
parameters, and (b) shows the simulated Yi using estimated
parameters based on GACV which we can see follow similar
patterns of {Yi} sampled using the ground truth parameters.

5.3. Real Data Analysis

5.3.1. ADNI DTI Data
We apply the proposed method to analyze the diffusion tensor
imaging (DTI) data in the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) study. In 2003, the ADNI was started by
National Institute on Aging, the National Institute of Biomedical
Imaging and Bioengineering, the Food and Drug Administra-
tion, and some private pharmaceutical companies and nonprofit
organizations. This multisite study assesses clinical, imaging,

genetic and biospecimen biomarkers through the process of
normal aging to early mild cognitive impairment, to late mild
cognitive impairment, to dementia or Alzheimer’s disease (AD).
Participants were recruited across North America to participant
in the project and a variety of imaging and clinical assessments
were conducted for each participant. Results were shared by
ADNI through the Laboratory of Neuro Imaging’s Image Data
Archive (https://ida.loni.usc.edu/).

In our study, 203 subjects’ diffusion weighted MRI and demo-
graphic data were downloaded and processed. DTI data for each
subject were extracted using two steps. First, estimate a diffusion
tensor at each voxel using a weighted least square estimation
(Koay et al. 2006; Zhu et al. 2007). Second, register DTI images
from multiple subjects using the FSL TBSS pipeline (Smith et
al. 2006) to create a mean image and a mean skeleton. To be
more specific, after estimating the diffusion tensor, fractional
anisotropy (FA), a scalar measure of the degree of anisotropy,
was calculated for each voxel. Next, FA maps of all subjects were
fed into the TBSS tool in the FSL software and were aligned non-
linearly. The mean FA image was then calculated and thinned
to obtain a mean FA skeleton representing the centers of all
white matter tracts common to the group. Subsequently, each
aligned FA data were projected onto this skeleton. We focus
on the midsagittal corpus callosum skeleton and the associated
FA curves from all subjects. The corpus callosum is the largest
fiber bundle in the human brain and is responsible for much
of the communication between the two cerebral hemispheres.
Figure 6(a) shows the FA curves from all 203 subjects.

https://ida.loni.usc.edu/
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Figure 6. Our SQR results on corpus callosum FA curves from ADNI data. The top left panel shows the original FA curves of 203 subjects in ADNI. The remaining panels
show our estimated βτ at different τ (τ increases from blue to yellow).

Figure 7. Predicted FA curves xT
i β at different τ given xi in ADNI DTI dataset.

We are interested in exploring the effects of gender, age,
and Alzheimer’s Disease Assessment Scale-Cognitive subscale
(ADAS) (Rosen, Mohs, and Davis 1984) score on the diffusion
properties along corpus callosum tract at different quantile lev-
els. Specifically, we have xi = (1, gender, age, ADAS)T , and Yi
representing an FA curve. For gender, males are set as 0 and
females are set as 1. To make comparisons with Reich, Fuentes,
and Dunson (2011), we standardized both age and ADAS to
be in (0, 1). The fitted coefficient functions β̂τ are shown in
Figure 6 at different quantile levels (τ = 0.01, 0.02, . . . , 0.99).
Figure 7 shows the predicted FA curves xT

i β̂τ across τ =
0.1, 0.5, and 0.8. It is well-known that aging deteriorates brain
structure (Wyss-Coray 2016). The ADAS is widely used to detect
cognitive deficits in people suffering from AD. The range of

ADAS in our dataset is (0, 51) with higher scores indicating
greater degrees of cognitive deficit. From Figure 6, it follows that
both aging and ADAS have a negative effect on the diffusivity on
the midsagittal corpus callosum skeleton.

Across different quantiles, we observe a nice layout of
βintercept—the median is in the middle between quantile 1 and
quantile 99. We also observe some interesting structures in the
coefficient functions. From βgender, we see that there is not much
difference between males and females at quantiles ranging from
10 to 99. However, if we consider lower quantiles (e.g., from
1 to 10), the FA for females along corpus callosum skeleton
has smaller values compared with those for males. Biologically,
this indicates in the population that the lower FA values along
the midsagittal corpus callcosum in females are smaller than
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Figure 8. BSQR results on on corpus callosum FA curves from ADNI data.

Figure 9. Illustration of marginal distribution of Y|x and statistical inference using p-values. (a) Marginal distribution of Y(sj) given x = (1, male, age = 60, ADAS = 51).
Red curves show Yi of subjects having much smaller ADAS scores (<10). (b) The p-value curves of one subject in (a) with ADAS = 8. The solid horizontal line represents
p = 0.95.

the lower FA values in males, but their means might not have
much difference (Inano et al. 2011). We utilized the package
FADTTS (Zhu et al. 2011) to perform a mean regression and the
results are presented in Supplement II, where we can see that the
coefficient function for gender fluctuates around 0. From βage,
we see that for people with worse FA values (at lower quantiles),
the same amount of aging can contribute to more FA reduction
(indicating worse white matter deterioration (Kochunov et al.
2007)) than those at high quantiles. The mean regression results
from FADTTS cannot give this information. For βADAS, the
deterioration of Alzheimer’s Disease (measured by ADAS) is
more similar across different quantiles, acting differently com-
pared with age.

As another comparison, we ran the BSQR model (Reich,
Fuentes, and Dunson 2011) on the DTI data. Figure 8 shows
the results at 20 different quantile levels. These results are based
on 5000 MCMC runs after burn-in of the first 1000 samples.
In a laptop with a 2.3 GHz Intel i9 CPU and 32 GB memory,
it took about 1400 sec to get βτ at 20 quantile levels with the
BSQR, and 13 sec to get βτ at 99 quantile levels with our method.
BSQR contains a two-stage approach to approximate βτ . First,
independent quantile regressions at different locations are done
to obtain estimates of the quantile process and their asymptotic
covariance. Next, a Gaussian process model is fitted based on
the initial estimates of βτ (s) to introduce spatial dependence
structure. As a consequence of this two-stage solution, we see
from Figure 8 that the estimated βτ can be rough and sub-
optimal.

Next we show how to use SQR to make statistical inference.
First, we selected one male patient with age 60 and ADAS

51 and calculated FA curves at different quantiles along the
midsagittal corpus callosum skeleton with the fitted model.
Figure 9(a) shows the marginal distribution Y(sj) given x =
(1, male, age = 60, ADAS = 51). In addition, we plot a subset
of subjects having much smaller ADAS scores (<10) in red in
Figure 9(a). From this plot, we see that, in general, people with
smaller ADAS scores have higher FA values than the one with
ADAS = 51. FA represents white matter integrity. A smaller FA
along the midsagittal corpus callosum indicates deteriorations
of the corpus callosum fiber bundle, and thus weakened bilateral
communications. Our finding is consistent with the literature
(Biegon et al. 1994; Ardekani et al. 2014). Second, we carried
out statistical inference using p-values. Figure 9(b) shows the p-
value curve of the subject with ADAS = 8 under the estimated
marginal distribution of the subject with ADAS = 51. In most
locations, the FA value differs significantly from the two subjects
(1 − p < 0.05). Third, Figure 10 shows more results obtained
from the copula model, where panels (a) and (b) show �/(� −
2)�̂θ(x1) and �/(� − 2)�̂θ(x2) for x1 = (male, age = 61, ADAS
= 5) and x2 = (male, age = 60, ADAS = 51), respectively, panel
(c) shows their difference, and panel (d) shows random samples
simulated from the distributions of Y|x1 (blue) and Y|x2 (red).
The covariance matrices �/(� − 2)�̂θ(x) and their difference
in panels (a)–(c) reveal that subjects with large ADAS values
have longer range correlation between t−1

� (ui) and t−1
� (uj) at

certain locations, indicating that they have more smoothed FA
curves compared with those with small ADAS values. Moreover,
the results in panel (d) reveals that healthy subjects in general
have higher FA values than AD subjects with the same age
and gender.
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Figure 10. Results of the copula model in ANDI DTI dataset. (a) ρ/(ρ − 2)�̂θ(x1) with x1 = (male, age = 61, ADAS = 5). (b) ρ/(ρ − 2)�̂θ(x2) with x2 = (male, age = 60,
ADAS = 51). (c) ρ/(ρ − 2)(�̂θ(x1) − �̂θ(x2)). (d) Random samples from the distributions of Y|x1 (blue) and Y|x2 (red).

Figure 11. Observed conformally mapped left (a) and right (b) hippocampal images, and the original statistics on the surface (c).

5.3.2. Hippocampus Surface Data
In another example, we analyze the hippocampal substructures
extracted from MRI scans in the ADNI study. The hippocampus
locates in the medial temporal lobe underneath the cortical
surface. It belongs to the limbic system and plays important roles
in the consolidation of information from short-term memory to
long-term memory and spatial navigation (Colom et al. 2013;
Luders et al. 2013). The neurodegenerative activity of AD is
evident in the hippocampus region.

In our study, given the MRI scans, the hippocampal sub-
structures were segmented with FSL FIRST (Patenaude et al.
2011) and the hippocampal surfaces were automatically recon-
structed with the marching cube method (Lorensen and Cline
1987). We used a surface fluid registration based hippocampal
subregional analysis package (Wang et al. 2011; Shi et al. 2013,
2014) that uses isothermal coordinates and fluid registration
to generate the correspondence between hippocampal surfaces
and the statistics computed on the surface. This method intro-
duces two cuts on a hippocampal surface to convert it into a
genus zero surface with two open boundaries. The locations
of the two cuts were at the front and back of the hippocam-
pal surface. By using conformal parameterization, it converts
a three-dimensional surface registration problem into a two-
dimensional image registration problem. The flow induced in
the parameter domain establishes high-order correspondences
between three-dimensional surfaces. After the registration, var-
ious surface statistics were computed on the registered sur-
face, such as multivariate tensor-based morphometry statistics
(Wang et al. 2011) that retain the full tensor information of the
deformation Jacobian matrix, and the radial distance (Pizer et al.
1999). This software package has been applied in various studies

(Wang et al. 2011, 2013; Shi et al. 2013, 2014). The radial distance
feature is used in this article. An example of one subject’s left and
right hippocampus images are shown in Figure 11, where the left
side of (a) or (b) corresponds to the bottom of the hippocampus
in (c), and the right side corresponds to the top.

We applied our SQR to the hippocampus dataset. We have
403 subjects, 223 of which are healthy controls (107 females
and 116 males), and 180 of which have AD (87 females and 93
males). Scalar covariates include the subject’s gender, age, and
behavior score (1–36, where lower scores correspond to healthy
controls and higher scores corresponds to ADs). The response
variable is the two-dimensional hippocampus image. Prelimi-
nary analysis indicates that gender does not have a significant
effect on hippocampus and therefore, in our analysis, we only
include two covariates—age and behavior score, both of which
are normalized. In the following, we present results for the right
hippocampal surfaces. Figure 12 shows the coefficient images
at τ = 0.5, with more results for τ = 0.25 and 0.75 shown in
Figure 2.1 in Supplement II. Our results indicate that both aging
and AD will degenerate the hippocampus, especially the bottom
part, and the AD has more adverse effect than the aging (Scher
et al. 2007; Frisoni et al. 2008).

In another experiment, we compared marginal distributions
given different covariates. We first got the marginal distribution
Y(s)|x = (1.47, 2.48) (corresponding to age = 85, behavior =
30.3) and then calculated the p-value maps of some randomly
selected observations Yi. The results are shown in Figure 13.
We can see that the hippocampus in younger adults with good
behavior scores have significantly bigger hippocampus (espe-
cially the part close to the bottom) than subjects with age 85 and
behavior 30.3.
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Figure 12. Coefficient images β at τ = 0.5.

Figure 13. p-value maps for some observed Yi under the marginal distribution of Y(s)|x with x = (1.47, 2.48), corresponding to an age of 85 and a behavior score of 30.3.
Numbers in the parentheses correspond to age and behavior score.

6. Discussions

We have developed a class of SQR models for function-on-scalar
regression, which explicitly characterizes the conditional spatial
distribution of a high-dimensional functional/image response
given scalar predictors. We have borrowed the strength from
both quantile regression and copula modeling, and have devel-
oped an efficient primal-dual algorithm to estimate unknown
parameters. Simulations and real data analysis are used to show
that SQR is efficient to obtain a comprehensive understanding
of the effect of scalar covariates on the functional response at
different quantile levels. We also established the optimal rate of
convergence on the estimation of the coefficient functions.

Many important issues need to be addressed in future
research. First, although we focus on the analysis of one- and
two-dimensional images, it is straightforward to apply our
methods to k-dimensional images with k > 2. Under this
circumstance, the coefficient functions βτ (·) are k-dimensional
unknown functions, and the spatial location sampling fre-
quency m will be much larger than that of two-dimensional
images. In this case, the computational efficiency is the key

challenge. Second, instead of analyzing image data in a raw
space directly, we may achieve better results by working on a
transformed space, such as frequency. In this case, some fur-
ther development may be necessary. Third, it is interesting to
consider several alternatives to the quantile used in this article.
For instance, we may consider a new multivariate concept of
quantile based on a directional version of Koenker and Bas-
sett’s traditional regression quantiles for multivariate location
and multiple-output regression problems (Koenker et al. 2017).
In their empirical version, those quantiles can be computed
efficiently via linear programming techniques. The contours
generated by those quantiles are shown to coincide with the
classical halfspace depth contours associated with the name of
Tukey. This depth approach is an interesting alternative and we
will leave it for future research.

Supplementary Materials

The supplementary materials contain proofs of main theorems and lemmas,
additional numerical experiments, and the details of the ADMM algorithm.
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